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Abstract

A Gaussian beam method is presented for the analysis of the energy of the
high frequency solution to the mixed problem of the scalar wave equation in an
open and convex subset 2 of R™, with initial conditions compactly supported
in €, and Dirichlet or Neumann type boundary condition. The transport of
the microlocal energy density along the broken bicharacteristic flow at the high
frequency limit is proved through the use of Wigner measures. Our approach
consists first in computing explicitly the Wigner measures under an additional
control of the initial data allowing to approach the solution by a superposition
of first order Gaussian beams. The results are then generalized to standard
initial conditions.

Mathematics Subject Classification: 35105, 35120, 81S30.

Key words and phrases: wave equation, Gaussian beam summation,
Wigner measures, FBI transform, reflection.

1 Introduction

We are interested in the high frequency limit of the initial-boundary value problem
(IBVP) for the wave equation

Pu, = 8t2u5 - Zazj (CQ(x)axjus) =0in [0,T] x Q, (1.1a)
=1

Bu. = 0in [0,T] x 99, (1.1b)

Uel|t=o = ui, Optuc|i—o = UEI in Q, (1.1c)

where B stands for a Dirichlet or Neumann type boundary operator.
Above, T' > 0 is fixed, (2 is a bounded domain of R™ with a C*>* boundary and the
wave propagation velocity ¢ is in C*°(€2), though this assumption may be relaxed.
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The initial data depend on a small wavelength parameter £ > 0 and we assume that

ul and v! are uniformly bounded w.r.t. € respectively in H'(Q)
and L*(Q). (H1)

We are interested in the description of the behavior of the local energy density

210wue]? + 3 Z ?0,,u|?, at the high frequency limit ¢ — 0, in which case, it is
-1

well known that this quantity can be computed through the use of Wigner measures.

The Wigner transform is a phase space distribution introduced by E. Wigner
[50] in 1932 to study quantum corrections to classical statistical mechanics. In
the 90’s, mathematicians became increasingly interested by these transforms and
related measures, see for example [29, 33, 34, 35] for the semiclassical limit of
Schrédinger equations. A general theory for their use in the homogenization of
energy densities of dispersive equations was laid out by Gérard et al. in [20], see
also [17, 16]. Wigner measures are also related to the H-measures and microlocal
defect measures introduced in [49] and [18], see also [6, 1]. Whereas there is no
notion of scale for the latter measures, Wigner transforms are associated to a small
parameter tending to zero. In quantum mechanics, this parameter is the rescaled
Planck constant, while it will be typically the distance between two points of the
medium’s periodic structure for homogenization problems.

The Wigner transform, at the scale €, is defined for a given sequence (a., b:) in
S'(R™)? x §'(R™)P as the tempered distribution

we(ag, be)(z, &) = (2m)~" /n e e (x4 %v)b;(x — %v)dv.

If a. is uniformly bounded w.r.t. € in L?(R")P, then w.[a.] := we(ae,a.) converges
as € goes to 0 in M, (S'(Rg X Rg)) to a positive hermitian matrix measure (modulo

the extraction of a subsequence), which is called a Wigner measure associated to
(az) and denoted wla;]. The Wigner measures associated to the solution of the
wave equation (and hyperbolic problems in general, see e.g. [20, 40]) are related
to the energy density in the high frequency limit. More precisely, under suitable
hypotheses (see Proposition 1.7 in [20]), the density of energy associated to the
solution u¢ of the Cauchy problem for the scalar wave equation converges as &€ — 0
in the sense of measures to

/ & (u€(t.)) (. dE),

where

& (ul(t,.) = %w[@tug(t, )]+ %Zw[cazjuac(t, ).

Moreover, £ (ug(t, )) is the sum of two measures satisfying transport equations of
Liouville type (see e.g. [20]).

For the Dirichlet or Neumann initial boundary value problem connected with
the wave equation, we shall study the same quantity after extending dyuc.(t,.) and
cOz;uc(t,.), j=1,...,n, to functions of L?(R™) by setting Oue = 190sue, Og;ue =



198%,118 and extending c outside Q in a smooth way. Hence, we call microlocal
energy density of u. the distribution

;ws Opue(t Zws [Cazj ue(t )}

and its high frequency limit the measure

n

1 1
E (uelt,.)) = W [Opuc(t, )] + 5;10 {c@zjus )} .
v_g = 191)51 and (%Cjus = 198%115 (j = 1,...,n) will satisfy the usual assump-

tions needed in the general context of the study of Wigner measures: their Wigner
measures are supposed unique and

v and Oy, u; ul,j=1,...,n, are c-oscillatory (see (3.23) and (3.24)), (H2)

the Wigner measures of (é) and (8%. ug) ,j=1,...,n, do not charge the set
" x {¢ =0} (H3)

Our present study will be restricted to the case where the rays starting from the
support of the initial data do not face diffraction on the boundary, nor do they glide
along 0f). Therefore, we also assume that

u&{ and val have supports contained in a fixed compact set of €2 independent of ¢,
(H4)

Q) is convex with respect to the bicharacteristics of the wave operator, that is

every ray originating from  hits the boundary twice and transversally,
and

the boundary has no dead-end trajectories, that is infinite number of successive

reflections cannot occur in a finite time.

These geometric hypotheses insure that the only phenomena occurring at the bound-
ary is the reflection according to the geometrical optics laws.

Wigner measures for the wave equation in presence of a boundary or an interface
have been studied by Miller [37] who proved refraction results for sharp interfaces
and Burq [5] who described their support for a Dirichlet boundary condition. Sim-
ilar results have been established for other problems [8, 13, 15], in particular the
eigenfunctions for the Dirichlet problem [52, 19] and for the Neumann and Robin
problems [7]. All these works are based on pseudo-differential calculus, and in
particular the use of a tangential pseudo differential calculus.

In this paper, we present an approach to compute Wigner measures based on
the Gaussian beam formalism. Therefore, we avoid any use of adapted pseudo-
differential calculus. Though a Gaussian beam technic requires much more work,
compared to the above mentioned papers, one advantage is that we are able to give
asymptotic estimates for remainders terms, which could be useful for numerical
purposes for instance.



Let us recall that Gaussian beams (or the related coherent states) are waves
with a Gaussian shape at any instant, localized near a single ray [3, 44]. They
play the role of a basis of fundamental solutions of wave motion and furthermore
can be used to study general solutions of partial differential equations (PDEs). For
example, they can help for the understanging of propagation of singularities [44], to
prove lack of observability [32] and to study semiclassical measures [41] and trace
formulas [51, 12].

To describe non localized solutions of PDESs, one can use the Gaussian beam
summation method [24, 10, 25]. The initial field is expanded as a sum of Gaussian
beams. Each individual beam is computed and the solution is then obtained at an
observation point by superposing a selection of Gaussian beams. The summation
strategies are numerous. The sum can be discrete [38, 47, 2] or continuous [30, 31],
the selection of the beams to be superposed can be done according to several criteria.
In [4], a weighted integral of Gaussian beams was designed to build an approximate
solution of the IBVP (1.1) under an additional assumption (H5) on the initial data
(see p.9). See also [27, 28, 43] for recent numerical implementations related to this
method.

Gaussian beams seem to be very well suited for the study of Wigner measures.
Indeed, the Wigner transform of two different beams vanishes when e goes to zero.
Even better, the Wigner measure of one individual beam is a Dirac mass localized
on the corresponding bicharacteristic. Thus Gaussian beams act as an orthogo-
nal family for the Wigner measure. Using these elementary solutions for studying
Wigner measures is not new, see for example in the whole space domain the work
by Robinson [45] for the Schrodinger equation, and more recently the paper by
Castella [9] who used a coherent states approach for the Helmholtz equation.

As the microlocal energy density of one individual beam is concentrated near
its associated bicharacteristic, one would expect that the Wigner measure of a
summation of weighted Gaussian beams will yield easily that the associated weights
are transported along the broken bicharacteristic flow (see p.8 for the construction
of reflected flows and p.29 for the definition of the broken flow). Unfortunately this
result is not immediate as even different beams become infinitely close to each other.
However, we shall show by elementary computations that this intuition is indeed
true and that the microlocal energy density of the considered approximate solution
is transported at the high frequency limit along the broken bicharacterisitic flow.
Since the asymptotic solution is close to the exact solution u., we may deduce the
same consequence for & (u(t,.)).

The additional hypothesis (H5) consists in assuming that in the frequency space,
the initial data are supported in a compact that does not contain 0 (modulo infinitely
small residues). When studying Wigner measures by the pseudo-differential calculus
techniques, the frequency behavior of the initial conditions is only controlled by the
less restrictive hypotheses (H2) and (H3). Hence, the assumption (H5) is artificial
(though not for numerical purposes) and is required only by the Gaussian beam
summation method we have chosen. However, for e-oscillatory initial data with
Wigner measures not charging the set R™ x {& = 0}, a truncation of their frequency
support at infinity and at zero does not affect the energy density of the solution as
¢ — 0. By achieving such a truncation, we succeed to derive the transport property
of the energy density under the traditional hypotheses (H2) and (H3):

Theorem 1.1 Assume the hypotheses (H1)-(H4) on the initial conditions hold true.



Let £ = %
sociated to —idy — ¢|D| obtained after successive reflections on the boundary OS).
Then

w {é:l: zc|D|u_4 and denote by o} the broken bicharacteristic flow as-

€ (uelt, ) = 5(E7 0 (g )+ 0(ph) ™) in @ x (RM\{0))

As mentioned already in our Introduction, this result is well known. But our
method of proof is able to give more precise estimations than those stated above for
the Wigner measures. In particular, we have estimations on the Wigner transforms
of the solutions.

The rest of the paper is organized as follows. In Section 2, we recall the con-
struction of first order Gaussian beams and the structure of the asymptotic solutions
obtained as an infinite sum of such beams. The derivatives of the asymptotic solu-
tions are then expressed using Gaussian type integrals. We simplify the expression
of the Wigner transform of such integrals in Section 3, following initial computations
of [45] in the Schrodinger case. We then compute the microlocal energy density of
the asymptotic solution by exploiting the expressions of the beams phases and am-
plitudes and using the dominated convergence theorem. We prove the propagation
along the broken flow of & (u.(t,.) at the high frequency limit, with the help of
assumptions (H2) and (H3) on the initial data. Some complementary results are
collected in an Appendix, Section 4.

Let us end this Introduction with a few notations which will be used hereafter.

A vector 2 € R? will be denoted by (z1,...,2q), the inner product of two vectors
a,b € R? by a - b, and the transpose of a matrix A by AT. If E is a subset of R?,
we denote E¢ its complementary and 1g its characteristic function. For a function
f e L), welet f = 1qf. Forr > 0, x, denotes a cut-off function in C§°(R™, [0, 1])
such that B

xr(z) = 1if |z| < r/2 and x,(x) =0 if || > 7.

We use the following definition of the Fourier transform
Fou(l) = / u(a:)e_”fd:r for u € L2(Rd)_
Rd

If no confusion is possible, we shall omit the reference to the lower index x.
We keep the standard multi-index notations. For a scalar function f € C*(RZ,C),
Oy f will denote its gradient vector (8,,f)i1<j<q and 02f will denote its Hessian
matrix (Oz;O0r, f)1<j,k<a- For a vector function g € C>=(R?,CP), the notation Dg is
used for its Jacobian matrix (Dg); x = Ox,g;. If g is a function in C>°(R} x R}, CP),
we denote (Dyg)jk = 0y,9; and (Dyg);x = Op,g;. We use the letter C' to denote a
(possible different at each occurence) positive constant.
For (y.) and (zc) sequences of Ry with € €]0,¢¢], we use the notation y. < 2z if
there exists C' > 0 independent of € such that y. < Cz. for € small enough. We
write ye < e or y. = O(e™) if for any s > 0 there exists Cs > 0 s.t. for £ small
enough y. < Cse”.
Finally, if E is in an open subset of R?" and v, v/, are two distributions s.t.

g%(l/a —v)=0in E,
we shall write

Ve & V; in .



2 Tool-box and construction of the asymptotic so-
lution

We recall the construction made in [4] of an asymptotic solution as a superposition
of Gaussian beams and give the expression of its time and spatial derivatives with
the help of so called Gaussian integrals.

2.1 First order Gaussian beams
2.1.1 Beams in the whole space

Let hy(z,&) = c(x)|¢| and (2%, &) be a Hamiltonian flow for A, that is a solution
of the system
d i

PR Iehy(2',€") = c(a')

gt
&7’
The curves (t, %) of R"*! are called the rays of P.

An individual first order (Gaussian) beam for the wave equation associated to
aray (t,2') has the form

d . toety _ ty|et
T8 = —0cho(a',€") = —Ore(a") €.

we(t, z) = ag(t, z)e™t2)/e,

with a complex phase function ¢ real-valued on (¢, z'), an amplitude function ag
null outside a neighborhood of (¢, z"), and such that

sup [|Pwe(t,.)| 2 = O(™),
t€[0,T]

for some m > 0.
The construction of such a beam is achieved by making the amplitudes of Pw.
vanish on the ray up to fixed suitable orders [44, 23, 32]

Puw. = (5_219(55, O, Ouib)ag+e i (200ha0 — 2¢° 0,000 a0 + Pwao)—kh.o.t.)eiw/g,

(2.1)
where p(z,7,£) = ¢*(z)|¢]*> — 72 is the principal symbol of P and h.o.t. denotes
higher order terms. The first equation is then the eikonal equation

p(z, 0(t, ), 02p(t, ) = 0 (2.2)

on z = z' up to order 2 (see Remark 2.1 in [4] for an explanation of the choice of
this specific order), which means

07 [p (2,000 (t, @), 029p(t, )] |a=gr = 0 for |af < 2.
Orders 0 and 1 of the previous equation are fulfilled on the ray by setting
Opp(t,x') = —hy (2", €") and ,9(t, 2") = & (2.3)
Choosing (0, 2°) as a real quantity, it follows that

(t, 2') is real. (2.4)



Order 2 of eikonal (2.2) on the ray may be written as a Riccati equation

% (OFw(t2")) + Har (2", )0 (t,2') + (L, o) Hia (2", €1)
+ 6§w(t7xt)H22(xt7§t)aiw(t7xt) + Hll(xt7§t) = 07

(2.5)

Hyy Hio

where H =
( Hoy  Hao
equation has a unique global symmetric solution which satisfies the fundamental

property

) is the Hessian matrix of hy. This nonlinear Riccati

Im 029 (t,2") is positive definite, (2.6)

given an initial symmetric matrix 921 (0,2°) with a positive definite imaginary part
(see the proof of Lemma 2.56 p.101 in [23]).

The phase is defined beyond the ray as a polynomial of order 2 w.r.t. (z — zt)
(48]

Y(t,x) =t ) + & (x —2b) + %(ZE — ") 02p(t, ") (z — ). (2.7)

Next, we make the term associated to the power e ! in the expansion (2.1) vanish
on (t,z?)
20400sag — 2¢20,100a0 + Pipag = 0 on (¢, zt), (2.8)

which leads to a linear ordinary differential equation (ODE) on a(t,z'). The
amplitude is then chosen under the form

ao(t, I) - Xd(x - It)QO(tv ‘Tt)v

where d is a positive parameter. The constructed beams are thus defined for all
(t,z) € R"™! and they satisfy the estimate

le= 5 Pw.(t,.)|| 12() = O(VZ) uniformly w.r.t. ¢ € [0, 7.

Note that Gaussian beams for P associated to the ray (t,z7 ) are w.(—t, z).

2.1.2 Incident and reflected beams in a convex domain

Assume that c(z) is constant for dist(x, Q) larger than some constant C' > 0. Given

a point (y,n) in the phase space T*(})R”, where T*U denotes U x (R™\{0}) if U is
an open set of R", the Hamiltonian flow ¢} (y,n) = (2§ (y,n), & (y,n)) satisfying:
d ¢ d
b = la) o, 6 = ~drclabIE

zhli=0 = Y, & lt=0 = n,m # 0,

is called incident flow. A beam associated to the incident ray (¢,z}) is denoted w?
and called an incident beam. Since we have dependence w.r.t. the initial conditions
(y,m), we write the incident beam as

Wt @, y,m) = ao(t, ,y,m)eotmvm/e,



Let R be the reflection involution

R : T*Rn|ag — T*R”|asz

(2.9)
(X,E) = (X, (Id - 2v(X)v(X)")E),

where v denotes the exterior normal field to 9€2. We shall only consider initial

o
points (y,m) € B = Uerpl(T*Q)) giving rise to rays that enter the domain  at
some instant. Each associated flow o (y,n) hits the boundary twice. Reflection of
©b(y,n) at the exit time t = T} (y,n) s.t.

IOTl(y’") (y,m) € 9Q and j:OTl(y’n)(%??) v (%Tl(y)n) (yﬂ?)) >0

gives birth to the reflected flow ¢! (y,n) = (! (y,n), &4 (y,n)) defined by the condi-
tion
splTl(yﬂ?) (y,n) = Rowgl(y’n) (y,n).

Similarly, we also define the reflection time T_1(y,n) and the flow ¢ (y,n) by
reflecting ©f (y,n) as follows

xonl(yﬂ?) (y,m) € 09 and j;onl(ywn)(y, n) v (Ionl(y,n) (yﬂ?)) <0,

eI (y,m) = Ropy " (y,m).

We denote, for k = +1, the reflected beams by
W (t,@,y,m) = ag(t,z,y, m)e' Hmvm/e,

These beams are associated to the reflected bicharacteristics ¢f. Let us introduce,
for £k = 0,+1, the boundary amplitudes d’imBﬂ- s.t.

mp

k_ —mp+j gk iy /e

Bw, = E € dZ,, 1€ .
Jj=0

Above, mp denotes the order of B (mp = 0 for Dirichlet and mp = 1 for Neumann).
The construction of the reflected phases and amplitudes is achieved by imposing
that

1. the time and tangential derivatives of ¢y, equal at (T, xOT’“) those of ¥y up to
order 2,

2. (d°,,, +d*,..) (Te,zg*) =0,

—mp

for k = +1. These constraints uniquely determine the reflected phases and ampli-
tudes, once the incident ones are fixed [44]. If T is sufficiently small, at most one
reflection occurs in the interval [0, 7] and in the interval [T, 0] for a fixed starting

o
position and vector speed (y,n) € T*Q, and the following boundary estimates are
satisfied [44]

oE —i —mp—s+3
”B (E 4+1w2('7y777) +e 4+1w;('7y777)) HHS([O,T]X()Q) = O(E 5 +2)7
and ”B (E_%—i_lwg('vyun) + E_%—i_lwa_l('?yun)) HHS([*T,O]X(?Q) = O(‘E_mB_S+%)7

for s > 0.



2.2 Gaussian beam summation

The construction of asymptotic solutions to the IBVP (1.1a)-(1.1b) with initial con-
ditions (1.1¢”) having a suitable frequency support (see below) is recalled, through
the Gaussian beam summation introduced in [4]. We focus on a superposition of
first order beams, for which exact expressions of the phases and amplitudes are dis-
played in Subsection 2.2.2. These beams lead to a first order approximate solution,
close to the exact one up to y/e. Then, the derivatives of the first order solution
will be approximated by some Gaussian type integrals.

2.2.1 Construction of the approximate solution

In [4], we have constructed a family of asymptotic solutions to the IBVP for the
wave equation for initial data satisfying (H1), (H4) and an additional hypothesis
(H5) concerning their FBI transforms.

Let us recall here that the FBI transform (see [36]) is, for a given scale ¢, the
operator Tt : L*(R") — L?(R?") defined by
T.(a)(y,n) = e T / a(ac)e""(y_w)/g_(y_””)2/(2€)dx, n=2"%1"% ac L*(R™),

(2.10)

with adjoint operator given by

TH(f)(@) = cne™ % | fly,m)em /e @m0 @D qyay, £ e L2(R™).

g
R2n

As the Fourier transform, the FBI transform is an isometry, satisfying 77, = Id.
The extra assumption on the initial data needed in [4] is

ITewlll r2(rnxre) = O(€%°) and || Tev||L2(rn « rs) = O(e™), (H5)

where Ry denotes the complementary in R" of some ring R, = {n € R",ro < || <
Too}, 0 < 1o K Too-
In general, this assumption may be not satisfied.

Therefore, we construct a family of initial data (u

(ul,vl), satisfying the same assumptions as (H1), (H4) and having FBI transforms

gr_¢€

I I
E)T07T00, 87”‘0)7‘00

) close to
small in L?(R™ x Rg) Letting 79 go to 0 and r go to +oo makes these data

approach (ul,v!) in a sense that will be specified in Section 3.3. In any case, the
needed convergence is weaker than a L? convergence since we are interested in the
study of Wigner measures.

Let us first truncate T.u!l and T.v! outside R, by multiplying them by a cut-off

Yroras € C§2(R™, [0, 1]) supported in the interior of R,
Vro,ree = XToo/2(1 - X4T0)' (211)
Lemma 4.5 from the Appendix (Section 4) yields

17T g v (n)Tau_iHLQ(R"xR;) =0(™),
and ||T5TE*’YT0,T90 (n)TEv_gHL2(RTL><R%) = O(Eoo)



In order to have data supported in fixed compact sets of € independent of £, we mul-
tiply (Ts*%o,roo (n)Tau_g, T Yo res (n)T;._-é) by a cut-off p € C§°(R™, [0, 1]) supported
in Q, and consider

Wy e = P Voo (NTetil and o, o = pT Vg e (1) Tl (L.1¢)
It is assumed that p(z) = 1 if dist(z, suppul U suppvl) < C for some C > 0. The
required estimates

Ttz g 2280 xRy = O(%) and | Tevf 1 2@ xre) = OE™)  (HY)
are fulfilled since Lemma 4.4 from the Appendix implies that

(L= P) TV, (W)Tsu_éHLi S e /¢ and (L= P) T Voo (n)TséHLi < e e,
(2.12)
Using the boundedness of the operator T, .. T- from L*(R") to L*(R") and the
relations
Oy, Te = T.0y;, 05, TS =T0,

(2.13)
obtained by integrations by parts in the expressions of 7. and T, one can show

that the new initial data (ug,ro,rmvvs[,ro,roo) is also uniformly bounded w.r.t. ¢ in
HY(Q) x L*(Q).

Let p’ be a cut-off of C§°(R™, [0, 1]) supported in a compact K, C € and satis-
fying

5

p'(y) = 1 if dist(y, suppp) < C for some C > 0,

and v a cut-off of C5°(R™, [0, 1]) supported in K, C R"\{0} s.t. v/ =1 on R,,.
Without loss of generality, we assume that either the incident ray or the reflected
one propagating in the positive sense is in the interior of the domain at the instant T’
(zd'(y,m) € Qor 2T (y,n) € Q) when y varies in K, and 7 in R"\{0}. This is always
possible upon reducing 7" because the number of reflections for initial position and
vector speed varying in K, x (R™\{0}) is uniformly bounded (see Section 2.3 of
[4] for similar arguments). And similarly for the instant —T for rays propagating
in the negative sense. Then, the IBVP (1.1a)-(1.1b) with initial conditions (1.1¢’)
has a family of approximate solutions u22P", _in C°([0, T, H'(Q2))NC* ([0, T], L*(£2))
obtained as a summation of first order beams. A general result using a superposition
of beams of any order was proven in [4], and it reads for first order beams as follows:

Proposition 1 ([4], Theorem 1.1). Denote for t € [0,T] and x € R™ the following
superposition of Gaussian beams

ulPPr (¢, x)

E,70,T o

1 _sn /

=ze +1cn/2 o)y (mTel,, (ym)( > Wkt )
Rz k=0,1

- > W (-t n))dydn

k=0,—1

_3n _
e +1cn/2 ()Y (n)e 1Tsu;m,ro@(y,n)( > Wkt y,m)
R2m k=0,1

+ Y W=ty 77)) dyd.
k=0,—1

_|_

N | =

10



Above, w?, wg/ are incident Gaussian beams with the same phase Vg satisfying at
t=0

7
Yo(0,2,9,m) =0+ (v —y) + 5 (@ —y)* (2.14)
and different amplitudes a, a8/ satisfying
. li
ag(0, z,y,1) = xa(z —y), (u’?twoag ) (0,2,9,m) = xa(z —y) + O(|lz —y|). (2.15)

wFt and wsﬂl denote the associated reflected beams. Then ulfP". —is asymptotic
10 Ue ry.ro. the exact solution of the problem (1.1a)-(1.1b) with initial conditions

(1.1¢’) in the sense that

sup ||us,To,Too - ugﬁ?g’:rw HH1 () < O(TO; Too, Qv T) \/ga

te[0,T]
and sup |[Optie vy ro — Out, ||12(0) < C(ro, 700, 0, T) Ve.
te[0,T]

We refer to [4] for further details, and just mention that the proof relies on the
use of a family of approximate operators acting from L?(R?*") to L?(R™). A simple
version of the estimate of these operators norms is recalled in Section 4.2 of the
Appendix.

2.2.2 Expression of the phases and amplitudes

In order to compute the first order beams, we begin by analyzing the relationship
between the incident phase and amplitudes, and the Jacobian matrix of the incident
flow. A similar relationship involving the reflected phases and amplitudes and the
reflected flows will be also given.

The requirement (2.3) for the incident phase implies that

d .
E (1/)0(t, Ié)) = 8t1/)0(t, Ié) =+ 811/)0(t, Ié) . Iot = O
Taking into account the initial null value 10(0,y) = 0 chosen in (2.14), one gets a
null phase on the ray
'(/JQ (t, LL‘B) =0.

With the aim of computing 9%ty (t,zf), we note that the Jacobian matrix of the
bicharacteristic F{ = Dy}, satisfies the linear ordinary differential system

%Fg = JH(xf)vgé)ng

F) =1d,
0 Id

Wherer(_Id 0

) is the standard symplectic matrix. Writing F{! as

Fl = ( DyzzriJ anZO )
Dy&o D&

leads to the following ordinary differential system on (U¢, Vi) = (Dyal + iDyxf,
Dy&p +iDy&p)
d

U5 = Han (. 6)Us + Haa (5, €6)Vs (2.16)
d
Vi = —Hu(20, &)Ug — Hiz (0, ) Vs - (2.17)

11



Note that F{ is a symplectic matrix, i.e.
(FDYTJFE = .
Using the symmetry of the following matrices
(Dy)" Dy&G, (Dyg)" Dy&o, Dy (Dya)”, and Dy&h(Dnéo)"

and the relations

(Dyxé)TDng(tJ - (Dyg(tJ)Tané = Id and DyxtO(Dngé)T - ané(Dygé)T = Id,
one has

(UHTVE = (VHTUE, (VHTTE — (UHTVE = 2ild and U} is invertible.  (2.18)

Putting together (2.16), (2.17) and (2.18) shows that V{§(U{)™! is a symmetric
matrix with a positive definite imaginary part and fulfills the Riccati equation (2.5)
with initial value i/d. Since this is the initial condition for 921y (¢, xf) given in
(2.14), it follows that

Oztbo(t, ) = Vg (U5~ (2.19)

The incident beams amplitudes are computed as follows. Using (2.3) and the Hamil-
tonian system satisfied by (xf),&l), the equation (2.8) at order zero yields the fol-
lowing transport equation for the value of the amplitude on the ray [23]

d ’ 1 ’
= (a8t b)) + 5T (Ha (ah, €8) + Han(ah, €0)0240(t, h) o' (¢, h) =0,
(2.20)

which may be written using the matrices U§ and V{ as
d 0y ot lT Hor (2t €U + Hoo(zt. €V (U171 a0 (2. 24) = 0
7 (0 (t,xq) ) + 5t [( 21(, &)U + Haz (g, &) 0)( 0) }ao (t,zg) = 0.

The time evolution for U, see (2.16), combined with the choice of the initial values
a3(0,y) =1 and a3 (0,y) = (—ic(y)|n|)~" from (2.15), yields

ad(t, x4) = (det UL)~? and af (£, 28) = i(c(y)|n]) ™" (det UE) "2 .
Above the square root is defined by continuity in ¢ from 1 at ¢ = 0.

The expression of the reflected phases v, k = +£1, is similar to the incident
phase. In fact, since % (Pr(t, k) = 0 and Yy (Ty, 20%) = Yo(Tk, 2g") because of
the requirement 1 p.8, we get

Ui(t, CL‘Z) =0.

We then apply the general relation between incident and reflected beams phases
given in Lemma 4.1 from the Appendix, to compute the Hessian matrices of 111 on
the rays. As far as we know, the result stated in this Lemma is particularly simple
enough so that we stated it in the Appendix 4.1. The matrices 8%t11 (¢, xﬁ) can
also be computed by solving the Riccati equations with the proper values at the
instants of reflections ¢t = Ty (see eg. [39, 47]). One gets (see Appendix 4.1)

o2y (t, xh) = ViH(UE) ™ where U}, = Dyal, +iD,x} and V! = D& +iD, L.

12



As ¢! is symplectic, (Uf, V}!) share the same properties (2.18) as (U, Vi)
(UHTVE = (VHTUL, (VHTUE — (UHTVE = 2ild and U}, is invertible.  (2.21)

The reflected amplitudes evaluated on the rays have an expression similar to the
incident amplitudes (see Appendix 4.1)

[N

ag(t,zh) = —si (det U{) * and al’(t,2t) = s(c(y)n) (det U}é)_% for k = +1,

1

where the square root is defined by continuity from 4 (det UOT ’“) Patt= Ty, s = —1

for the Dirichlet boundary condition and s = 1 for the Neumann condition.
We summarize the previous form of the beams in the following result:

Lemma 2.1 For k =0,+1, the incident and reflected beams wf have the form
O (t,2) = Buxao = af)af) (e,
with
Bo=1, 1 =P-1 = —si,
s a(t) = ile(y)lnl) " [det U] 72,

V= (o ad) 4 2= o) Ael0) (e — ad), and Ax(t) = iV (U}

[V

ap(t) = [det U]~

2.2.3 Gaussian integrals

It follows that the approximate solution u¢f?". has the form (recall the dependence

of Gaussian beams w.r.t. variables (y,7n))

ulPPr (¢, x)

£,70,T o0
= - 7 x
=5¢ e / PV (1) D xale — xh) Beper (8, y, m)e’ Bov D/ dyan
R2m k=0.1
1 s )
+3¢ 4“cn/2 Py () D> xalw — 25 ")Brger(—t,y.n)
R2n

k=0,—1
eiwk(—t,w,y,n)/adydn,

with
pen(t.ysn) = ap(t,y,me " Teul . . (y.n) + aip(t,y,mTevl o (yim),
and qs,k(ta Y, 77) = ag (ta Y, n)s_lTﬁui,rg,rw (yv 77) - CL;C (tv Y, n)TEv‘g,ro,roo (yv 77)

Because of the phases expression given in (2.7), time and spatial derivatives of

ulPP"  may be written as a sum of integrals of the form
370,70

_3n .
e~ /2 P W)Y () f=(y, e (w — ) r} o (t, 2, y,m)
R n

eiwk(t@,ym)/Edydn, 4, k=01, |al <2,
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arising from differentiation of w?(¢,.) and wl(¢,.). Other terms of the same form
originate from derivatives of w?(—t,.) and w-1(—t,.). f. stands for ¢~ 'T.u}

€,70,T o0
or T.v! . . and rf)a are smooth functions vanishing for |z — 2} | > d.

For a function f depending on (t,z,2,0) € R"™ x B and k = 0,41, let
= ~1
Frta,2,0) = f(t,z, (¢)) (2,0)).

Set KF 4(t) = ¢}, (Ky x Ky). Let IIx(t) be a cut-off of C5°(R?",[0,1]) supported in
B and satisfying I (t) =1 on K f,e(t)- The volume preserving change of variables

(,0) = @i (y. )
transforms the previous integrals as

e~k
(k) eV Gm205dzdg, j k= 0,1, |a| < 2.

(2.22)
We can write the leading terms obtained for j = 0 and o = 0 using Gaussian type
integrals I.(h, ®) defined as

3n

. —~—k~k .
R2n

I(h,®)(t,x) = T, / h(t, z,0)e'* w20/ 4 dp,
RZn

for a given phase function ® € C OO(RZ;Fl x B, C) polynomial of order 2 in x — z and
satisfying, for ¢ € [0,7] and (z,0) € B

®(t, 2, 2,0) is real, ,P(t, 2, 2,0) = 0, Im O?®(t, 2, 2, 0) is positive definite, (2.23)

and a given amplitude function h € C°([0, T], L*(R2")) supported for every fixed
t € [0,T] in a compact of B. By Proposition 3 in the Appendix, one has

. h(t, z,0)x(z — 2)e™ 20/ 2dzdf| 2 < [|h(t, )] 12 ,-
on ,

Noticing that e’®/¢ is exponentially decreasing for |z — z| > 1, one can use the

following crude estimate

[ h(t, z,0)e"* =0 dza| 2 S e |h(t, )2, for a >0 (2.24)

jo—z|>a

to deduce that I.(h, ®)(t,.) is uniformly bounded w.r.t. € in L2. The same notation
I.(h, ®) will be also used for a vector valued function h.

The contribution of the terms (2.22) with j = 1 or || > 1 to the derivatives
of PP is of order /¢ as stated in the following Lemma, whose proof is given
Appendix 4.2 and relies on the approximation operators defined therein.

Lemma 2.2 9,ut?" (t,.) is uniformly bounded w.r.t. ¢ in L*(R™) and satisfies

oty (1) =5 (o (1,2) — viro(~1,))

E,70,T oo
+ O(ve) in L*(R™) uniformly w.r.t. t € [0,T],
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+

where (v;'.) and (v, ) are sequences of L2(R™) uniformly bounded w.r.t. € given by

—~——k —~k
. —k
v = E Bl (—ic(2)|0|Tep’ @Y Dok r ),
k=0,1

Ve =Y Brle(—ic(2) |0’ @ G o ).
k=0,—1

Likewise, OyulPPr, (t,.) is uniformly bounded w.r.t. € in L*(R™)™ and satisfies

Dpul?P"  (t, 1) :l (v;')a(t, x) + U;E(—tax))

€,70,T 00 2

+ O(Ve) in L*(R™)™ uniformly w.r.t. t € [0,T],

where (v}_) and (v, ) are sequences of L*(R™)™ uniformly bounded w.r.t. ¢ given
by

e~k —k

vio= Y Bl @ poit e ),
k=0,1

) e~k —k

Vpe= Y Bil(i0Tep' @7 gor’ U ).
k=0,—1

3 Wigner transforms and measures

We now compute the scalar measures associated to the sequences (6tug1;1’r (t, ))
3703700

and (cOpullP" (t,.)). As |8k = 1, the Wigner transform associated to (v; (¢, .))

£,70,T 0o t,e
is a finite sum of terms of the form

We (Is(ftk,ga Pp)(t,.) IE(ftl,aa ®))(t, )) )

—~k ~k

where k,1 = 0,1, fgfg = ¢|0|Txp’ @+ pg)kk and ¢, = 1 . As regards the Wigner
transforms associated to (cv;ﬁ (1, )), since ¢ is uniformly continuous on R", one has
by a classical result ([20], p.8)

we (cvf (), cvf (t,.) = Pw. (v (t,.), v} (¢,.)) in R*", (3.1)

1‘7

and therefore the involved quantities have the form

02w€ (I€( zlf,s? (I)k)(tv ')7 IE( alc,sv (I)l)(tv )) )

—~—k
with f . = 0lup' @+ poi”.
e~k
Similarly, we define for k = 0, —1 the sequences gf)a = 0| p’ @' @k, which
are needed when considering the Wigner transform associated with (cv;.(—t,.))

and the cross Wigner transform between (cv/(t,.)) and (cv,.(—t,.)), as well as

—~k
g . =0l @9 @k Then, forgetting the powers of ¢ factors, all the previous
Wigner transforms tested on cut-off functions have the form

—~k — ! ke Y
Teke (2,0)T-7c (z/,@’)blf’l(z,19,2’,9/,3:,1))6“1ﬂlc {2,020 20/ d2d0dz'df’ dxdv,

R6n
(3.2)
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with ke, 72 = 5_1“£,ro,rmvvs[,ro,roo and k,l = 0,+£1, or after expanding the FBI
transforms

/ e (W) 7 (wEL (2,0, 2,0/, v) ez (02020 20 (2 g/ dzd6d ' d6' dady.
R8n

(3.3)
This type of oscillating integrals is traditionally estimated by the stationary phase
theorem. For example, this method was successfully used in [9] for the computation
of a Wigner measure for smooth data. There the phase was complex and its Hessian
matrix restricted to the stationary set was assumed to be non-degenerate in the
normal direction to this set. However, in our case, the amplitude is not smooth as
no such assumption was made on u! and v!, and we cannot estimate immediately
the global integral (3.3) by the same techniques. One possibility of solving this issue
would be to resort to the stationary phase theorem with a complex phase depending
on parameters for estimating

/ ba(2,0,2',0, x, v)ei%(““”,’Z’e’zl’9,’x’”)/sddedz’dﬁ’d:vdv,
R67

and then study the whole integral involving k. (w)7-(w’).

An alternative method was used in [45], where an integral of the form (3.2)
associated to the Wigner transform for the Schrodinger equation with a WKB initial
condition was simplified by elementary computations into an integral over R*".

Though the method therein faced difficulties in deducing the exact relation be-
tween the Wigner measure of the solution and of the initial data, we adapt the
result of [45] to our problem in Section 3.1 and complete the analysis to prove the
propagation along the flow of the microlocal energy density of uZf?". —ase — 0 in
Section 3.2. The proof is simple and elementary and the computations are made in
an explicit way. Section 3.3 is devoted to the Wigner measures associated to the
derivatives of u. the exact solution of (1.1).

3.1 Wigner transform for Gaussian integrals

The sequences (fF.), (f¥.), (¢i.) and (gl .) are uniformly bounded w.r.t. ¢ in
L?(R?*") and their supports are contained in a fixed compact independent of e.
Slight modifications of the computations of [45] lead to the following more general
result:

Lemma 3.1 Let (f.) and (g:) be sequences uniformly bounded in L*(R?") and
having their supports contained in a fixed compact independent of €. Let F be an
open set containing supp f: Usuppge and ®, U be phase functions in C*° (R x F,C)
satisfying

Bz, 2,0) = ra(2,0)+0- (z — 2) + %(a: %) Ho(z0) (@ — 2),

.

U(z, 20" =rg(z,0)+0 - (x—2')+ 5(9& —2") - Hy(2',0")(x - 2'),

for x € R" and (z,0),(2',0") € F, with rg,rg € C>®(F,R) and the matrices
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Hg, Hy € C®(F, M,,(C)) having positive definite real parts. Then for ¢ € Cg°(F,R)
< We (Ls(fsv Q); IE(gEv \IJ)) ) ¢ >
= (b(S,O')fE(S—'— \/ET50'+ \/E(S)g:(s - \/ETaO._ \/55)

R4n
A(®,W)(s,0)e®= (@00 drd5dsdo 4 o(1),

where
5n

A(D,0)(s,0) =222 w2 [det (Ho(s,0) + Hu(s,0))] *,

(S

and
O.(P,W)(s,0,7,0) =re(s +er,o +ed) /e —ry(s — er,o —\/2d) /e
—20-1/\/e+i(r,6) - Q (Ho(s,0), Hy(s,0)) (r,9).
The matriz Q (Hq)(s, o), Hy (s, J)) and the square root are defined in Lemma 3.2.

Proof: 1t consists in two steps. Firstly, the Fourier transform of a Gaussian type
function is computed explicitly. Then, a Gaussian approximation is used for several
smooth functions appearing in the Wigner transform integral.

For simplicity we denote u(z, z,0) by u and u(x,2’,0") by v’ when integrating
w.r.t. z,0,2',60’. We also omit the index ¢ in the notation of f. and g..
Step 1. Fourier transform. We note that the Wigner transform at point (z, ) €
R2" may be written as

we (I (f, ®), (g, ¥)) (2,)
:W—ncia—% fg*/eirq>/a—irfl,/€+iac-(9—9')/€+i( "2 —0-2)/e
R5n
7, (ef(erzfz)-H@('quzfz)/(Qs)
% ef(vfz+z,)~H7\1,/(vfz+z’)/(2s)) ((25 _f_ 9/)/8)
dvdzdz'dodo’ .

The Fourier transform of a Gaussian functions product is given by the following
Lemma, whose proof is postponed to the end of this Section:

Lemma 3.2 Let a,b € R? and M, N € My(C) symmetric matrices with positive
definite real parts, then

7, (e—(m—a)-M(m—a)/Qe—(z—b)»N(m—b)/?) ©)
:(27T)% (det(M + N))*% e~ 16 (b+a)/2=(b=0a.)-Q(M,N) (b=a.£) /4

where Q(M, N) is the symmetric symplectic matrixz given by

_( 2MM+N)T'N (N = M)(M +N)™!
Q(M,N) = < (M + N)"Y (N — M) 2(M + N)~1 ),

and the square root is defined as explained in Section 3.4 of [21].

Moreover, Q(M,N)A(M,N) = B(M,N) with A(M,N) = ( _Ilc]lv ZI](/Z[ ) and

B(M,N) = < —]i\;d i].\f/{i > , and Q(M, N) has a positive definite real part
. w—1 Re N 0 -1
ReQ(M,N) =2A(M,N) ( 0 Re M A(M,N)~".
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Hence

We (Is(fa q))vjs(gv \Ij)) (Iag)

D / fo! (det(Ha + ')
R4n

ei(0+9’725)-(zfz’)/(25)+i(979’)-z/s+i(0’~z’70~z)/5

Nl

eire Je—iry /e

o~ (20—2—2/,26-0-0")-Q(Ha ,He') (20 —2—2',26-0-0")/(42) 1. 1 400 .
Making the changes of variables
(2,2") = (s +er,s —\/er), (0,0") = (0 + /ed,0 — \/€d),
and writing f for f(s+ \/er,o 4+ /20) and g_ for g(s — \/er,o — \/20) leads to

We (Is(fa q))vjs(gv \Ij)) (Iag)

n n — i . . .
=c22% 7B | fog" (det(Hay + Hy _))  ¢iros/omive-/e2i0a=s)/ V2
R4n

e—2i£-r/\/§—(w—s,ﬁ—a)»Q(Hq,+,H_\p,)(m—s,ﬁ—o’)/sd,rdédsdo,'

Step 2. Gaussian approximations. Taking the duality product of the Wigner
transform with a test function ¢ € C§°(F,R), and after setting (2/,¢') = (x — s,

& —0)/+/¢, one has
< We (IS(fv(I))vla(gv\I])) 7¢ >

n n —_— l . .
207212577r_§ o(s+ Vex' o+ e) frg* (det(Hoy +Hy ) * eiret/e—iry_/e
R6n

672“"’”/\/E+2i(m,’El)'(5’7’”)7(1/’5,)'Q(H‘1’+’E*)(z/’gl)dx’dﬁ/drdédsda.
(3.4)

Let p; and pj, be cut-off functions supported in F s.t. p} =1 on a fixed compact
containing suppf and p; =1 on a fixed compact containing suppg, and consider

be i (2,8, s,0,m,6) = (¢(s + Ver!, o+ /EE)
_ I (@) Q(He  Hy _)(2',E)
o(s U))pf Py_e
’ J+79— ’

The r.h.s. of (3.4) may be written as

< we (Ia(fv (I))ula(gu \I])) ¢ >

20721257”7T_% &(s,0)f+9" (det(Ho, + Hy _))
R67

e2i(a" &) (8,—r)—(2,6)-Q(Ha 1 Hu )(1’15’)d‘r/d§/d7~d5dsdg

1
2 eir<p+/€—ir\p,/a—2iavr/\/§

+2¥nd [ (detlHay + Ty ) fugneme /e feb
R’Vl

Flarenbe(—20,2r,5,0,r,0)drdddsdo.
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Leibnitz formula yields for a multiindex «
82‘,15,175(:6',5’, 5,0,7,0)
=0 Py (¢(s + VEr' 0+ VEE) — 6(s,0)) 05 o (efw',&'»@mﬂ,H—mu'f'))
+opey >, CB 1T 0P, o (6s + Va0 + VEE))
B+r=a, 870

x 07,

. (6_@/,5/).@(}1@+,H—W,><mx5/>) :

As (s++/er, 0 ++/ed) varies in suppp’; and (s — \/er, o —\/£d) varies in supppj, one
can find by continuity a constant C' > 0 s.t.
ReQ(Hg 1, Hy ) > CId on supp(p}y_ pj ).

Since

(s,0) and v/&(r,d) are bounded on supp(p}+p;7), (3.6)
it follows that there exists a constant C’ > 0 s.t.
|8§‘,)5,b5(x/,§’, s,0,1,0)| < \/g(fcl(g”,’g,)2 for all (2/,&',s,0,7,8),
which leads to
| Far enybe(—26,2r, 8,0,7,6)| S Ve(l + (r,6)?) """ for all (s, o,1,6).

The second integral in the r.h.s. of (3.5) is then dominated by

\/5/ |fllg—|(1+ (r,8)%) "' drdédsdo.
R4n
We deduce by Cauchy-Schwartz inequality w.r.t. s,o that

| <we (1L(f,9), L.(9, %)), 6 >

n n JE— -1 . . .
~ 2% xt | (s,0) (det(Ha + Ty _)) 7 frgteirs/oine o2/ Ve
R4n

e*(‘s’*r)'Q(H‘i’*Hi"*)71(5’*’”)drd6d8d0‘ S Vel fli2llgllzes

where we used det Q(He ., Hy_) = 1 since Q(Hg ., Hy_) is symplectic.

Next, we extend Hg and Hy outside F as AHg + (1 — A)Id and AHy + (1 —\)Id
by using a cut-off A € C§°(R?", [0, 1]) supported in F s.t. A =1 on the compact set
suppp’f U suppp; Usupp¢, the extended matrices having positive definite real parts.
The smoothness of these matrices implies by the mean value theorem and (3.6) that

1
2

Nl

‘(det(Hq>+ +Hy_)) ? — [det (Ho(s,0) + Hu(s,0))]
SVEl(r,0)] on supp(dfig”).

By symplecticity and symmetry of Q(He ., Hy_), its inverse is —JQ(Ho 4, Hy _)J.
Thus the quantity

o~ (6,=1)-Q(Ha y Hy ) (8,—1) _ ,—(1.0)-Q(Ha(s,0),Hu(s,0))(r,0)
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is dominated by
|0) - [QHa 4 Ty ) = Q (Ho(s,0), Tu(5,0)) ] (r.9)
() Q(Ho  Hy ) (1,8)~(1=u)(1,0)-Q(Hao (5,0) Hy (5,)) (1) ’

X sup
u€(0,1]

The positivity of ReQ(Hg, Hy_) and ReQ (H@(S,O’),H_\p(s,0'>) and the mean
value theorem for the matrix function @ (AHe + (1 — N)Id, AHy + (1 — X)Id) give

by (3.6)
e—(&,—r)»Q(Hqu,H_q,,)’l(5,—r)_ef(r,é)-Q(Hq>(s,o),m(s,o))(r,é)’ < VE|(r, 5)|36—C(m$)2

for (s,0) € suppg, (s + v/er,o + /2d) € suppp’; and (s — /er,0 — \/€d) € supppy,.

It follows that

e~ ) QU H) (5 0)r0) grdgdsdo| < Ve 1|29l -
O

Proof: [Proof of Lemma 3.2] The matrix M + N has a positive definite real part

and is thus non-singular. By elementary calculus we have

(x—a) - M(x—a)+ (x—0) - N(x—10)

=(b—a)-M(M+N)"'N(b—-a)
+(z— (M +N)""(Ma+Nb))- (M +N) (z— (M+N)""(Ma+ Nb)).

Using the value of the Fourier transform of a Gaussian function (see Theorem 7.6.1

of [21]), it follows that
F (e—(m—a)-M(m—a)/?e—(z—b)»N(m—b)/?) ©)

(27) % (det[M + N))~ 2 e~ (=) MMEN) TN (b=a)/2
e~ (M+N)"! (Ma+Nb)—£-(M+N)"1/2.

Writing M = 1/2(M + N)+1/2(M — N) and N = 1/2(M + N) — 1/2(M — N), we
get the expression with the matrix Q(M, N) and the relation

Q(M,N)A(M,N)= B(M,N).

One can easily show that
T - 0 i(M+N)\ T
B(M,N) " JB(M,N) = ( —i(M + N) 0 =A(M,N)" JA(M,N),

from which follows the symplecticity of Q(M, N). Then write

Q(M,N)+Q(M,N)
=A(M,N)*"' (A(M,N)*B(M,N) + B(M,N)*A(M,N)) A(M,N)~*
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to obtain the value of Re Q(M, N). a

From now on, we drop the index ¢ in the notation of Ua[a, Ufﬁ, f,ffg etc. for
simplicity. We fix ¢ € [0,7T] and apply Lemma 3.1 with FF = B on the sequences
(fF), (f}) (respectively (f¥),(fL)) and the phase functions ®,®; for the Wigner
transforms associated to (v; (t,.)) (respectively (v] (,.))). To evaluate the cross
Wigner transforms between (v; (t,.)) and (v; (—t,.)) (respectively (v7(t,.)) and
(v; (—t,.))) , we use this Lemma on the sequences (fF), (g) (respectively (£¥), (¢1)).

3.2 Wigner measures for superposed Gaussian beams

We shall prove that the cross Wigner transforms

we (v (t,.), 0 (=), we (v (£,.), 05 (—t,.))
and

We (IE(ft]fmv (I)k)7 IE(fé,mv (I)l)) y We (15(9517 q)k)7 IE (gzlf,;m (I)l))
with k # [ do not contribute to the microlocal energy density limit £ (uappr (t, ))

E,T0,T 0

in T°Q. We compute O, (Py, Py) and A(Py, Py) and analyze the transported FBI
transforms at points (s=++/er, 0 ++/20), which will complete the study of the Wigner
measures for superposed Gaussian beams.

Firstly, we note that [[(1 — p’ @ ¥ )kpekzz, = O(e>) for k = 0,%1. Indeed,
7' =1 on R, so one gets from (H5) that Toul, . ,Tevl, . have infinitely small
contributions in L?(R" x supp(1 —/)).

On the other hand, dist (supp(1 — p’),suppul ., , U suppv;mmm) > C'. Then,

Lemma 4.3 implies that Tsug,ro,rm’Tsvémo,rm have infinitely small contributions in

L?(supp(1 — p') x R™). Therefore
We (Ia(ffa (I)k)a IE(ftlu (I)l))
zA((I)k,fbl)/ (clofmepei®)  (clolpz') e©=®ards in 70,
R + -

2n

and a similar relation holds true for w. (I.(f¥, @), I.(fL, ®1)).
We start by approaching (c(s)|o|), (c(s)|o|)_ by ¢(s)*|o]? in the previous integral

We (Ia(ftka (I)k)7 Ia(fév (I)l))

P —~1 i . 2 (37)
~A(Br, B)e(s)? o] / (mepe®) (pz') e =®e®0ards in 70,
R2n + -
and 04.0* by oc* in the integral giving w. (I (fF, @), I(fL, @)
We (IE(ffv (I)k)v IE(fiv (I)l))
(3.8)

zA(‘IDk,fl)l)aa*/

(Hkﬁ;;k) (Hlli,/ll) ¢©=(2:®0) grds§ in T*Q).
R2n + _

Indeed, these approximations are proved with the help of the following Lemma

Lemma 3.3 Let (f.),(g9:) and ®,V satisfy the hypotheses of Lemma 3.1. If a and
B are in C1(F,C) then

we (Ie(afe, @), I (Bg:, V)) =~ afwe (Ie(fe @), I(ge, V) in F.
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Pmof The proof relies on the use of Taylor’s formula on p « and pgﬁ, where p/ '

and pq are the cut-offs used in the proof of Lemma 3.1 (supported in F' and equal

to 1 on suppf. and suppg. respectively). O
It follows by using (3.7) and (3.8) that

ETrwe (I (f5, @), L(fL, 1)) = we (I-(fF, @), L (f}, ®1)) in T,
which leads to

Similarly

we (v (—t,.),0; (—t,.)) = ATrw: (v (—t,.),v, (—t,.)) in TgQ,

and w. (v (t,.),v; (—t,.)) = Trw. (v] (t,.),v; (—t,.)) in TQQ. (3.9)

x

The approximations linking the derivatives of uZf?". — to vfm given in Lemma 2.2
and equation (3.1) lead to

1 (uemr . (t,.)
~we v (t,)] + ATrwe [vf (8)] + we vy (=t,)] + Trwe[vg (~t,.)]
— We (v;r(t, sy (—t, )) + A Trw, (v;r(t, D, v, (—t, ))
—w: (v (—t,.),v (t,.)) + Trwe (vg (=t,.), v (¢,.)) in R**
by using the standard estimate (see Proposition 1.1 in [20])

| <welac, be), ¢ > | S llacl| 2@ 10| L2 (rn), (3.10)

for sequences (ac), (be) in L?(R™) and ¢ € C$°(R?",R). The cross terms between
v, and v, cancel in T*Q by using (3.9), leading to

£ (et (1)) ~ quelof (1] + guelur (<) m T, (311)

€,70,T 00

Thus, we are left with the computation of the Wigner measure associated to (v;"),
computations being similar for (v, ). One has

ws[vtﬂ
~ Z C(S)2|‘7|2A(¢k7¢1)/ (Hk @k) (Hl Z_;:,ll) ¢ (®6:20) 4 d§ in THC).
ke, l=0,1 R27 + -

(3.12)

o
Moreover the inverse of the reflected/incident flow in 7% is a reflected/incident
flow

{oiy t=pTt, k=0,1.

o
Thus, for (s,0) € T*Q, at most one of the points 2} (s,0) and x~|(s,0) is in Q.
Consequently, the contribution of cross terms between different Gaussian beams in
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o
(3.12) vanishes in T*Q), and we need to compute only the limits when & goes to zero
of the following two distributions:

pt . = c(5)?[oPwe I (Mppz ™, 1)), k =0, 1. (3.13)
o ke k —k —— k
Remember that p. ;" = ag 5‘1T€ugyromw —|—0L;C TEUEI,ro,rm , SO u;k may be written
as
Mé,k
) ) kg K
=c*(s)|o| we {IE(Hkak e Teul, ,@k)]
g —— K
+w5 [Ig(Hkak Tg’l)émwm ,‘I)k)] (3.14)

—~— k —~~— k
—ic(s)|o|we (IE(HkE;;ks_nguI L), I (g Tov! , @k))

€,70,T o0 €70, 00

€,70,T00

k —~— k
+ic(s)|o|we <15(Hka;’“Tva V@), L (Tyay e ' Toul ,%)) .

In the remainder of this Section we prove the following Proposition, compute u;k

and the limit when € — 0 of the microlocal energy density of ughPr, .

Proposition 2 Let (k.), (1) be uniformly bounded sequences in L*(R™). Then
g —k e~k 1,0
W, (Ig(HkakkTgﬁa ,@k),lg(ﬂkakkTgTa ,@k)) ~ M w. (ke, ) 0 (¢f)  inT*Q.

Above o}, is extended outside B as the identity.
Proof: We simplify the integral

—~k —k .
(Hk Tk ) (Hk T.7. ) 9<% k) g §
2n + _

A((I)k,rbk)/

R

obtained when applying Lemma 3.1 in T*€) by firstly computing the phase ©. and
the amplitude A and then analyzing the transported FBI transforms. Computa-

tion of O.(Py, Px) and A(Dy, Pi). We consider (s,0) € T*Q and start from
.y —~k
es(q)ka q)k)(sv o,T, 5) =—20- T/\/g + i(T, 5) Q (Ak (ta S, U)v Ay (ta S, U)) (Ta 5)
The particular form of Ay (t) = —iV{(Uf)™!, see Lemma 2.1, induces a similar form
—~k —~k
for the matrix @ <Ak (t), A (t)>
—~k /_\'k
@ (808 ) i = izt

where Y} and Z}, are the 2n x 2n matrices

/:«tk A«tk —~k —~k
U U —

k k t
/:/tk A«tk and Zk - A—gk A—Ek
Vk Vk Uk _Uk
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Replacing U} and V}! by their definitions links V! and Z} to the Jacobian matrix
Fy
—~k —Id Id ~k ( —Id Id
t_ ot t_ ot
Yo = —if J( ild ild ) and Zj, = JI, ( ild ild )
so that
—r ~k k[ ~k\ !
(&' 0.8 0) -7 () .

As ¢! o ¢~} = Id, one has

—~k

Fl F~l =1Id.
Combining this relation with the symplecticity of F}f, one gets the following relation

for the matrix @ <Akk(t),Ak (t)>

Q (B w8 W) =
Therefore

0. (Br, Bx)(s,0,7,6) = =20 - 1/v/E+i (FL(s,0)(r,0))° .

1
2

n n —~k -~k
Moving to the amplitude A(®y, ®y) = 22% 12 <det(Ak + Ay )> , one gets by
using (2.18) and (2.21)

Ar(t) + Aty =2 (0" WUh ™"
Hence

n —~k
A(®y, @) = 22772 |det U} |.

Plugging the form of the incident and reflected amplitudes in Lemma 2.1 and using
the C! smoothness of a,(c) on B yields by Lemmas 3.1 and 3.3

o ——k ek
w. <I€(Hkak’“Tma @), L (Ta, " Tor. ,<1>k)>

n ——k —k . —t
mci22"7r7/ (HkTgﬁa ) (HkTaT€ ) e~i20/VE=(FZL9)" grgs
Rzn +

::J;)k(ns,ﬁg).

Analysis of the transported FBI transforms. It remains to analyze the most
difficult terms in the amplitude, which involve transported FBI transforms

K
<HkT5/£E ) = (Hk T.ke 0<p:2) (s + Ver, o + /€0),
+

—k _
and <HkTE7'5 > = (Hk T.7. 090:2) (s — Ver,o —\/€9).
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Let ¢ be a test function in CgO(TgQ,R) and 97} a map of Cg°(R?",R?") that
coincides with ¢~} on Kf,e (t) Usupp¢ (see Theorem 1.4.1 of [21]). We use Taylor’s
formula for this map to get for (s + \/er,o £ \/&6) € K¥ 4(t) and (s, ) € supp¢
(I:Z)i = 3::2 + \/gDyajzz r+ \/ED,]JZZZ 0+ Er?i,
(621) L = Eh £VEDE L r £ VEDyET, 6 +ert™,

with

r?i(s, o,r,0) = Z %(r, 5)0‘/0 (1- u)@;‘ﬁ:i ((s, o) +u/e (r, 5)) du,

|| =2
(= o 2 «@ ! a.q—t
re=(s,0,r,0) = Z J(T’ 0) / (1 —u)0yd_; ((s,0) £ uy/z (r,0)) du.
lal=2 0

The change of variables (1/,§") = F~[/(s,0)(r,0) in J! . (ke,7)(s,0) is thus appro-

priate. Notice that for (s,0) € T*Q) one has the following relations [26]
Dyr~¥(s,0) ¢ (s,0) —o =0 and D,z ¥ (s,0)"¢ 1(s,0) = 0 for u € R.

In fact, one can show that the derivatives of the previous equations w.r.t. u are
zero. Besides, the equalities clearly hold true at u = 0 for £ = 0, and at u = Tk(s, o)
for k = £1, as a consequence of (4.9). Hence, it follows that

o-r= {:Z(s, o) - (Dya:jc(s, o)+ D,ﬂ::};(s, 0)5) = {:Z(s, o)1,

which leads in TgQ to

Jst,k("%uTa)

=223 / ()1 Tk (x ) + er' + ETZ+/, E7 +/ed + £r§+l)
Rzn

() -Tere(z =k — Ver’ + 57‘?7/, €1 — Ve + argfl)
6721'5:;-r’/\/Efr’Q75’2d7¢/d5/7
where )
(% 1) (s, 0,7, 8") = (r%,1r8) (s, 0,7, 0).

In order to use the change of variables (s, o) = ¢} (y,n) for < J¢; (ke,7c), ¢ >, we

extend ¢} outside B by the identity and still denote it ¢}, making ¢} a one to one
map from R?" to ¢! (R??). Then Il 0l and ¢ ot belong to C5°(R*", R) and are
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supported in B. Expanding the FBI transforms gives

< J;k;(lisaTE)v(b >

3n

=2 rEe=F [ popl(y,nke(2)7(2)
]RGn
(ITx 0t (y + Ver' + eR*T n+ /ed + eRET)

(I 0L)(y — ver' +eR™™,n — /26 +eRET)
i (2VEr +eRIT —eRT™ —2+2") fe+id’-(2y—2—2'+eRI T +eRIT)/VE

eiR§+'(y+\/ng+€R§+7z)7iR§7 (y—ver'+eRY™ —2")
e—(y+\/§r/+aR§+—z)2/(2€)—(y—\/Er/+aR§7—z/)2/(2€)
672“7'”/\57’”/275,2dr’d&’dzdz’dydn,

where .
(R, RE)(y,m, ', 0") = (r2",r8) (s, 0,7, 6).

We perform the changes of variables

242 z—7 z47

(x,u):( ) )andy,:(y_ )/\/g
2 € 2
to obtain
< J;)k(ﬁg, 7_5)7 (b >
=ctops / Ke(z + %u)%s (x — %u)dsei%_i"'“drldélda:dudy'dn,
R6n
where

de(z,y',n, 7', 0")
=pol(z + VY, n)(k0h) (@ + vVEy + Var' + R n+ 28 + eREY)
(Mg 00} ) (z + ey — Ver + ng_l, n—ed + ERE_I),

Ve, y' m, ', 6" w)

=n- (R — R*") 4+ 8" (2 + VER*" + ER*™)
u

+VERE - (y + 1+ VER - VE3)

—VERE -y =+ VERT + Vg +ir +id”
Fily + o+ VEREY = VEu/222 4 iy — 1+ VERE + \Eu 2)/2,
and ,
(R, RE)(x,y' .1, 8') = (RE, RE)(x + Vey ,n,r", 8).
Notice that d.(z,y’,n,7’,") converges when £ — 0 to

do(z,m) = ¢ 0@ (z,n) (M) 0p},)* (x, 7).

On the other hand, since sric are the remainder terms in the Taylor expansions of

x”} (s & \/Er,o £/20) at order 2, 72+ — ¥~ is of order /€ and so is R+ — Rz~
leading to

ve(@,y'm, ' 8 u) = oy’ 7' 67) =200y + iy® + 2ir'” 06",
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One has

’ < It ey T2), 6 >

— Aoy ke(x + %u)?a (x — gu)doe”‘)e_i"'“dr'déldudy’d:tdn
R67

€ €
5/ / |ke|(z + zu)|7|(z — —u)dx
R4n R 2 2
sup | Fy (dee”s — doe™) (z,y/,u, 7,0 u)| dr'do' dudy’.

(3.15)

Cauchy-Schwartz inequality w.r.t. dx insures that the bracket integral is less than
l6ellL2|| 7|l 2. Let us examine the term

x

/ sup|.7:n(daei% _ doei%)(:t,y',U,r',(S',u)‘dr'dé’dudy’.
R4n

For fixed y/,r’, ¢’ the functions d. and dy are compactly supported w.r.t. (x,7n) so
sup | F, (dsei% - doe”‘))(x, Y u, 0 )
xr

Ssup | (dee™e — doe™) (z,y',n,7", 8", u)| .
(z,m)

Note that |daei% — doe”O‘ is dominated by |d. — do| + |do| |ei7€_”0 - 1‘. The con-
vergence of d. when ¢ — 0 to its limit dp is uniform w.r.t. (x,7n) and so is the
convergence of 7. to vy on the support of do. Thus d.e? converges to dge’°
uniformly w.r.t. (x,n). It follows that

sup |F, (d-e""= — doe”™) (z, 4/, u,r', &' )| =, 0 for every v, u,r’,¢’.
- e—
On the other hand, successive integrations by parts give
/ dsei')’se—i"]-ud,r] — (1 + uz)—’ﬂ/ L (dsei')’s) e—iﬁ-Ud,rI,
with L a differential operator w.r.t. 7, of order 2n. Thus,
sup | 7, (dze) (2,9, u, 7', 8", u)|
’ (3.16)

<(1 4+ u?)""sup max ‘8,07‘ (dee™) (x,y',n,r’,&',u)| ,
(z,n)lel<2n

for every y/,7’,0',u. The quantities (z + v/ey',n) and /2(r’,d’) are bounded on
the support of d., so Rgi/, Rgil and their derivatives w.r.t. n are dominated by
(r',8")2. Hence for a given multiindex «, there exists C' > 0 s.t.

|07de| <C,
|05 7e] <CIO () + Iy + 7'+ VEREY — VEu/2|
+ly =+ VERY T — Veu/2|) if |a| > 1,
for all (z,y',n,r',d") € suppd. and u € R™. Thus, there exists C, C' > 0 s.t.

10 (dee=)| < Ce=C' W41/ +VEREY —VEu/2/ ~C' (/1 4 VERE ™ +V/Eu/ 2=/ -C'5"

< Ce~ O/ +VeRIT +VERIT ) =02 —C'8'

3
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for all (z,y',m,7',0') € suppd. and u € R”. On the support of d., ZR**' are
dominated by |(r’,0")|, which implies for some Cy > 0 that

2y’ + VERTY + VERT™)? > 4y — Co|(r', 8")||y)-

. at! —ry2 2 .
Hence, if || > Co|(r',8")|, e~ €'y +VERZT+VERIT)® < o=C"y"™  Otherwise,
112 1512 1,12 .12 7512 .
e OO < oGy T OO0 T all cases, there exists €7, C” > 0 s.t.

|80‘ (dsei'YE) < Cleic//yﬂicurﬂic//éﬂ
n =

3

for every x,y',n, 7', 0’,u and € €]0, gg] with some gy > 0. Using this in (3.16) leads
to

sup ‘]_-77 (dEei'yE)(x, y/, U,T/, 5/7u)| S (1 + u2)7ne—cy/27c7d/270512,
xT
and repeating the same arguments for sup |f,, (doe”")’ gives
xr

sup ‘]'—n (dsei% — doei%) (2,9 u, ', &, u)| <1+ u2)_"e_cy/2_CT/2_C‘sl2,
xT

for every y',u,r’,0" and ¢ €]0,e9]. By the dominated convergence theorem, one
obtains

/ sup|F, (dee""* — doe) (z, v/, u, ', ', u)|dy' dudr'ds’ — 0.
R4n e—0

x

From the inequality (3.15) concerning the distribution J; (Ke, T2), one finally has
by plugging the expressions of dy and g

< k(e Te) 6 >= 2w / (@ + Su)7 (v = ~u)
1 R6n 2 2

% /'y/_ylz_2T/2_6/2e_i"'“drldéldxdudy’dn +o(1).
Integration w.r.t. 7/,¢, 9, n yields
< J;k(fia,Ta),qS >
=(2m)™" /]R2" Fo(IIZ oo o)) (z, u)ke(z + gu)ﬁ(m - %u)dwdu +o(1).
The integral in the r.h.s. is exactly the Wigner transform of (k.,7.) tested on
117 0 ot poph,. ]

We are now able to compute the measure u;k given in (3.14) by using the
previous Proposition and the Lemma 4.7

pl o~ 113 (wE [vl —ic|D|ul D 0 ((;72)71 in TgQ.

87”‘07”‘00 €)T07TOO

Recalling the relation between the Wigner measure and the FBI transform (see
Proposition 1.4 of [19])

/]R2 |T.a.|*0dydn RN wlae|, 0 >, (3.17)
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for 0 € C§°(R*",R) and (a.) a uniformly bounded sequence in L*(R"), it follows
that w. [v] —ic|D|ul | 0 in (K, x K;)° or equivalently

E,70,T 0o E,T0,T 0

we [0l o —icDlul, T o (¢h) ™ A0 in (KFe(1)°.

Since Il =1 on Kf)e(t), one deduces

-1 . 9
M‘f:,k ~ We [’Ua{,ro,rw - ZC|D|U‘€ ro,rw} o (90);9) in T"Q.
By summing over k£ = 0,1 and letting ¢ — 0, we get
-1 . Q
wlv) (t,.)] = Z w [’Uém)rw —ic|D|u! rorw]) 0 (9k) in T
k=0,1

For u € [-T,T] and (y,n) € K, x (R"\{0}), the incident and reflected flows are
related to the broken bicharacteristic flow associated to —id; — ¢|D| as follows:

“1(y,m) if u<T_1(y,1m),
oy (y,m) = (y, n) T 1(y,m) <u<Ti(y,n),
o1 (y,n) if u>Ti(y,n).

We extend ¢} at times of reflections arbitrary. We define ¢} in (Q\K,) x (R™\{0})
by successively reflecting the rays at the boundary.As only one incident/reflected
ray can be in the interior of the domain at a fixed time ¢t € [T, T

popy = Z pogj, in K, x R"\{0}.

k=0,1

It follows that

—1 . o
w[UtJr(tv J=w [Ué{,ro,rm - zc|D|u€ ro,rm} o (gaz) in T%Q.

The computations for v; are similar. One has just to replace the index k =1
by k = —1 and ﬁ;}k by @k in (3 13) and to repeat the same techniques. If we
denote T =l +ic|D|ul then one gets

£,70:T o0 £,70,T o0 £,70,Toc ?

wvy (—t,.)] =w [T | o ((p;t)_l in TgQ.

E,70,T 0o

Using these results in (3.11) as € — 0 leads to

appr 1 — 1 - -1 .
& (usf;’(’)mm (t, )) = iw [T:TD roo} 0 (gob t) + 2w [TE ro. roo} 0 (go};) in T*Q.
(3.18)
3.3 Proof of the main Theorem
A consequence of the estimate (3.10) is
| <w(ac,be),0 > | < limsup [|ac|| 2 (o) limsup [|be|| 2 (), (3.19)
e—0 e—0
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for (a.), (b:) uniformly bounded sequences in L*(R"™) and 6 € C§°(T*2, R). Apply-
ing this estimate to the difference between the derivatives of the exact and approxi-
mate solutions of the IBVP (1.1a)-(1.1b) with initial conditions (1.1¢’), one deduces

the measures associated to (Btugyr[)’Tm) and (@ua’m)rw) and gets by (3.18)

E e (t,0) = 50 [Thyn 0 (67) 7 45 (T2, ] 0 (6h) ™ in T

Remark 1 Gaussian beam summation of first order beams allows to compute the
microlocal energy density of the solution of the IBVP (1.1) as € — 0, under the
hypotheses (H1),(H4) and (H5) on initial conditions. Summation of higher order
beams may imply asymptotic formulas for the Wigner transforms and thus for the
enerqy density. Higher order terms in the expansion of the Wigner transform were
studied for instance in [14] and [42] for WKB initial data.

Let us now study the microlocal energy density for the problem (1.1) when e — 0,
by making the data (ul, ,_,vl, . ) approach (ul,vl). The contribution of the
sets {n € R™,|n| > roo/4} and {n € R™,|n| < 4ro} where v,, .. # 1 (remember
the definition of ., ,.. in (2.11)) to Teul, Tov! is controlled asymptotically by the
assumptions (H2) and (H3). -

Set T# = vl +ic|D|ul and denote ¢' = o). Then ¢ € C5°(R*",R) and one has
‘<8(u5(t,.)),¢> —% <w[rf], o7t > —% <w[r;],¢" >‘
1 1

< cu T, ] - w156 s+ < w T, ] —w[15].6 >

+ ]< w [Buc(t,)] —w [atus,m% (t, .)} & >\

+ Zn: ’< w [CM(L -)} —w [cazjus,ro,roo (t, .)} N >’

+ <€(u€,mwm(t,.)),¢>—%<w[T+ ],¢—t>—%<w[r— ].0" >|.

E,70," 00 €,70,T 00
(3.20)

We use (3.10) to get

|<w[TH ] —w[TH], ¢t > |

€,70,T 00
<lim sup ”T:,T()ﬂ“oo — T:HLQ(Rn)hm sup (||T;:TU7TOO ||L2(Rn) + ||T;L||L2(Rn))
e—0 e—0

Stimsup [[of — ol L2 + limsup [ul —ul, o (o)
e—0 e—0

Similarly, by (3.19)

\ < w [Byue(t,.)] —w [atua,m,rw (t, .)} b > \

Slimsup [|Opue(t, ) — Optie ro,ro. (F )| 22(0)

e—0

<lim sup [|Osuc(t, )| L2(q) + limsup ||Osuc,ry o (t, .)||L2(Q)) ,
e—0 e—0
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and for j=1,...,n

| < w [Beyuet,)] = w Byt (8] 16> |

Slimsup [0, ue(t,.) = Oz e rg,ro ()] 22(0)
e—0

(hm sup ”azjus(ta ')||L2(Q) + limsup ”azjuiﬂ“oﬂ“ao (tv )||L2(Q)> :

e—0 e—0

The solution of the IBVP for the wave equation is given by a continuous unitary
evolution group on the space H' (€2, dx) x L?($, dz). Hence

10eue(t, ) = Otte o, (8, Mr2() S 108 = vy o lz2e) + 0l = ul o i o),
”afbjui(tv ) - axju‘fyTOcho (tv ')||L2(Q) S ”va{ - va{,ro,rm ||L2(Q) + ”ug - ué,ro,rm ||H1(Q)7
for j =1,...,n. Finally, by using (3.18), the estimate (3.20) is simplified into

|<5(u8(t,.)),¢>—%<w[T:],¢_t>—%<w[T;],¢t>|

_ . (3.21)
Slimsup|lvf — ol o 2@ +limsupllul —ul, o llg)
e—0 e—0

We therefore need to estimate the difference between initial data (1.1c) and (1.1¢”).
We start by the initial speed. By the exponential decrease of T v, . Tsv_sl on the
support of 1 — p (see (2.12)), one has

[0l = vl rllzz@) S €%+ IvE = T Tevl | 2(0)-
Because T is bounded on L?(R?*") — L?(R") and T*7T. = Id

o] = TEyTevl]l L2mny < 11— Xroo j2) Tevl L2 (geny + X j2Xare Tevl | L2 ran) -
O O

Firstly, Lemma 4.2 yields

_n _n i&y—(n—=e€)?
(0)% = |lca(2n) 2™ 1 (1_Xroo/2(77)) - Fv_é{(f)efy (n—ef) /(25)d§||%2(R§7n)_

It follows by Parseval equality that
OF =t [ (1= pl) @) o agay
le€|<roc /8 o

_n 2 (— 2
be2e /| o T ) P @ g
e€|>re/8

The first integral in the r.h.s. is exponentially decreasing, which leads to

e—0 e—0

b
limsup O < limsup </ |.7-'v£(§)|2d§> .
|e€|>re0 /8 T

Secondly, as dist (suppv!,supp(1 — p)) > 0, one gets ||(1 — p)Tevl||f2g2n) < e €/
by Lemma 4.3 and thus

limsup( 0)? = lim Sup|p(y)Xrc /2 (M) X1 (M Tevl]|7 2 gzn)-
e—

e—0
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It results from the relation (3.17) applied with a. = é that
2 I 2 2 2
(D) sj0< w |:’U_€:| ) P ®er/2x4r0 >

Because w [vg

] is a regular measure, assumption (H3) yields

Vo > 0, Jlg(a) > 0 s.t. w m (€] < lo()}) < a.

One deduces, for 4ry < lp(«), that

limsup O < Va,

e—0

which leads to

e— 0

1
3
limsup||v£ — U;TD%OHLQ(Q) < lim sup (/ |-7:v_£(§)|2d§> + V.
0 E— [e€|>700/8

For the analysis of ul — uémrm in H(9)), we begin by estimating the spatial
derivatives of the difference. It follows by using the relation (2.13) when differenti-

ating the inverse FBI transform that

Oy ul — 0, ul =0, ul - (8sz)T;~yT07TooTsu_g - pT;yWooaijsu_g.

T e Tj e, T, oo Tj e

The term involving the derivative of p is exponentially decreasing by Lemma 4.4.
Since the FBI transform of a derivative is the derivative of the FBI transform by
(2.13), one has to estimate [|0y,ul — pTYrg r.. TeOz,ull|12(0). Employing the same
previous techniques yields for j =1,....,n

1
2
i sup 0wz —=0r, 1 . N 12(0) S Timsup <]/ |Jf(a”zé<s>)|2dé> +Va,
0 |e€|>re0 /8 T

e— e—0

if 4ro < lj(o) and w [@jug} gl < Li(a)}) < a. Set rg = %Oglig l;(«), then the
Le Sicn

Poincaré inequality yields the same bound for limsup|ul —ul, . |52
0

e—
Coming back to (3.21) we deduce that

}<5(us(t,.)),¢>—% <w[rH], ¢~ > —% <w[rs], ¢ >}

1
2

« imsu v! °
5\/_+ <1 sjop/s|§|>roo/8 - (_8) ) d§> (3'22)

+ Z (limsup/ |F (&c]ﬂi) (§)|2d§>
= e=0  Jelg|>roo/8 T

The assumption (H2) of e—oscillation means by definition that

lim su / F (vl e — 0, 3.23

mswp [ 17 () @Fde (3.23)

limsup/ |F (8zju£) (©)Pd¢ — Oforj=1,...,n. (3.24)
e=0  Jelg|>R - R—=too
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Since the L.h.s. of the estimate (3.22) does not depend on « nor 7, one deduces
by taking the limits @ — 0 and ro, — oo that

£ (uelt, ) = 5w 2] 0 (¢") " + 5w [T2) 0 (o) i T2

4 Appendix

4.1 Reflected first order and higher order beams
4.1.1 Higher order beams

Higher order beams, possibly with more than one amplitude, can be constructed to
satisfy better interior and boundary estimates. In this case, the eikonal equation
(2.2) must be satisfied up to order R > 2 on the rays. If r > 3, the equations

05 (p(, 00, 0a1))) (t,2°) =0, |a] =, (4.1)

give systems of linear ODEs of order 1 on (831/)(t,:ct))|a‘zr with second members
involving lower order spatial derivatives of the phase. In fact, the key observation
is the equality

0-p(¢") 0051 (t, 2") + O¢p(') - Ba07 (¢, ')
=2c(a")|€" 1007 (t, 2") + 2¢*(2")€" - 0,074 (t, o)

=2ela el g (929, 2").

used for || = r to eliminate the r + 1-th order derivatives of ¢ in equation (4.1).
To summarize, the requirements

atw(tvxt) = _c(‘rt)|§t|7 5m¢(t7$t) = §t7
p(z,00(t, ), 0,(t,z)) =0 on x = z' up to order R,

uniquely determine the spatial derivatives of 1) on the ray up to the order R under
the knowledge of their initial values on (0,z%). We refer to [44] for further details.

4.1.2 A general relation between incident and reflected beams phases

By (2.19), the Hessian matrix of the incident beam’s phase is related to the Jacobian
matrix of the incident flow. One can prove that its higher order derivatives are also
related to the higher order derivatives of the incident flow. Computations exhibiting
such relations can be found for instance in the Appendix of [39]. We shall give a
nice relation between an incident phase ;. and the associated reflected phase ),.q¢
for beams of any order. This relation is intuitive true on geometrical grounds and
it provides with the derivatives of the reflected phase up to order R, which might
be useful in applications of Gaussian beams.
Consider the following auxiliary function linking ¢! to ¢f for any fixed time ¢

s1:B—B
(2,6) = 05 O 0Ro0pg 9 (x,€).
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For a given point (z,&) € B, s1(z,€) is its "image by the mirror” 0. For in-
stance, Chazarain used this type of auxiliary functions in [11] to show propagation
of regularity for wave type equations in a convex domain.

By the Implicit functions theorem, T3 is C* on the open set B and so is sj.
Since ¢f o s; satisfies the same Hamiltonian equations as ¢! and cplTl (m’g)(x,g) =

ngTl(m’g) o s1(z, &) for (x,€) € B, one has
1 =p 0 5.
Besides, noticing that Ty (¢f) = T1 — t, one has also
1 =51 0 (- (4.2)

ob and ¢! are symplectic C* diffeomorphisms from B to B [22], and so is s;. One
can define a similar auxiliary function s_1 : B — B s.t. o' = ¢ 0 s_; and
oty =s_10¢} fort eR.

Let us introduce the components of s; as

s1= (1, \).

For m € N, f, g functions in C* (RZ X (Rg\{O}),CP), uo € R™ a fixed point and
V € C*(R},CE) a phase function s.t. V(ug) € R¢\{0}, we introduce the notation

m
fw,V(u) = g(u,V(u)),
U=ug
to denote that the formal partial derivatives of f (u, V(u)) and g (u, V(u)) up to the
order m coincide on ug. The differentiation here is viewed formally, since V' may
be complex valued out of ug, which makes f(u,V(u)) and g(u,V(u)) not defined
for u # wug. However, on the exact point ug, one can always use the formula of
composite functions derivatives to get a formal expression of the derivatives. We
will use the same notation
f(ta,V(te) = g(ta,V(to),

r=xt

for functions f,g € C* (Rt x RE x (Rg\{0}), (Cp) and phase function V' € C*(R; x
R7, Cg) s.t. for t € R, V(t,2") € RE\{0} to denote that the formal partial deriva-
tives of f (t,z,V(t,x)) and g (t,z,V(t,x)) w.r.t.  up to order m coincide on (¢, z")
for all t € R. We will be sloppy with respect to the notation of the dependence of
the phase V' on its variables.

Consider an integer R > 2 and an incident phase i, satisfying

R
6t¢inc(t7xt0) = —C($6)|§8|, 6m¢inc(t7xt0) = 56 and p(:v, atwinm 6mwinc) = . 0.

CE—IO

As a particular case, the phase 1) is obtained by setting R = 2 and choosing its
initial value on the ray as zero and its initial Hessian matrix on the ray as ¢/d.

Let ¢rer € C°(Ry x R, C) be the reflected phase associated to 1)inc, that is the
phase satisfying

R
6t¢ref(t, ,Ti) = —C(l‘i”fﬂ, &Cgbref(t,xtl) = fi and p(iC, atwrefa 8m¢ref) ;’/; 0,

x
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and having the same time and tangential derivatives as i, at the instant and the
point of reflection (T3, z¢") up to the order R.

Since ¢, and the reflection R conserve c(z)[¢| (see (2.9)), one has for every
(z,€) € Band 7 € R*

p (T‘(CL‘,f), T, )‘(5575)) = p(iC, T, 5)

Thus
p (’I”(.I, amd}inc); aﬂ/}inc; /\(I; azwinc)) = . p(% 8t¢inC7 am1/)inc)7

121130

which implies, by construction of ;.

p (T‘(JJ, 6m"/]inc)u atwincu )\(,T, aﬂcwinc)) Q 0. (43)

r=xl
Compare this with the equation

R

p (T(I, azwinc)v 8t1/)rcf (t; T’(IE, 8m1/}inc)) ) 8m1/)rcf (t; T’(IE, 8m1/}inc))) 0

—pt
mfwo

resulting from the construction of ¥f and (4.2). This suggests the following Lemma

Lemma 4.1

8t¢ref (t7 T(Ia azwznc)) R/\:/lr 8t1/}inc and 811/}7"61" (t; ’I”(.I, 8m¢znc)) R;t /\(I; 8z¢znc)

m:mo I::EO

A similar result linking the reflected phase associated to the ray (¢, x:’i) t0 YPine can
be established.
Proof: The strategy of the proof is the following: we consider a phase function
0 satistying the relations announced in Lemma 4.1 and we prove that 6 fulfills the
eikonal equation on the reflected ray up to order R and has the correct derivatives
at the instant and point of reflection. This proves that € coincides with the reflected
phase on the reflected ray up to the order R.

Denote 7 (2, 0, Winc(t, x)) by o(t,z) or simply by ¢ if no confusion arises and let
us first verify that for a fixed & > 1 there exists a phase function § € C>*(R; xR?, C)
s.t.

0:0(t,0) = A, Ostine). (4.4)

121130

Let A(t,z,&) = Dyr(z,€) + Der(z,£)02¢imc(t,z) and B(t,z,£) = Dy\(z,€) +
Dﬁ)\(x7§)6;%wln(:(t7x) Then DIQ(t7x) = A(tuxuawwinc)a D;E[ (xuawwinc(tax))] =
B(t, z, 031ine) and for v € C>*(R, x R?, CP) one has

Dy (v(t,0)) = Dav(t, 0)A(t, 7, 0pthine)-

Hence, 6 exists if A(t,zf,£l) is non singular and

B(t7 fL', 6£¢inC)A(t7 xu aﬂcwinc)_l kil (A(t7 fL', 6wwinC)T) - B(t7 fL', 6IwinC)T' (45)

r=xl
From (4.2) one gets

A(ta Iéa 56)(Dy$t0 + ZDﬁxtO) = DyIEi + ’L'anbi.
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t D t
Since ! is symplectic, the matrix ( yx% "I} ) is symplectic. This implies in
Dy&1 Dyéd

particular the relation
Dnﬁ (Dyxﬁ)T - Dyﬁ (ani)T =1Id

and the symmetry of Dz} (D,z%)”. Thus, ker(D,x})" Nker(D,z})” = {0} and at

the same time,
(Dyxi + iDnzi)(Dnyi + ianﬁ)* = Dyzi (Dyzi)T + Dnzi (ani)T

This proves that Dyz} + iD,x} is invertible and so is A(t,zf,&s). On the other
hand,
A\ [ Dyr Der Id
(5)-(55 53) (el )

L9 = ( 308 Diaee) ) T
T
[ATB - BTA] = ( 62{;{ ) MTJM( 62{;{ )

Since MTJM = DsT JDsy, the symplecticity of s; leads to

MTIM = J.
Hence "
Tpn T Al Id Id B
[A B B A] N ( 351/11110 ) 7 ( 8z¢inc ) =0

and the requirement (4.5) is fulfilled.
The relation (4.4) fixes the derivatives of 9;0,0 on (t,z%) up to order k — 1.

Indeed, using the compatibility condition

dt
:at [f (t, Z, amwinc(tu ,T))] |z:m6 + aﬂc [f (f, xz, 311/Jinc(f, ,T))] |z:m6 : xz(&)

on the maps (¢, 2,£) — 0,0 (t,r(x,€)), (2,€) — A(z,§) and their derivatives yields

L (6, Ot (2)) o]

recursively by (4.4)
k—
01 [0:0(t.0)] "= DeA(, O tine) 010 i

Thus

0.8t 0) + 020(t, 0) Der (2, g inc)0stbine = DN, O thine) 0eDstVinc.

k—1

Using the relations 920(t, o) (BA™Y) (t, 2, 0p%inc) and (4.5) in the previous
r=xl

equation yields

0:0,0(t, 0)
k;lt DEA(I; azwinc) - ((AT)_l BT) (t,.f, 8x1/)inc)DET(x7 8x¢inc) atazﬂ/}inc-

r=x
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T BT _ Id - 0\ _
ATDA=B"Der = (o, Mt () =1d.

Since

it follows that A(t, z, 0xtbine)’ 0:0.0(t, g) at O2Wine. Note that
Tr= 10

O (u(t, @) = Alt,, Optiine) " Dsult, o) for u € C*(Ry x R}, C), (4.6)
So one gets
0. (946(t,)) "= Dditine.
Setting 0;0(t, x}) = O¢hinc(t, 2f) implies then that
00(t.0) = Ot (47)

Putting together (4.3), (4.4) and (4.7) shows that the phase 6 satisfies
0

t
0

8
(=

p (Qv ate(ta 9)5 aie(ta Q))

under the further assumption k£ > R.
), 0:0(t,x)). Since 9, (7 (t, 0)) (t,xf) = 0 and

Let w(t,z) = p(z,00(t,x
A(t, zb, &L) is non singular, it follows by (4.6) that d,7(t, %) is zero. More generally,

t oty
for m > 1, the formula of composite functions’ high derivatives yields
n

(t,2h) Z Oa;, ...amjmw(t,x‘;)HAjkik (t,zh, &)

Oy, - O, [T (1, 0(t, @)
15 im=1 k=1

+ Ziy.oig (1),

where z;, ;, depends on derivatives of m on (¢,2%) of order lower than m. For
m < R, the Lh.s. is zero so one can show recursively on |3| < R that 077 (t, 2%) = 0.

One thus has the following eikonal equation on 6

p(z,:0,0:0)

” NE

0.

t
Ty

To compare the time and tangential derivatives of § and ¥in. at (T1,2y"), let us

introduce a C*> parametrization of a neighborhood U of xOTl in 00
o: N —=R",
where A is an open subset of R"™1 o(N) = U and o is a diffeomorphism from A
to U. For x € R™ close to 23", we may write z = o(9) + v,v (0(0)), with & € N/
~ t,0) =
p \Uy

and v, € R. Denote o(0;) = x2' and set 6,(t, v) =0 (t,0(0)) and (Yine), (
Since r(X,Z2) = X for (X,E) €

¢,nc (t,o(0)) the phases at the boundary near zg'.
T*R"bg, it follows that

(oo} ~

t,o(v = o(v),
oltol®) , o)
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which implies by (4.7) that

)(=

615 6‘17 615 ("/Jinc)b .

(tvﬁ):(Tlvﬁl)
Similarly A(X,Z) =2 -2 (2 v(X))v(X) for (X,2) € T*(])R”|ag, leading to

Do (D)X (0(0), Duthine (t, 0(9))) (tﬁﬁ):%ﬂ’ﬁl) Do ()T 0pthine (t, 0()) . (4.8)

Since 950, (t, ©) = Do (9)7 0,0 (t,0(d)) and a similar relation holds true for 5 (Yinc),,

one gets from (4.4) and (4.8) that 9560, o %T : 05 (Vinc),, - Hence 6y and (¢inc),
t,0)=(T1,01

have the same time and tangential derivatives at (T, 01) from the order 1 to the

order k + 1.

If we assume that 6(71, :vgl) = Yine(Th, :Cgl), then

e

+1

= (djinc)b 3

Oy
(t)ﬁ):(Tl 7’01)

and 0 satisfies all the requirements that determine the reflected phase associated to
thine and concentrated on (¢, z%). The phases  and ).ef are thus equal on (¢, 2%) up
to the order R. a
4.1.3 First order reflected beams’ phases and amplitudes
Lemma 4.1 gives at order one
aiwl (tv Ii) (DIT(,TB, 58) + Dg?‘(mé, 58)6£¢0 (t7 xto))
=D (), &) + De(g, £0) ot ).

One obtains by plugging the expression (2.19) of 921 (t, xf)

Optbr (t,2) (Dar(, €)Us + Der(g, §0) Vo) = DaX(h, §0)Ug + DeAlw, §6) Vs
From (4.2), it follows that

O2bi(t, xf) = ViE(UL) ™" where Uf = Dyaj, + iDyaj, and Vi = Dy&f + iDy &L,

and a similar relation holds true for 921 (t, 2t ;).
The reflected amplitudes evaluated on the associated rays satisfy transport equa-
tions which are similar to (2.20) and may be written as
d k(’)t t lT Hou (2t €Ut 4+ Hoo (2t €V (U1 k(,)t ty—
7 (0 (t,xy) ) + 5t [( 21(w, §) Uy + Haa(wy, &) k) (Ug) } ag (t,xy) =0.
One can obtain a similar equation to (2.16) on U}, involving Hoy (2}, £L) and
Hio(xh, €L), by using the relation ¢, = ¢f 0 sx. On the whole

_1
kO o kO e [ detULY T
ag (tyxy) =ag (Tr,xy*) (det T , k= =1,
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where the square root is obtained by continuity from 1 at ¢t = Tj.
On the other hand, for k = +1

d¥,, +dY = b(x,0ub0)al + bz, Optr)ag,

where b denotes the principal symbol of B. Thus, the condition 2 p.8 required for the

construction of the reflected amplitudes implies that ag( )(Tk, ah) = sag( )(Tk, )
with s = —1 for Dirichlet condition and s = 1 for Neumann condition.

In order to find the relationship between U,* and Ug* for k = +1, we differen-

tiate the equality ;vfk = ZC(I;k

Dymx? + Jfk (3y7nTk)T = Dyngk + jjoTk (ay,nTk)Tv

and compute the derivatives of T from the condition a:oTk € 00

1

(0™ - v(ag))
to get after elementary computations
Ul = (Id - 2V(J:OT’“)V(3:0T")T) Ul (4.9)
Hence

af(t,xh) = —si (det UY)

* and agl(t,:zr}i) = s(c(y)|n)) " (det Uf) ? fork= +1,

where the square root is defined by continuity from i[det UOT ’“]_% at t = Tk.

4.2 Approximation operators

We briefly recall a simple version of the integral operators with complex phases
used in [4] and the estimates established therein. We then use these results to prove
Lemma 2.2.

For t € [0,T], let K, ¢(t) be a compact of R?" and consider the set

El = {(t,I,Z,@) € [OvT] X R?;n, (259) € Kz,@(t)v |I - Z| S 1}5

which we assume compact. Let ® be a phase function smooth on an open set
containing F4 and satisfying (2.23) for t € [0,T] and (z,6) € K ¢(t). Then there
exists r[®] €]0, 1] s.t.

Im ®(t,x,2,0) > C(z — 2)* for t € [0,T), (2,0) € K. (t) and |z — z| < r[®].
Let I. € C*°([0,T] x R3",C) satisfying
for t € [0,T],1.(t,z,2,0) = 01if (2,0) ¢ K, o(t) or |x — z| > r[P],

558;“], lo is uniformly bounded in L>([0,T] x R®*") for every 1 < j < n and k € N.
(4.10)

If O (I (t,.), ®(t,.)/e) denotes, for a given multiindex « and ¢ € [0, T, the operator
(0% (Ie(t,.), (8, ) /¢) h] ()
:/ h(z,0)l(t, x, 2,0)(x — 2)*e =20 /242d0 h € L*(R?™),
R2n

then, under the previous hypotheses on ® and [, we have the following estimate:
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Proposition 3 ([4], Lemma 3.3)
0% (I(t,.), ®(t,.)/€) | L2@en)— L2 ®n) S e+ uniformly w.r.t. t € [0,T)].

This estimate allows to prove Lemma 2.2.
Proof: [Proof of Lemma 2.2] Consider the integrals (2.22) giving the derivatives

~k
of uZfP" —and fix j,k and a. The transported phase ¢ is smooth and satisfies

by (2.3), (2.4) and (2.6) the properties (2.23) for ¢t € [0,T] and (z,0) € K% 4(t).
—~k —~k
We fix some 7t | €]0,1] so that Imvy (t,z,2,0) > C(z — 2)? for t € [0,T],
—~k
(2,0) € Kf)e(t) and |z — z| < r[¢y |

——k

—k
For t € [0,T], Hxp' @' (t,z,0) (rf)a) (t,x,z,0) depends smoothly on its variables

~k
and vanishes for [z — z| > d or (z,0) ¢ K% 4(t). Hence, upon choosing d < r[iy |,
—k k
the amplitude xp &+ (Tfya) satisfies the properties formulated in (4.10). Let us
k

check if 1Bf8 =1gTwl, . Age MToul s uniformly bounded in L?(R?").
Clearly T.v! ro.r 18, and the property holds true for e~ 1T u! ro.re DY Lemma 4.6.

One can then use the approximation operators O to write the integral (2.22) as

/—\_/ k

34 P A agiv" /e
e 1 - Hpp @9 fe (rF,) (x—2)% dzdf

k—~—k

-0 <nkp/®v () (). 5 (t,.>/s> 157"

The estimate established in Proposition 3 yields

——k

73_n+_ /—\_/ka P OL’L"IQJVk/E M+
e~ ™ Mep' @9 fo (rf,) (x—2)%€" /Fdzdf|: Sez ™
2n ’ *
/_\-/k
Hence, only (7“’0“70) contributes to 9 ;uch?". . the residue being of order /. One
has
k i t £y, ()
70,0 (ta z,Y, 77) = Ecnﬂkat,ﬂ/)k (tv :Ek)Xd(‘T - Ik)ak (ta Y, 77))
and by (2.3)

i (t,y,) = —c(ap) €k, Duthr(t, xy) = &
It follows that

appr
a uE T0,T 00 (t7 &€

&
£ Cn/ (=) Brc(2)10]xa(x — 2)Ik(t, 2,0)p" @7 (t,2,0)
R2™ 0.1

Tk
De .k (t,z,@)elwk (22024240

3n —~—— £k
’Tcn/ E iBre(2)]0]xa(r — 2)lg(—t,2,0)p @ (—t,2,0)
RQn

k=0,—1

N =
™

Qs,kk(—t,z,9)ei@k(ft,z,z,9)/g)dzd9
+O0(Ve)
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in L2(R"), uniformly for ¢ € [0,7] and

Og;ult?"  (t,x)

E,70,T oo
1 n —~—k
:—af%cn/ Z 1Bkl xa(x — )k (L, 2,0)p" @4 (t,z,0)
2 o
k=0,1
Tk
mk(t,zﬁ)e“/”‘ t22.0)/2 4249
1 n /_\—/k
+ 55_37%/ Z 1Bkl xa(x — )k (—t, z,0)p @' (—t,2,0)
R

" k=01
Tk
Z];/kk(—t,zﬁ)ew’“ (=t.z.2.0)/e 4.0
+ O0(Ve)

in L?(R"), uniformly w.r.t. ¢ € [0, 7).

One can get rid of the cut-off x4(x — z) appearing in J;uZf?", (t,x)

and O, u?PP"  (t,x) by using the estimate (2.24). m|

Tje,r0,T oo

4.3 Results related to the FBI and the Wigner transforms
Lemma 4.2 For u in L*(R")
Tou(y,n) = ca(2m) B [ Fu(&)e (178"t vge,
R’n

Proof: The equality is proven by Parseval formula. o

Lemma 4.3 ([4], Lemma 2.4) Let a be a positive real, E a measurable subset of R™
and K C R™ a compact set s.t. dist(K,E) > a. If u € L?>(R?) is supported in K
then

ITeull p2(pxiy) = s [1)u(@)e DL <m0 u| 1.

Proof: The proof consists of writing the FBI transform as the Fourier transform
w.r.t. x of some auxiliary function and using Parseval equality. a

Lemma 4.4 Let 0 be a cut-off of C3°(R},R), E a measurable subset of R" and
K C R™ a compact set s.t. dist(K,E) > 0. If u € L*(R") is supported in K then

IT20() Tl 20y S € |lull L2gany -
Proof: The kernel of 1gTX0(n)T:1y : L*>(R?) — L*(R?) is

ko(w,z) = =% 2 1p(w)1x (z) 2 0() et (W) o= w=)?/ (22)~(w—9)*/(29) gy g
R n

= 1E(w)1K($C)€7"(27T)7n]:9($ ; w)e,(m,w)z/(%)'

For w € R", one has by Cauchy-Schwartz inequality

1
2
/ ke (10, 2)|dzr < |70 ooy (2) e~ 3 < /

/S e*C/s'

1p(w)lg (a:)e(zw)z/@s)dx)

n
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Similarly, [, |ke(w,z)|dw is dominated by e , S0 one gets by Schur’s Lemma

I1TZ0m)Teull 2 (s, S e_C/EHUHL?(R;)-
]

Lemma 4.5 Let E be a measurable subset of R™ and K C R™ a compact set s.t.
dist(K, E) > 0. If 0 is a cut-off of C5°(R}),R) supported in K then

IT-T20M T L2y L2 R X B) S e /e,

Proof:  Consider the operator H. : L*(R>") — L*(R2") defined by
Hef(z,8) = 1p(OTTE (L (n) f(y;n)) (2, €).

It is easy to compute its kernel h,

he(@,€,9,m) = ErF e (€)1 ()i EHM) =)/ 2)=(2 1)/ (40)~(e=m)*  (4e).

n

Hence, fR2n |he(z, &y, m)|dadE e~“/¢ and fR2n |he (2, &y, n)|dydn < e~“/<. For
u € L*(R") , it follows by Schur’s Lemma that

[HeTeul| L2 gan,y = 1TT20() Teull L2mp x 2e) S e % Teul| L2 m2

S e e | paggny.

Lemma 4.6 ([4], Lemma 3.4) |le'Toul, . |lr2@eny S 1.
Proof: Differentiating (2.10) w.r.t. y;, 0 < j <mn, yields

1 I . _1 I _3n I 1
528% (TEU&TUWOO) = ;e 2T€u8ﬂ“oﬂ“oo T CnE * Rnua,ro,roo (x)g 2 (yj - xj)

et (y—x)/e=(y=2)%/(2¢) g

The Lh.s. is bounded in L7 , because 8y, (Toul . . ) = Te(9,,ul ). The second

Tj 7E,T0,T oo
term of the r.h.s. is the Fourier transform of a bounded function in L2, thus it can

be estimated using Parseval equality. One gets

1

R B O R L e I L PP LT 1
Rn

€,70, 00 ¥ £,70,700 1 L3

Thus [|e~2n;Teu! < 1 and consequently by (H5’)

2
sT0,T o0 ||Ly,n

_1
||€ ZTE’u’i,ro,rm”L%m 5 1.
Hence |lul, . |z2 < /e Reproducing the same arguments on the equality

1 I -1 1 —3n -3 I -1
89]‘ (Tius,ro,rm) - ZTUE TEus,rg,roo —Cpge 1 (5 Qus,rg,roo> (I)E 2 (yJ - Ij)
Rn
i () ()2
e (y—a)/e—(y—2)"/(2¢) 1.

leads to [lul . . llL2@e) Se. a
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Lemma 4.7 Let (a:) and (be) be two sequences uniformly bounded in L*(R™) and
HY(R™) respectively. If e 1be is uniformly bounded in L*(R™), then

we(ae, |D|be) ~ |€|we(as, e 'b.) on R™ x (R™\{0}).

Proof: Let ¢ be a test function in Cg°(R™ x (R™\{0}),R) and denote c¢. = |D|b..
We use another expression of < we(ac, ¢ ), ¢ > exhibiting the Fourier transform of
Ce:

< we(ae, ce), ¢ >= (2m)™" Fep(x — %v, v)ag(r)és(z — ev)dudz.
R2n

Since Fe¢¢ is rapidly decreasing
sup ’]:5¢(x - gv,v) - ]-'5¢(x,v)‘ <e(l40?) L
By Cauchy-Schwartz inequality w.r.t. dx
1 (Feote = 500) = Fedlo)) aclolea(o = v)ldude S eleclzz e
It follows that

<welae ) 6 >= (20" [ oz, €)e " Ca (w)e (v — ev)dududg + of1).
RSn
Integrating w.r.t. v leads to
< we(ae, ce), ¢ >= (2m) e " (;5(:10,5)6_”'5/8@5(:v)]—'—cg(f/a)dxd§ +o(1),

R2n

and replacing Fe.(£/¢) by e 1€ Fbe(€/¢) ends the proof. ad
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