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Adiabatic control of the Schrödinger equation

via conical intersections of the eigenvalues

U. Boscain F. Chittaro P. Mason M. Sigalotti

Abstract

In this paper we present a constructive method to control thebilinear Schrödinger equation via two

controls. The method is based on adiabatic techniques and works if the spectrum of the Hamiltonian

admits eigenvalue intersections, and if the latter are conical (as it happens generically). We provide

sharp estimates of the relation between the error and the controllability time.

I. INTRODUCTION

In this paper we are concerned with the problem of controlling the Schrödinger equation

i
dψ

dt
=

(
H0 +

m∑

k=1

uk(t)Hk

)
ψ(t). (1)

Hereψ belongs to the Hilbert sphereS of a complex separable Hilbert spaceH andH0, . . . , Hm

are self-adjoint operators onH. The controlsu1, . . . , um are scalar-valued and represent the

action of external fields.H0 describes the “internal” dynamics of the system, whileH1, . . . , Hm

the interrelation between the system and the controls.

The reference model is the one in whichH0 = −∆ + V0(x), Hi = Vi(x), wherex belongs

to a domainD ⊂ Rn and V0, . . . , Vm are real functions (identified with the corresponding

multiplicative operators). However, equation (1) can be used to describe more general controlled
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dynamics. For instance, a quantum particle on a Riemannian manifold subject to external fields

(in this case∆ is the Laplace–Beltrami operator) or a two-level ion trapped in a harmonic

potential (the so-called Eberly and Law model [2], [7]). In the last case, as in many other

relevant physical situations, the operatorH0 cannot be written as the sum of a Laplacian plus a

potential.

The controllability problem consists in establishing whether, for every pair of statesψ0 and

ψ1, there exist controlsuk(·) and a timeT such that the solution of (1) with initial condition

ψ(0) = ψ0 satisfiesψ(T ) = ψ1. The answer to this question is negative whenH is infinite-

dimensional. Indeed, Ball, Marsden and Slemrod proved in [3] a result which implies (see [30])

that equation (1) is not controllable in (the Hilbert sphereof) H. Hence one has to look for

weaker controllability properties as, for instance, approximate controllability or controllability

between the eigenstates ofH0 (which are the most relevant physical states). However, in certain

cases one can describe quite precisely the set of states which can be connected by admissible

paths (see [4], [5], [23]).

In [12] an approximate controllability result for (1) was proved via finite-dimensional geomet-

ric control techniques applied to the Galerkin approximations. The main hypothesis is that the

spectrum ofH0 is discrete and without rational resonances, which means that the gaps between

the eigenvalues ofH0 should beQ-linearly independent. Another crucial hypothesis is thatthe

operatorH1 couples all eigenvectors ofH0. This result has been improved in [9] where the

hypothesis ofQ-linear independence was weakened. Similar results have been obtained, with

different techniques, in [22] (see also [20], [23]).

The practical application of the results discussed above entails three main difficulties:

• In most cases the techniques used to get controllability results do not permit to obtain (even

numerically) the controls necessary to steer the system between two given states.

• Even in the cases in which one can get the controls as a byproduct of the controllability result,

they happen to be highly oscillating and hence they can be difficult to implement, depending on

the experimental conditions. Roughly speaking, since one should move in an infinite dimensional

space with only one control, one should generate many iterated Lie brackets. This is particularly

evident in the papers [9], [12], where the use of Galerkin approximations permits to highlight

the Lie algebra structure.

• Explicit expressions of time estimates, for the norm of controls and for their total variations
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are extremely difficult to obtain. (For some lower bounds of controllability time and estimates

of theL1 norm of the controls see [9].)

In most of the results in the literature only the casem = 1 is considered. In this paper we

study the casem = 2 and we get both controllability results and explicit expressions of the

external fields realizing the transition. The system under consideration is then

i
d

dt
ψ(t) = H(u1(t), u2(t))ψ(t),

with H(u1, u2) = H0+u1H1+u2H2. The idea is to use two slowly varying controls and climb the

energy levels through conical intersections, if they are present. Conical eigenvalue intersections

have been used to get population transfers in the finite dimensional case in [10], [13], [19], [29],

[31]. Some preliminary ideas given in the present paper can be found in [2], where a specific

example (which is a version of the Eberly and Law model) is analyzed, and in [11]. The main

ingredients of our approach are the following:

• The adiabatic theorem that, in its rougher form, states the following: letλ(u1, u2) be an eigen-

value ofH(u1, u2) depending continuously on(u1, u2) and assume that, for everyu1, u2 ∈ K

(K compact subset ofR2), λ(u1, u2) is simple. Letφ(u1, u2) be the corresponding eigenvector

(defined up to a phase). Consider a path(u1, u2) : [0, 1] → K and its reparametrization

(uε1(t), u
ε
2(t)) = (u1(εt), u2(εt)), defined on[0, 1/ε]. Then the solutionψε(t) of the equation

idψε

dt
= (H0 + uε1(t)H1 + uε2(t)H2)ψε(t) with initial conditionψε(0) = φ(u1(0), u2(0)) satisfies

∥∥ψε (1/ε)− eiϑφ (uε1 (1/ε) , u
ε
2 (1/ε))

∥∥ ≤ Cε (2)

for someϑ = ϑ(ε) ∈ R. This means that, if the controls are slow enough, then, up tophases, the

state of the system follows the evolution of the eigenstatesof the time-dependent Hamiltonian.

The constantC depends on the gap between the eigenvalueλ and the other eigenvalues.

• The crossing of conical intersections. Generalizations ofthe adiabatic theory guarantee that,

if the path (u1(·), u2(·)) passes (once) through a conical intersection between the eigenvalues

λ0 ≤ λ1, then

‖ψε(1/ε)− eiϑφ1(u
ε
1(1/ε), u

ε
2(1/ε))‖ ≤ C

√
ε (3)

whereψε(t) is the solution of the equationidψε

dt
= (H0 + uε1(t)H1 + uε2(t)H2)ψε(t) with initial

conditionψε(0) = φ0(u
ε
1(0), u

ε
2(0)) andφ0, φ1 are the eigenvectors corresponding respectively

to the eigenvaluesλ0, λ1 (see [27]). Figure 1 illustrates a closed slow path in the space of
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Fig. 1. A slow path climbing the spectrum ofH(u1, u2), plotted in function of(u1, u2).

controls producing a transition from the eigenvector corresponding to the eigenvalueλ0 to the

eigenvector corresponding toλ2 by crossing two conical singularities. Notice that the pathcould

not be closed if only one control was present. Indeedu(t) would pass back and forth through the

same singularity and the trajectory would come back to the original state. One of our main results

is that choosing special curves that pass through the conical singularity the estimate in (3) can be

improved by replacing
√
ε by ε. Hence if some energy levelsλ0, . . . , λk of the spectrum ofH are

connected by conical singularities, then one can steer, in time 1/ε, an eigenstate corresponding

to λ0 to an eigenstate corresponding toλk with an error of orderε.

• The behavior of the eigenstates in a neighborhood of conicalsingularities. If the path

(u1(·), u2(·)) is a piecewise smooth curve with avertex (i.e. discontinuity at theC1 level) at

the conical singularity, the state of the system evolves with continuity, while the eigenstates

corresponding to the degenerate eigenvalue are subject to an instantaneous rotation. The angle

made by the path at the vertex can be used to control the splitting of probabilities between the

two energy levels (see Figure 1). This splitting phenomenonhas already been described and

exploited for controllability purposes on a two-dimensional system in [11].

The ideas introduced above lead to the following result: if the energy levelsλ0, . . . , λm are

connected by conical singularities, then the system is approximately spread controllable, i.e.,

for every givenε > 0 and p0, . . . , pm ≥ 0 such that
∑m

i=0 p
2
i = 1, there exists a controlu

February 15, 2011 DRAFT
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Fig. 2. Passages through a conical intersection.

defined on[0, 1/ε], k + 1 phasesϑ0, . . . , ϑk ∈ R, and a trajectory corresponding tou satisfying

ψ(0) = φ0 and ‖ψ(1/ε) −
∑k

j=1 pje
iϑjφj(u

1)‖ ≤ ε. Moreover the control can be taken of

the form u(t) = γ(εt), whereγ : [0, 1] → R2 is characterized explicitly. Hence the method

provides precise time estimates in relation with the required precision. The method cannot be

easily reversed, in order to explicitly characterize pathssteering a state which is spread on several

eigenstates to a single one. The difficulty lies on the loss ofinformation about the relative phases

during adiabatic evolution.

We finally remark that systems for which the method can be applied are rather frequent.

Indeed intersections of eigenvalues are generically conical for Hamiltonians of the form−∆+

V0 + u1V1 + u2V2, as explained in Section II.

The structure of the paper is the following. In Section II, weintroduce the framework and we

state the main result. In Section III we recall the time adiabatic theorem and some results on the

regularity of eigenvalues and eigenstates of parameter-dependent Hamiltonians. In Section IV we

deepen our analysis of conical intersection; in particular, we state and prove a sufficient condition

for an intersection to be conical. Section V is devoted to theconstruction of some special curves

along which we can obtain our controllability result, whilethe proof of the main theorem is the

subject of Section VI. Finally, in Section VII, we show that the same controllability result holds

also for more general curves than those presented in SectionV.
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II. DEFINITIONS AND MAIN RESULTS

We consider the Hamiltonian

H(u) = H0 + u1H1 + u2H2,

for u = (u1, u2) ∈ R2. From now on we assume thatH(·) satisfies the following assumption:

(H0) H0 is a self-adjoint operator on a separable Hilbert spaceH, andH1 andH2 are bounded

self-adjoint operators onH.

When necessary, we also make the following assumption on theHamiltonianH(·):

(H1) There exists an orthonormal basis{χj}j of the Hilbert spaceH such that the matrix

elements〈χj, H0χk〉, 〈χj, H1χk〉 and 〈χj , H2χk〉 are real for anyj, k.

Remark 2.1:Hypothesis(H1) ensures that, with eachu and each eigenvalue ofH(u) (counted

according to their multiplicity), it is possible to associate an eigenstate whose components with

respect to the basis{χj}j are all real.

A typical case for which(H0) and(H1) are satisfied is whenH0 = −∆+ V , where∆ is the

Laplacian on a bounded domainΩ ⊂ Rd with Dirichlet boundary conditions,V ∈ L∞(Ω,R),

H = L2(Ω,C), andH1, H2 are two bounded multiplication operators by real valued functions.

In this case the spectrum ofH0 is discrete.

The dynamics are described by the time-dependent Schrödinger equation

i
dψ

dt
= H(u(t))ψ(t). (4)

Such equation has classical solutions under hypothesis(H0), u(·) piecewiseC1 and with an

initial condition in the domain ofH0 (see [26] and also [3]).

We are interested in controlling (4) inside some portion of the discrete spectrum ofH(u).

Since we use adiabatic techniques, the structure of the spectrum shall satisfy some particular

features: roughly, the portion of discrete spectrum we consider must be well separated from its

complement in the spectrum of the Hamiltonian, and this property must hold uniformly foru

belonging to some domain inR2.

All these properties are formalized by the following notion:

Definition 2.2: Let ω be a domain inR2. A mapΣ defined onω that associates with each

u ∈ ω a subsetΣ(u) of the discrete spectrum ofH(u) is said to be aseparated discrete spectrum

on ω if there exist two continuous functionsf1, f2 : ω → R such that:
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• f1(u) < f2(u) andΣ(u) ⊂ [f1(u), f2(u)] ∀u ∈ ω.

• there existsΓ > 0 such that

inf
u∈ω

inf
λ∈Spec(H(u))\Σ(u)

dist(λ, [f1(u), f2(u)])) > Γ.

Notation From now on we label the eigenvalues belonging toΣ(u) in such a way that we

can writeΣ(u) = {λ0(u), . . . , λk(u)}, whereλ0(u) ≤ · · · ≤ λk(u) are counted according to

their multiplicity (note that the separation ofΣ from the rest of the spectrum guarantees that

k is constant). Moreover we denote byφ0(u), . . . , φk(u) an orthonormal family of eigenstates

corresponding toλ0(u), . . . , λk(u). Notice that in this notationλ0 needs not being the ground

state of the system.

Definition 2.3: Let Σ be a separated discrete spectrum onω. We say that (4) is approximately

spread-controllableonΣ if for everyu0,u1 ∈ ω such thatΣ(u0) andΣ(u1) are non-degenerate,

for every φ̄ ∈ {φ0(u
0), . . . , φk(u

0)}, p ∈ [0, 1]k+1 such that
∑k

l=0 p
2
l = 1, and everyε > 0 there

exist T > 0, ϑ0, . . . , ϑk ∈ R and a piecewiseC1 controlu(·) : [0, T ] → R2 such that

‖ψ(T )−
k∑

j=0

pje
iϑjφj(u

1)‖ ≤ ε, (5)

whereψ(·) is the solution of (4) withψ(0) = φ̄.

Our techniques rely on the existence of conical intersections between the eigenvalues. Conical

intersections constitute a well-known notion in molecularphysics. They have an important role

in the Born–Oppenheimer approximations (see for instance [8], [18], [27], where they appear

for finite dimensional operators). In the finite dimensionalcase they have been classified by

Hagedorn [14].

A unified characterization of conical intersections seems to be missing. The following defini-

tion meets all the features commonly attributed to them.

Definition 2.4: LetH(·) satisfy hypothesis(H0). We say that̄u ∈ R2 is aconical intersection

between the eigenvaluesλj andλj+1 if λj(ū) = λj+1(ū) has multiplicity two and there exists a

constantc > 0 such that for any unit vectorv ∈ R2 and t > 0 small enough we have that

λj+1(ū+ tv)− λj(ū+ tv) > ct . (6)

February 15, 2011 DRAFT
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It is worth noticing that conical intersections are not pathological phenomena. On the contrary,

they happen to be generic in the following sense. Consider the reference case whereH =

L2(Ω,C), H0 = −∆ + V0 : D(H0) = H2(Ω,C) ∩ H1
0 (Ω,C) → L2(Ω,C), H1 = V1, H2 = V2,

with Ω a bounded domain ofRd for somed ∈ N and Vj ∈ C0(Ω,R) for j = 0, 1, 2. Then,

generically with respect to the pair(V1, V2) in C0(Ω,R)×C0(Ω,R) (that is, for all pairs,(V1, V2)

in a countable intersection of open and dense subsets ofC0(Ω,R)×C0(Ω,R)), for eachu ∈ R2

andλ ∈ R such thatλ is a multiple eigenvalue ofH0+u1H1+u2H2, the eigenvalue intersection

u is conical.

In order to check that this is true, we can apply the transversal density theorem (see [1,

Theorem 19.1]) withA = C0(Ω,R) × C0(Ω,R), X = R2, Y = C0(Ω,R), ρ((V1, V2),u) =

V0 + u1V1 + u2V2, and

W = {V ∈ C0(Ω,R) | −∆+ V : H2(Ω,C) ∩H1
0 (Ω,C) → L2(Ω,C) has multiple eigenvalues}.

The covering ofW by manifolds of codimension two is obtained in [28], based onthe properties

proved in [6] (see also [17]). We obtain that, generically with respect to(V1, V2), the intersection

of ρ((V1, V2),R2) with W is transverse. Equivalently said, generically with respect to (V1, V2),

for everyu ∈ R2 andλ ∈ R such thatλ is a multiple eigenvalue of−∆ + V0 + u1V1 + u2V2,

for every (v1, v2) ∈ R2 \ {0}, the line{(u1 + tv1)V1 + (u2 + tv2)V2 | t ∈ R} is not tangent to

W , i.e., the eigenvalue intersectionu is conical.

Moreover, each conical intersection(u1, u2) is structurally stable, in the sense that small

perturbations ofV0, V1 and V2 give rise, in a neighborhood ofu, to conical intersections

for the perturbedH. Structural stability properties can be proved without resorting to abstract

transversality theory, as will be shown in Section V, Theorem 5.10.

Our main result is the following: it states that spread controllability holds for a class of systems

having pairwise conical intersections, providing in addition an estimate of the controllability time.

As a byproduct of the proof, we will also get an explicit characterization of the motion planning

strategy (the pathγ(·) below).

Theorem 2.5: Let H(u) = H0 + u1H1 + u2H2 satisfy hypotheses(H0)-(H1). Let Σ : u 7→
{λ0(u), . . . , λk(u)} be a separated discrete spectrum onω ⊂ R2 and assume that there exist

conical intersectionsuj ∈ ω, j = 0, . . . , k − 1, between the eigenvaluesλj, λj+1, with λl(uj)

simple if l 6= j, j+1. Then, for everyu0 andu1 such thatΣ(u0) andΣ(u1) are non-degenerate,

February 15, 2011 DRAFT
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for every φ̄ ∈ {φ0(u
0), . . . , φk(u

0)}, andp ∈ [0, 1]k+1 such that
∑k

l=0 p
2
l = 1, there existC > 0

and a continuous controlγ(·) : [0, 1] → R2 with γ(0) = u
0 andγ(1) = u

1, such that for every

ε > 0

‖ψ(1/ε)−
k∑

j=0

pje
iϑjφj(u

1)‖ ≤ Cε,

whereψ(·) is the solution of (4) withψ(0) = φ̄, u(t) = γ(εt), andϑ0, . . . , ϑk ∈ R are some

phases depending onε andγ. In particular, (4) is approximately spread controllable on Σ.

III. SURVEY OF BASIC RESULTS

A. The adiabatic theorem

One of the main tools used in this paper is the adiabatic theorem ([8], [15], [21], [24]); here we

recall its formulation, adapting it to our framework. For a general overview see the monograph

[27]. We remark that we refer here exclusively to the time-adiabatic theorem.

The adiabatic theorem deals with quantum systems governed by Hamiltonians that explicitly

depend on time, but whose dependence is slow. While in quantum systems driven by time-

independent Hamiltonians the evolution preserves the occupation probabilities of the energy

levels, this is in general not true for time-dependent Hamiltonians. The adiabatic theorem states

that if the time-dependence is slow, then the occupation probability of the energy levels, which

also evolve in time, is approximately conserved by the evolution.

More precisely, considerh(t) = H0 + u1(t)H1 + u2(t)H2, t ∈ I = [t0, tf ], satisfying(H0),

and assume that the mapt 7→ (u1(t), u2(t)) belongs toC2(I). Assume moreover that there exists

ω ⊂ R2 such that(u1(t), u2(t)) ∈ ω for all t ∈ I andΣ is a separated discrete spectrum onω.

We introduce a small parameterε > 0 that controls the time scale, and consider the slow

Hamiltonianh(εt), t ∈ [t0/ε, tf/ε]. The time evolution (fromt0/ε to t) Ũε(t, t0/ε) generated by

h(ε·) satisfies the equationi d
dt
Ũε(t, t0/ε) = h(εt)Ũε(t, t0/ε). Let τ = εt belong to[t0, tf ] and

τ0 = t0; the time evolutionUε(τ, τ0) := Ũε(τ/ε, τ0/ε) satisfies the equation

iε
d

dτ
Uε(τ, τ0) = h(τ)Uε(τ, τ0). (7)

Notice thatUε(τ, τ0) does not preserve the probability of occupations: in fact, if we denote by

P∗(τ) the spectral projection ofh(τ) on Σ(u(τ)), thenP∗(τ)U
ε(τ, τ0) is in general different

from Uε(τ, τ0)P∗(τ0).

February 15, 2011 DRAFT
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Let us consider theadiabatic Hamiltonianassociated withΣ:

ha(τ) = h(τ)− iεP∗(τ)Ṗ∗(τ)− iεP⊥
∗ (τ)Ṗ⊥

∗ (τ),

whereP⊥
∗ (τ) = id−P∗(τ) andid denotes the identity onH. Here and in the following the time-

derivatives shall be intended with respect to the reparametrized timeτ . The adiabatic propagator

associated withha(τ), denoted byUε
a(τ, τ0), is the solution of the equation

iε
d

dτ
Uε
a(τ, τ0) = ha(τ)U

ε
a(τ, τ0) (8)

with Uε
a(τ0, τ0) = id.

Notice that

P∗(τ)U
ε
a(τ, τ0) = Uε

a(τ, τ0)P∗(τ0),

that is, the adiabatic evolution preserves the occupation probability of the bandΣ.

Now we can adapt to our setting the strong version of the quantum adiabatic theorem, as

stated in [27].

Theorem 3.1: Assume thatH(u) = H0+u1H1+u2H2 satisfies(H0), and thatΣ is a separated

discrete spectrum onω ⊂ R2. Let I = [t0, tf ], u : I → ω be aC2 curve and seth(t) = H(u(t)).

ThenP∗ ∈ C2(I,L(H)) and there exists a constantC > 0 such that for allτ, τ0 ∈ I

‖Uε(τ, τ0)− Uε
a(τ, τ0)‖ ≤ Cε (1 + |τ − τ0|) . (9)

Remark 3.2:If there are more than two parts of the spectrum which are separated by a gap,

then it is possible to generalize the adiabatic Hamiltonianin the following way ([21]):

ha(τ) = h(τ)− iε
∑

α

Pα(τ)Ṗα(τ)

where eachPα(τ) is the spectral projection associated with a separated portion of the spectrum,

partitioning it asα varies.

Remark 3.3:In general the adiabatic theorem is stated for a time dependent Hamiltonianh(t)

satisfying the following hypotheses: it is assumed that allthe Hamiltoniansh(t) have a common

dense domainD and that the functiont 7→ h(t) is C2(I) and bounded as a function fromI to

Lsa(D,H), whereLsa(D,H) denotes the space of bounded self-adjoint linear operatorsfrom D
to H andD is endowed with the norm of the graph ofh(t̄), for somet̄ ∈ I. These hypotheses

are satisfied for an Hamiltonian of the formh(t) = H0 + u1(t)H1 + u2(t)H2 under assumption

(H0), provided that the curveu(·) is C2.

February 15, 2011 DRAFT
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In this paper we are particularly interested in the adiabatic evolution across conical intersec-

tions between eigenvalues. A result in this direction can befound in [27, Corollary 2.5]. In the

language of control theory it reads as follows.

Proposition 3.4: Let Σ : u 7→ {λ0(u), . . . , λk(u)} be a separated discrete spectrum onω. Let

u
0,u1, ūj ∈ ω, j = 0, . . . , k− 1. Assume thatλl(u0) andλl(u1) are simple for alll = 0, . . . , k,

and that, for anyj = 0, . . . , k−1, ūj is a conical intersection betweenλj andλj+1, with λl(uj)

simple if l 6= j, j + 1. Let γ(·) : [0, 1] → ω be aC2 curve with γ(0) = u
0 and γ(1) = u

1

and such that the eigenstates corresponding to the eigenvaluesλl can be chosenC1 along γ

for all l = 0, . . . , k. Assume moreover that there exist times0 < t̄0 < · · · < t̄k−1 < 1 with

γ(t̄j) = ūj , γ̇(t̄j) 6= 0, j = 0, . . . , k − 1, and that for anyl = 1, . . . , k λl(γ(t)) is simple for

every t 6= t̄j, j = 1, . . . , k − 1.

Then there existsC > 0 such that, for anyε > 0

∥∥ψ(1/ε)− eiϑφk
∥∥ ≤ C

√
ε, (10)

whereϑ ∈ R andψ(·) is the solution of equation (4) withψ(0) = φ0(u
0) corresponding to the

controlu : [0, 1/ε] → ω defined byu(t) = γ(εt).

In this paper we are interested in finding control paths alongwhich we have a knowledge

of adiabatic evolution finer than in (10). This allows also richer control strategies than those

described in Proposition 3.4, as it is needed to prove spreadcontrollability. For this purpose we

write an effective Hamiltonian describing the dynamics inside a two-dimensional band, possibly

with conical intersections.

Let us then consider the band constituted by the eigenvaluesλj, λj+1 ∈ Σ; we can find an

open domainω′ ⊂ ω such that{λj, λj+1} is a separated discrete spectrum onω′.

As above, we consider a control functionu(·) ∈ C2(I, ω′), for a given time intervalI. We can

then apply the adiabatic theorem to the separated discrete spectrumΣ′ : u 7→ {λj(u), λj+1(u)},

u ∈ ω′: we call P(τ) the spectral projection on the band{λj(u(τ)), λj+1(u(τ))} andH(τ) =

P(τ)H its range, which is the direct sum of the eigenspaces ofλj(u(τ)) andλj+1(u(τ)). We

consider the adiabatic Hamiltonianha(τ) = h(τ)−iεP(τ)Ṗ(τ)−iεP⊥(τ)Ṗ⊥(τ) and its associated

propagatorUε
a(τ, τ0).

We are interested in describing the dynamics insideH(τ). SinceH(τ) is two-dimensional for

anyτ , it is possible to map it isomorphically onC2 and identify aneffective Hamiltonianwhose
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evolution is a representation ofUε
a(τ, τ0)|H(τ0) on C2.

Let us assume that there exists an eigenstate basis{φα(τ), φβ(τ)} of H(τ) such thatφα(·), φβ(·)
belong toC1(I,H). We construct the time-dependent unitary operatorU(τ) : H(τ) → C2 by

defining for anyψ ∈ H(τ)

U(τ)ψ = e1〈φα(τ), ψ〉+ e2〈φβ(τ), ψ〉, (11)

where{e1, e2} is the canonical basis ofC2.

We then define theeffective propagator

Uε
eff(τ, τ0) = U(τ)Uε

a(τ, τ0)U∗(τ0). (12)

It is easy to see thatUε
eff(τ, τ0) satisfies the equation

iε
d

dτ
Uε
eff(τ, τ0) = Hε

eff(τ)U
ε
eff(τ, τ0), U

ε
eff(τ0, τ0) = id, (13)

whereHε
eff(τ) is theeffective Hamiltonianwhose form is

Hε
eff(τ) = U(τ)ha(τ)U∗(τ) + iεU̇(τ)U∗(τ)

=


λα(τ) 0

0 λβ(τ)


− iε


〈φα(τ), φ̇α(τ)〉 〈φβ(τ), φ̇α(τ)〉
〈φα(τ), φ̇β(τ)〉 〈φβ(τ), φ̇β(τ)〉


 . (14)

Theorem 3.1 implies the following.

Theorem 3.5: Assume that{λj, λj+1} is a separated discrete spectrum onω′ and letu :

[t0, tf ] → ω′ be aC2 curve such that there exists aC1-varying basis ofH(·) made of eigenstates

of h(·). Then there exists a constantC such that

‖ (Uε(τ, τ0)− U∗(τ)Uε
eff(τ, τ0)U(τ0))P(τ0)‖ ≤ Cε(1 + |τ − τ0|)

for everyτ, τ0 ∈ [t0, tf ].

B. Regularity of eigenstates

Classical results (see [25]) say that the mapu 7→ Pu, wherePu is the spectral projection

relative to a separated discrete spectrum, is analytic onω. In particular, eigenstates relative to

simple eigenvalues can be chosen analytic with respect tou.

Similar results hold also for intersecting eigenvalues, provided that the Hamiltonian depends

on one parameter and is analytic. In particular, ifΣ is a separated discrete spectrum onω and
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u : I → ω is analytic, then it is possible to find two families of analytic functionsΛj : I → R and

Φj : I → H, j = 0, . . . , k, such that for anyt in I we haveΣ(u(t)) = {Λ0(t), . . . ,Λk(t)} and

(Φ0(t), . . . ,Φk(t)) is an orthonormal basis of corresponding eigenstates (see [16], [25, Theorem

XII.13]).

Moreover, we can easily find conditions on the derivatives ofthe functionsΛl,Φl: indeed,

consider aC1 curveu : I → R2 such that there exist two families ofC1 functionsΛl : I → R

and Φl : I → H, l = 0, . . . , k, which for any t ∈ I, correspond to the eigenvalues and the

(orthonormal) eigenstates ofH(u(t)).

By direct computations we obtain that for allt ∈ I the following equations hold:

Λ̇l(t) = 〈Φl(t), (u̇1(t)H1 + u̇2(t)H2)Φl(t)〉 (15)

(Λm(t)− Λl(t)) 〈Φl(t), Φ̇m(t)〉 = 〈Φl(t), (u̇1(t)H1 + u̇2(t)H2) Φm(t)〉. (16)

An immediate consequence of (15) is that the eigenvaluesλl are Lipschitz with respect tot.

Let ū be a conical intersection betweenλj(u) andλj+1(u). Consider the straight linerθ(t) =

ū+ t(cos θ, sin θ), t ≥ 0. Then (16) implies that

lim
t→0+

〈φj(rθ(t)), (cos θH1 + sin θH2)φj+1(rθ(t))〉 = 0. (17)

IV. CONICAL INTERSECTIONS

From now on, we assume that the Hamiltonian satisfies hypothesis (H1). Following Re-

mark 2.1, we always choose the eigenfunctions ofH(u) whose components are real with

respect to the basis{χl}l defined in hypothesis(H1). In particular, this ensures that the values

〈φl(u), H0φm(u)〉, 〈φl(u), H1φm(u)〉 and 〈φl(u), H2φm(u)〉, l, m = 0, . . . , k, are real for any

u.

In this section, we investigate the features of conical intersections and provide also a criterion

for checking if an intersection between two eigenvalues is conical. First of all we notice that

Definition 2.4 can be reformulated by saying that an intersection ū between the eigenvaluesλj

andλj+1 is conical if and only if there existsc > 0 such that, for every straight liner(t) with

r(0) = ū, it holds
d

dt

∣∣∣
t=0+

[
λj+1(r(t))− λj(r(t))

]
≥ c.

Moreover, the following result guarantees that (6) holds true in a neighborhood of a conical

intersection. It follows directly from the Lipschitz continuity of the eigenvalues.
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Lemma 4.1: Let ū a conical intersection betweenλj andλj+1. Then there exists a suitably

small neighborhoodU of ū andC > 0 such that

λj+1(u)− λj(u) ≥ C|u− ū|, ∀u ∈ U. (18)

Let us now introduce the following matrix, which plays a crucial role in our controllability

result.

Definition 4.2: Let ψ1, ψ2 be a pair of elements ofH. The conicity matrix associated with

(ψ1, ψ2) is

M(ψ1, ψ2) =


 〈ψ1, H1ψ2〉 1

2

(
〈ψ2, H1ψ2〉 − 〈ψ1, H1ψ1〉

)

〈ψ1, H2ψ2〉 1
2

(
〈ψ2, H2ψ2〉 − 〈ψ1, H2ψ1〉

)


 . (19)

Lemma 4.3: The function(ψ1, ψ2) 7→ | detM(ψ1, ψ2)| is invariant under orthogonal trans-

formation of the argument, that is if(ψ̂1, ψ̂2)
T = O(ψ1, ψ2)

T for a pairψ1, ψ2 of orthonormal

elements ofH andO ∈ O(2), then one has| detM(ψ̂1, ψ̂2)| = | detM(ψ1, ψ2)|.
Proof: We setO = ( cosα sinα

−ς sinα ς cosα ), whereς = ±1. A direct computation shows that

M(ψ̂1, ψ̂2) = M(ψ1, ψ2)


 cos 2α − sin 2α

sin 2α cos 2α




ς 0

0 1


 ,

which immediately leads to the thesis. �

The following result characterizes conical intersectionsin terms of the conicity matrix.

Proposition 4.4: Assume that{λj , λj+1} is a separated discrete spectrum, andλj(ū) =

λj+1(ū). Let {ψ1, ψ2} be an orthonormal basis of the eigenspace associated with the double

eigenvalue. Then̄u is a conical intersection if and only ifM(ψ1, ψ2) is nonsingular.

Proof: Let rθ(t) = ū+ t(cos θ, sin θ) and letφθj , φ
θ
j+1 be the limits ofφj(rθ(t)), φj+1(rθ(t))

as t → 0+ (recall that the eigenfunctionsφj, φj+1 can be chosen analytic alongrθ for t ≥ 0).

Assume that for anyε > 0 there existsθε such that

d

dt

∣∣∣
t=0+

[
λj+1(rθε(t))− λj(rθε(t))

]
≤ ε,

that is, by (15),cos θε
(
〈φθεj , H1φ

θε
j 〉 − 〈φθεj+1, H1φ

θε
j+1〉

)
+sin θε

(
〈φθεj , H2φ

θε
j 〉 − 〈φθεj+1, H2φ

θε
j+1〉

)
≤

ε. Moreover, by (17), we have thatcos θε〈φθεj , H1φ
θε
j+1〉+ sin θε〈φθεj , H2φ

θε
j+1〉 = 0. Since

∣∣∣detM(φθεj , φ
θε
j+1)

∣∣∣ =
∣∣∣ det




 cos θε sin θε

− sin θε cos θε


M(φθεj , φ

θε
j+1)



∣∣∣ ≤ 2ε(‖H1‖+ ‖H2‖),
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then, by Lemma 4.3 and the arbitrariness ofε, we get thatM(ψ1, ψ2) is singular. Thus̄u is a

conical intersection whenM(ψ1, ψ2) is nonsingular.

Let us now prove the converse statement: assume thatū is a conical intersection and, by

contradiction, thatM(φθj , φ
θ
j+1) is singular, whereφθj , φ

θ
j+1 are defined as above. By definition

of conical intersection, we have

cos β
(
〈φβj , H1φ

β
j 〉 − 〈φβj+1, H1φ

β
j+1〉

)
+ sin β

(
〈φβj , H2φ

β
j 〉 − 〈φβj+1, H2φ

β
j+1〉

)
6= 0, (20)

for everyβ ∈ R.

By (17) and (20) withβ = θ, it turns out that the two columns of the matrixM(φθj , φ
θ
j+1)

are not proportional. ThusM(φθj , φ
θ
j+1) can be singular only if its first column is null.

For any angleβ, there exists an orthonormal matrixO = ( cosα sinα
− sinα cosα ) such that(φβj , φ

β
j+1)

T =

O(φθj , φ
θ
j+1)

T and, callingW = cos βH1 + sin βH2, we have (by (17))

0 = 〈φβj ,Wφβj+1〉 = (cosα2 − sinα2)〈φθj ,Wφθj+1〉+ sinα cosα
(
〈φθj+1,Wφθj+1〉 − 〈φθj ,Wφθj〉

)
=

= sinα cosα
(
〈φθj+1,Wφθj+1〉 − 〈φθj ,Wφθj〉

)
.

If 〈φθj+1,Wφθj+1〉−〈φθj ,Wφθj〉 = 0, the matrix(〈φθl ,Wφθm〉)l,m=j,j+1 is diagonal and proportional

to the identity. Hence the same is true for(〈φβl ,Wφβm〉)l,m=j,j+1. This contradicts (20), so that

it must besinα cosα = 0, that is, the limit basis is unique and therefore it must be equal to

{φθj , φθj+1} (up to phases).

Let us now consider the straight linerβ with

tan β =
〈φθj+1, H1φ

θ
j+1〉 − 〈φθj , H1φ

θ
j〉

〈φθj+1, H2φθj+1〉 − 〈φθj , H2φθj〉
.

Since, as proved above, the limit basis alongrβ is {φθj , φθj+1} we have that〈φθj , (cos βH1 +

sin βH2)φ
θ
j〉 = 〈φθj+1, (cos βH1 + sin βH2)φ

θ
j+1〉. By (15), this contradicts (20), proving that

M(φθj , φ
θ
j+1) is nonsingular. �

As noticed above, for any analytic curve that reaches a conical intersection it is possible to

choose continuously the eigenstates along the curve. A peculiarity of conical intersections is

that, when approaching the singularity from different directions, the eigenstates corresponding

to the intersecting eigenvalues have different limits, andthe dependence of such limits from the

direction can be explicitly computed, as shown in the following result.
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Proposition 4.5: Let ū be a conical intersection between the eigenvaluesλj , λj+1 and let

φ0
j , φ

0
j+1 be the limits ast→ 0+ of the eigenstatesφj(r0(t)), φj+1(r0(t)), for r0(t) = ū+ (t, 0).

Consider, for anyα ∈ [0, 2π), the straight linerα(t) = ū+ (t cosα, t sinα). Then, up to a sign,

the eigenstatesφj(rα(t)), φj+1(rα(t)) have limits

φαj =cosΞ(α)φ0
j + sinΞ(α)φ0

j+1 (21)

φαj+1 =− sinΞ(α)φ0
j + cosΞ(α)φ0

j+1, (22)

whereΞ is a monotoneC1 function defined on[0, 2π) with Ξ(0) = 0. Depending on the initial

choice ofφ0
j , φ

0
j+1 the range ofΞ is either[0, π) or (−π, 0]. Moreover,Ξ(·) satisfies the equation

(
cosα, sinα

)
M(φ0

j , φ
0
j+1)


cos 2Ξ(α)

sin 2Ξ(α)


 = 0. (23)

Proof: Let us writeφαj , φ
α
j+1 as in (21)-(22). ThenΞ(α) satisfies

0 = 〈φαj , (cosαH1 + sinαH2)φ
α
j+1〉

= cos 2Ξ(α)〈φ0
j , (cosαH1 + sinαH2)φ

0
j+1〉+

+
1

2
sin 2Ξ(α)

(
〈φ0

j+1, (cosαH1 + sinαH2)φ
0
j+1〉 − 〈φ0

j , (cosαH1 + sinαH2)φ
0
j〉
)

=
(
cosα, sinα

)
M(φ0

j , φ
0
j+1)


cos 2Ξ(α)

sin 2Ξ(α)


 ,

proving (23). Equation (23) has exactly four solutions for any value ofα, differing one from

the other by multiples ofπ/2. By the Implicit Function Theorem, it turns out that each of them

is a C1 monotone function defined on[0, 2π).

We defineΞ(·) as the one that satisfiesΞ(0) = 0. We are left to prove that the range ofΞ

is [0, π) or (−π, 0]. We first observe that whenα = π the possible solutions of equation (23)

are multiples ofπ/2. If |Ξ(π)| > π/2, then by continuity there should exist̄α ∈ (0, π) with

|Ξ(ᾱ)| = π/2. This is impossible because of equation (23). ThusΞ maps[0, π] into [0, π/2] or

[−π/2, 0] and, by symmetry, the claim is proved. �

Remark 4.6:From Proposition 4.5 it is straightforward to see that it is not possible to define

continuously the eigenstatesφj , φj+1 of H(u) on a closed path that encloses the singularity:

after a complete turn, a change of sign appears.
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V. NON-MIXING CURVES

Throughout this section we will assume that{λj, λj+1} is a separated discrete spectrum on

some open domainω, and that0 ∈ ω is a conical intersection between the eigenvalues. Without

loss of generality, in the following we always assume that0 is the only intersection betweenλj,

λj+1 in ω.

Following Section III-A, the effective HamiltonianHε
eff , defined as in (14), (approximately)

describes the dynamics inside the eigenspaces associated with λj , λj+1, for u slowly varying

insideω.

When integrating the effective Hamiltonian, the second term in (14) gives a total contribution

that a priori is of orderO(1). In particular the contribution of the non-diagonal terms of Hε
eff

induce a (a priori) non-negligible probability transfer between the two levels.

To tackle this issue we consider trajectories satisfying the following dynamical system




u̇1 = −〈φj, H2φj+1〉
u̇2 = 〈φj, H1φj+1〉.

(24)

Notice that the right-hand side of (24) can be taken real-valued under hypothesis(H1). It is

defined up to a sign, because of the freedom in the choice of thesign of the eigenstates.

Nevertheless, locally around points whereλj 6= λj+1, it is possible to choose the sign in

such a way that the right-hand side of (24) is smooth, and, from equation (16), we see that

〈φj(γ(t)), φ̇j+1(γ(t))〉 = 0 along any integral curveγ of (24). Here and in the following we use

the notationφ̇(γ(·)) to denote d
dt
(φ(γ(·))).

Let now HR be the real Hilbert space generated by the basis{χj}j defined in Remark 2.1,

and letGr2(HR) be the 2-Grassmannian ofHR, i.e. the set of all two-dimensional subspaces

of HR. This set has a natural structure of metric space defined by the distanced(W1,W2) =

‖PW1 −PW2‖, wherePW1 , PW2 are the orthogonal projections on the two-dimensional subspaces

W1,W2. Lemma 4.3 allows us to define the function

F̂ : Gr2(HR) → R (25)

W 7→ | detM(v1, v2)|,

where{v1, v2} is any orthonormal basis ofW ∈ Gr2(HR). It is straightforward to see that̂F is

continuous.
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Let Pu be the spectral projection associated with the pair{λj(u), λj+1(u)}. We know from

Section III-B thatPu is analytic onω. Thereforeu 7→ PuH∩HR is continuous in Gr2(HR). Let

now F (u) := | detM(φj(u), φj+1(u))|. SinceF (u) = F̂ (PuH ∩ HR) and by Proposition 4.4

we get the following result.

Lemma 5.1: The functionu 7→ F (u) is well defined and continuous inω. In particularF is

different from0 in a neighborhood ofu = 0.

Without loss of generality, we assume from now on thatF is different from zero onω.

Lemma 5.2: There exists aC∞ choice of the right-hand side of (24) inω \ {0} such that, if

u(·) is a corresponding solution, then

d

dt

[
λj+1(u(t))− λj(u(t))

]
= −F (u(t)) (26)

on ω \ {0}.

Proof: Observe that

d

dt

[
λj+1(u(t))−λj(u(t))

]
= u̇1

(
〈φj+1, H1φj+1〉−〈φj, H1φj〉

)
+u̇2

(
〈φj+1, H2φj+1〉−〈φj, H2φj〉

)
.

This expression, evaluated along the solutions of (24), is equal either toF (u(t)) or to−F (u(t)),
depending on the choice of the sign in (24). SinceF (u) 6= 0 onω, there exists a unique choice of

this sign such that equation (26) is satisfied. The local smoothness of the eigenfunctions ensures

that this choice is smooth. �

We now define thenon-mixing field, denoted byXP , as the smooth vector field onω \ {0}
identified by the preceding lemma. Its integral curves areC∞ in ω \ {0}. Moreover, its norm is

equal to the norm of the first row ofM(φj, φj+1), and therefore bounded both from above and

from below by positive constants inω \ {0}.

By consideringλj+1(u) − λj(u) as a local Lyapunov function, the above results lead to the

following proposition.

Proposition 5.3: There exists a punctured neighborhoodU of 0 such that all the integral

curves ofXP starting fromU reach the origin in finite time.

Our purpose now is to prove that each of these curves admits aC∞ extension up to the

singularity. As a preliminary result we get the following.

Proposition 5.4: Let ū = 0 be a conical intersection withλj(0) = λj+1(0), and let the map

u 7→ {λj(u), λj+1(u)} be a separated discrete spectrum on a neighborhood of0. Then, for any
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C1 > 0, there exist a neighborhoodI of t = 0 andC2 > 0 such that for anyC2 trajectoryγ(·)
with γ(0) = 0, |γ̇(0)| = 1 and‖γ̈‖L∞(I) ≤ C1, one has‖φ̇l(γ(t))‖ ≤ C2, l = j, j + 1, for every

t ∈ I \ {0}.

Proof: Let us assume without loss of generality thatλj(0) = λj+1(0) = 0. For t 6= 0 define

ρ(t) = γ̇(t)− γ(t)/t. Notice thatρ(t) = 1
2
γ̈(0)t+ o(t).

By (16), we have

〈φj(γ(t)), φ̇j+1(γ(t))〉 =
〈φj, (γ1H1 + γ2H2)φj+1〉

t(λj+1 − λj)
+

〈φj, (ρ1H1 + ρ2H2)φj+1〉
λj+1 − λj

. (27)

Notice that〈φj(u), (u1H1 + u2H2)φj+1(u)〉 = −〈φj(u), H0φj+1(u)〉 = −〈φj(u)−P0φj(u), H0

(
φj+1(u)−

P0φj+1(u)
)
〉. Since

‖H0

(
φj(u)− P0φj(u)

)
‖ = ‖λj(u)φj(u)− u1H1φj(u)− u2H2φj(u)‖

≤ |λj(u)|+ |u|(‖H1‖+ ‖H2‖)

≤ sup
v∈ω

| 〈φj(v), (u1H1 + u2H2)φj(v)〉 |+ |u|(‖H1‖+ ‖H2‖)

≤ 2(‖H1‖+ ‖H2‖)|u|

and by smoothness of the projector, we get that
∣∣〈φj(u)−P0φj(u), H0

(
φj+1(u)−P0φj+1(u)

)
〉
∣∣ ≤

2C(‖H1‖ + ‖H2‖)|u|2, for a suitableC > 0. Being |γ(t)| = O(t) andλj+1(u) − λj(u) > c|u|
(Lemma 4.1), we deduce that the modulus of the first term in theright-hand side of (27) is

uniformly bounded. The uniform bound of the second term is a trivial consequence of the

fact that |ρ(t)| = O(t) and that|γ(t)| ≥ c̄|t|, for some c̄ > 0, if t is small enough. Thus

|〈φj(γ(t)), φ̇j+1(γ(t))〉| is uniformly bounded.

Let us writeP⊥
u

= id− Pu. SinceP⊥
u

commutes withH(u), one has

(H(γ(t))− λj+1(γ(t))id)P
⊥
γ(t)φ̇j+1(γ(t)) = −P⊥

γ(t)(γ̇1(t)H1 + γ̇2(t)H2)φj+1(γ(t)).

SinceH(u)−λj+1(u)id is invertible onP⊥
u
H with uniformly bounded inverse onω, we get that

‖P⊥
γ(t)φ̇j+1‖ is uniformly bounded onI \{0}. Thus we obtain that‖φ̇j+1‖ is bounded, uniformly

on the set of curvesγ(·) satisfying the assumptions of the proposition. The same holds for‖φ̇j‖.

�

Corollary 5.5: Let ū = 0 be a conical intersection withλj(0) = λj+1(0), and let the map

u 7→ {λj(u), λj+1(u)} be a separated discrete spectrum on a neighborhood of0. Denote by
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φ̃l(ρ, θ) the eigenstateφl(ρ cos θ, ρ sin θ), l = j, j + 1, where (ρ, θ) are angular coordinates

around0, i.e. ρ = |u| and θ = arctan u2
u1

. Set φ̃l(0, θ) = limρ→0+ φ̃l(ρ, θ). Then the function

φ̃l(ρ, θ) is continuous in[0, R]× [0, 2π], for someR > 0 and l = j, j + 1.

Proof: If ρ > 0, the functionφ̃l(ρ, θ) can be defined continuously. Moreover, the function

θ 7→ φ̃l(0, θ) is uniformly continuous, thanks to Proposition 4.5.

Let us now consider a sequence(ρk, θk) converging to(0, θ̄). Then we have

|φ̃l(ρk, θk)− φ̃l(0, θ̄)| ≤ |φ̃l(ρk, θk)− φ̃l(0, θk)|+ |φ̃l(0, θk)− φ̃l(0, θ̄)|

≤ C1ρk + |φ̃l(0, θk)− φ̃l(0, θ̄)|,

whereC1 comes from Proposition 5.4 and the second term goes to zero ask goes to infinity.�

Proposition 5.6: The eigenstatesφj, φj+1 can be extended continuously to the singularity

along the integral curves ofXP , and, in a small enough punctured neighborhood ofu = 0, the

integral curves ofXP admit aC1 extension up to the singularity included.

Proof: We prove that the scalar productXP · (−u2, u1)T/|u| goes to0 as |u| → 0, that is,

the tangent to the curve has limit whenu approaches zero. This, together with Corollary 5.5,

implies that the eigenstatesφj, φj+1 are continuous along the integral curves ofXP , and then

the vector fieldXP itself is continuous along its integral curves, up to the singularity included.

Therefore its integral curves admit aC1 extension up to the singularity.

To prove thatXP · (−u2, u1)T/|u| goes to0 as |u| → 0, we show that there exists a constant

C > 0 such that

κ(u) := |XP (u) · (−u2, u1)| ≤ C|u|2 . (28)

Sinceκ(u) = |〈φj(u), (u1H1+u2H2)φj+1(u)〉|, the thesis comes from the estimates in the proof

of Proposition 5.4. �

We recall that, since integral curves of the non-mixing fieldXP are C1, then the spectral

projectionPu associated with the pair{λj(u), λj+1(u)} is C1 along each of them. This permits

to prove the following result.

Proposition 5.7: For any integral curveγ : [−η, 0] → ω of XP with γ(0) = 0 there exists

a choice of an orthonormal basis of the eigenspace associated with the double eigenvalue

λj(γ(0)) = λj+1(γ(0)) that makes the eigenstatesφj(γ(t)), φj+1(γ(t)) C1 on [−η, 0].
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Proof: We notice that on the integral curves ofXP the eigenstates relative to the eigenvalues

λj, λj+1 satisfy the equationPγ(t)φ̇j(γ(t)) = Pγ(t)φ̇j+1(γ(t)) = 0, which implies

Ṗγ(t)φj(γ(t)) = φ̇j(γ(t)) Ṗγ(t)φj+1(γ(t)) = φ̇j+1(γ(t)) (29)

for t ∈ [−η, 0). The thesis follows from the continuity oḟPγ(t), φj(γ(t)), φj+1(γ(t)) on [−η, 0].
�

Corollary 5.8: Let γ : [−η, 0] → ω be an integral curve ofXP with γ(0) = 0. Thenγ(·) and

the eigenstatesφj(γ(·)), φj+1(γ(·)) defined in Proposition 5.7 areC∞ on [−η, 0].
Proof: ExtendXP (γ(t)) by setting

XP (γ(0)) =


−〈φj(γ(0)), H2φj+1(γ(0))〉

〈φj(γ(0)), H1φj+1(γ(0))〉


 ,

whereφj(γ(0)), φj+1(γ(0)) denote the limits of the eigenstates as defined in Proposition 5.7.

ThenXP (γ(·)) is C1 on [−η, 0], which implies thatγ(·) is C2 on [−η, 0]. We differentiate equation

(29) to prove thatφj(γ(·)), φj+1(γ(·)) areC2 on [−η, 0]. Repeating recursively the argument we

prove the thesis. �

We stress that, thanks to Proposition 5.7, if we define the adiabatic Hamiltonianha(τ) =

H(γ(τ))− iεPγ(τ)Ṗγ(τ) − iεP⊥
γ(τ)Ṗ

⊥
γ(τ), τ = εt, along integral curves ofXP , then it is possible

to define the associated effective Hamiltonian, as in equation (14).

The following result is crucial to our controllability strategy.

Proposition 5.9: For every unit vectorw in R2 there exists an integral curveγ : [−η, 0] → ω

of XP with γ(0) = 0 such that

lim
t→0−

γ̇(t)

‖γ̇(t)‖ = w.

Proof: Equation (24) rewrites as

ρ̇ = 〈φ̃j(ρ, θ), (− cos θH2 + sin θH1)φ̃j+1(ρ, θ)〉 (30)

θ̇ =
1

ρ
〈φ̃j(ρ, θ), (cos θH1 + sin θH2)φ̃j+1(ρ, θ)〉. (31)

On a neighborhoodU ⊂ ω of the singularity, there exist two constants0 < c1 < c2 such that

c1 < |ρ̇| < c2, and the right-hand side of (31) is bounded from above, by (28). We choose the

sign of the functions̃φj, φ̃j+1 in such a way thaṫρ < 0.

Fix θ̄ ∈ [0, 2π] such thatw = (cos θ̄, sin θ̄). Consider, fork large enough, the solutions

(ρk(·), θk(·)) of (30)-(31) with ρk(0) = 1/k and θk(0) = θ̄, for t belonging to some common

February 15, 2011 DRAFT



22

interval [−η, 0], whereη > 0 is small enough, in order to guarantee that the solutions do not

exit from U . By Ascoli-Arzelà Theorem, up to subsequences,(ρk(·), θk(·)) converges uniformly

on [−η, 0] to some(ρ̂(·), θ̂(·)).
In particular, for anyτ ∈ [−η, 0], (ρk(τ), θk(τ)) converges inU . By the uniform boundedness

of ρ̇, the range of(ρk(·), θk(·)) on [−η, τ ] is contained in a compact subsetK ⊂ U \{0} for every

k. Since the vector field is smooth onK, the curves(ρk(·), θk(·)) converge uniformly on[−η, τ ]
to the solution of (30)-(31) with initial conditionρ(τ) = ρ̂(τ) and θ(τ) = θ̂(τ). Therefore for

t ∈ [−η, τ ] (ρ̂(·), θ̂(·)) is a solution of (30)-(31). Sinceτ is arbitrary, and̂θ(0) = limk θk(0) = θ̄,

ρ̂(0) = limk ρk(0) = 0, we get the thesis. �

We conclude this section by proving a result of structural stability of conical intersections.

Theorem 5.10: Assume thatH(u) = H0 + u1H1 + u2H2 satisfies(H0)-(H1) and let ū be

a conical intersection forH(u) between the eigenvaluesλj and λj+1. Assume moreover that

u 7→ {λj(u), λj+1(u)} is a separated discrete spectrum in a neighborhood ofū. Then for every

ε > 0 there existsδ > 0 such that, ifĤ(u) = Ĥ0 + u1Ĥ1 + u2Ĥ2 satisfies(H0)-(H1) and

‖Ĥ0 −H0‖+ ‖Ĥ1 −H1‖+ ‖Ĥ2 −H2‖ ≤ δ, (32)

then the operator̂H(u) admits a conical intersection of eigenvalues atû, with |ū− û| ≤ ε.

Proof: Continuous dependence of the eigenvalues with respect to perturbations of the

Hamiltonian ensures that, ifδ is small, thenĤ admits two eigenvalueŝλj, λ̂j+1 close toλj , λj+1.

Moreover{λ̂j, λ̂j+1} is separated from the rest of the spectrum, locally aroundū. Fix nowε > 0

in such a way that the vector fieldXP points inside the ballB(ū, ε) at every point of its boundary

(this is possible because of (28)) andF (u) ≥ c > 0 on B(ū, ε). If δ is small enough then

λ̂j 6= λ̂j+1 on ∂B(ū, ε). Similarly, since the conicity matrixM varies continuously with respect

to H1, H2, and by continuity of the function̂F defined in (25), we can takeδ small enough

such that| detM| ≥ c/2 for any perturbed Hamiltonian. This allows us to define, whenever

λ̂j 6= λ̂j+1, the non-mixing fieldX̂P associated witĥH and corresponding to the band{λ̂j, λ̂j+1};

as in Lemma 5.2, we choosêXP in such a way that the time derivative ofλ̂j+1 − λ̂j along the

integral curves ofX̂P is smaller than−c/2 and X̂P is smooth. In addition, by the uniform

continuity on∂B(ū, ε) of the eigenfunctions with respect to perturbations of the Hamiltonian,

if δ is small enough, then̂XP points insideB(ū, ε) at every point of∂B(ū, ε).
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Fix an HamiltonianĤ(·) satisfying (32). Any trajectorŷγ(·) of X̂P starting fromB(ū, ε) re-

mains insideB(ū, ε) in its interval of definition and reaches in final time a pointû corresponding

to a double eigenvaluêλj(û) = λ̂j+1(û). The conclusion follows from Proposition 4.4. �

VI. PROOF OFTHEOREM 2.5

Based on Proposition 5.9, we consider below trajectories ofthe following kind: given a conical

singularityu and a pair of unit vectorsw1,w2 ∈ R2, we concatenate the integral curve ofXP

arriving at u with direction w1 and the integral curve of−XP exiting u with direction w2.

Even if we are not using this fact in the paper, it turns out that, if w1 = w2, then such curve is

globally C∞.

Proposition 6.1: Let u = 0 be a conical intersection between the eigenvaluesλj, λj+1 and

let φ0
j , φ

0
j+1 be limits asτ → 0+ of the eigenstatesφj(r(τ)), φj+1(r(τ)), respectively, forr(τ) =

(τ, 0). Let γ : [0, 1] → ω be a piecewiseC∞ curve such thatγ(τ0) = 0 for someτ0 ∈ (0, 1),

γ̇(τ) = XP (γ(τ)) in [0, τ0] and γ̇(τ) = −XP (γ(τ)) in [τ0, 1]. Defineα−, α+ by

lim
τ→τ−0

γ̇(τ)

‖γ̇(τ)‖ = −(cosα−, sinα−) , lim
τ→τ+0

γ̇(τ)

‖γ̇(τ)‖ = (cosα+, sinα+). (33)

Then there existsC > 0 such that, for anyε > 0,

‖ψ(1/ε)− p1e
iϑjφj(γ(0))− p2e

iϑj+1φj+1(γ(0))‖ ≤ Cε (34)

whereϑj , ϑj+1 ∈ R, ψ(·) is the solution of equation (4) withψ(0) = φj(γ(0)) corresponding

to the controlu : [0, 1/ε] → ω defined byu(t) = γ(εt),

p1 = | cos (Ξ(α+)−Ξ(α−)) |, p2 = | sin (Ξ(α+)−Ξ(α−)) |,

andΞ(·) is defined as in Proposition 4.5.

Proof: We consider the HamiltonianH(u(t)), t ∈ [0, 1/ε]. Since the control functionu(·)
is notC1 at the singularity, we cannot directly apply the adiabatic theorem. Instead, we consider

separately the evolution on the two subintervals (in timet) [0, τ0/ε] and [τ0/ε, 1/ε].

Since the eigenstatesφj(u(t)), φj+1(u(t)) are piecewiseC1 we can apply Theorem 3.5 in order

to study the evolution inside the spaceP
u(t)H. We can then construct the effective Hamiltonian,

which is diagonal on both intervals (in timeτ ) [0, τ0] and[τ0, 1]. Remark that the operator-valued

functionU(·), defined in equation (11), has a discontinuity atτ0 but has continuous extensions

on both intervals[0, τ0] and [τ0, 1].
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Let φ±
j = limτ→τ±0

φj(γ(τ)). Integrating the effective Hamiltonian we get

Uε
a(τ0, 0)ψ(0) = eiϕφ−

j

for someϕ ∈ R . By Proposition 4.5 we have

φ+
j = cos (ϑ(α+)− ϑ(α−))φ

−
j + sin (ϑ(α+)− ϑ(α−))φ

−
j+1

φ+
j+1 = − sin (ϑ(α+)− ϑ(α−))φ

−
j + cos (ϑ(α+)− ϑ(α−))φ

−
j+1.

Then, since the effective Hamiltonian is diagonal, we get

Uε
a(1, 0)ψ(0) = eiϑj cos (ϑ(α+)− ϑ(α−))φj(γ(0)) + eiϑj+1 sin (ϑ(α+)− ϑ(α−))φj+1(γ(0)),

and then, applying the adiabatic theorem,

‖ψ(T )− p1e
iϑjφj(γ(0))− p2e

iϑj+1φj+1(γ(0))‖ ≤ Ĉε

whereĈ is a constant depending on the gap and onγ. �

Remark 6.2:For control purposes, it is interesting to consider the casein which the initial

probability is concentrated in the first level, the final occupation probabilitiesp21 and p22 are

prescribed, and there is an integral curve ofXP connectingu0 to the singularity. Except for the

special casesp21 = 0, 1, there are exactly two integral curves of−XP starting from the singularity

that realize the required splitting (in the sense of Proposition 6.1).

Choosingβ ∈ [0, π/2] such that(p1, p2) = (cos β, sinβ), we obtain that the two possible

values forα+ are

α+ = Ξ
−1 (β +Ξ(α−) + k+π) α+ = Ξ

−1 (−β +Ξ(α−) + k−π) ,

wherek+, k− ∈ Z are chosen in such a way thatβ +Ξ(α−) + k+π and −β +Ξ(α−) + k−π

belong to the range ofΞ.

If (p21, p
2
2) = (0, 1), then the path is unique withα+ = α− + π, while if (p21, p

2
2) = (1, 0), then

the unique path satisfiesα+ = α−.

Proof of Theorem 2.5. For simplicity, we consider the case in whichψ(0) = φ0(u
0). The

general case can be treated similarly.

Recall that for any conical intersection between two eigenvalues of a separated discrete

spectrum there exists a neighborhood of the intersection where the two eigenvalues are well

separated from the rest of the spectrum. Let us consider these neighborhoods for the intersections
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x̄j , j = 0, . . . , k − 1, and let us call themωj. Define on eachωj \ {x̄j} the vector fieldX j
P as

in Section V.

We construct the pathγ(·) as described below.

First choose a smooth pathσ0(·) starting fromu
0 and reachingω0 along which all the eigenval-

ues inΣ are simple. Concatenateσ0 with an integral curve ofX 0
P that reaches the point̄x0. Then

chooseα0
+ as one of the angles realizing, for the two-levels system associated with the energy

levelsλ0, λ1, the splitting from(1, 0) to (p21, 1− p21), as explained in Remark 6.2, and continue

the path with the integral curve of−X 0
P with outgoing tangent parallel to(cosα0

+, sinα
0
+).

Join the latter with a smooth pathσ1(·) connectingω0 to ω1 along which all the eigenvalues

in Σ are simple, and then prolong it with an integral curve ofX 1
P that reaches the point̄x1. As

above, compute an angleα1
+ that realizes the splitting (for the two-levels system associated with

the energy levelsλ1, λ2) from (1− p21, 0) to (p22, 1− (p21 + p22)), and, as above, continue the path

with the integral curve of−X 1
P with outgoing tangent parallel to(cosα1

+, sinα
1
+).

Repeat this procedure iteratively until the required spread is realized. Then reach the final

point u1 with a path along which all the eigenvalues are simple. We assume without loss of

generality that the final time is equal to one.

For ε > 0, consider the HamiltonianH(u(t)) = H(γ(εt)), and setτ = εt.

As long asγ(τ) ∈ R2 \ ∪k−1
i=0 ωi, we approximate the dynamics ofH(u) using the adiabatic

Hamiltonian

ha(τ) = H(γ(τ))− iε
k∑

l=0

Pl(τ)Ṗl(τ)− iεP⊥
Σ (τ)Ṗ⊥

Σ (τ) (35)

wherePl(τ) is the spectral projector onto the eigenspace relative toλl(γ(τ)) and P⊥
Σ (τ) =

id−∑k
l=0 Pl(τ).

The evolution associated with (35) conserves the occupation probabilities relative to each

energy level inΣ, therefore the evolution ofH(γ(τ)) approximately conserves these occupa-

tion probabilities, with an error of the orderε, as prescribed by the adiabatic theorem (see

Remark 3.2).

For γ(τ) ∈ ωj, j = 0, . . . , k − 1, we use instead the adiabatic Hamiltonian

ha(τ) = H(γ(τ))− iεPj,j+1(τ)Ṗj,j+1(τ)− iε
k∑

l=0
l 6=j,j+1

Pl(τ)Ṗl(τ)− iεP⊥
Σ (τ)Ṗ⊥

Σ (τ) (36)

wherePj,j+1(τ) is the spectral projector relative to{λj(γ(τ)), λj+1(γ(τ))}.
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The evolution associated with (36) conserves the occupation probabilities relative to the band

{λj, λj+1}, to any other energy level inΣ and to its remainder in the spectrum. Moreover, thanks

to the choice of the fieldX j
P , we can also compute the evolution given by (36) inside the band

{λj, λj+1} (which is the one described in Proposition 6.1).

We end up with final stateψ(1/ε) satisfying

‖ψ(1/ε)−
k∑

l=0

ple
iϑlφl(u

1)‖ ≤ Cε,

for someϑ0, . . . , ϑk ∈ R and someC > 0 determined by the adiabatic approximation. Thus the

system is approximately spread controllable and the theorem is proved. �

VII. M ILDLY MIXING CURVES

In the previous section we constructed some special curves along which the effective Hamil-

tonian has a simple form, whose evolution is quite easy to predict. In this section, we consider

more general curves passing through the singularities.

We prove below a variation of Proposition 6.1, which generalizes to broken curves the result

in [27, Corollary 2.5]: if we choose any piecewise regular curve with a vertex at the conical

singularity, then we obtain a distribution of probability between the two levels similar to the one

described by Proposition 6.1. In this case, if the final time is 1/ε, the error is of order
√
ε.

Moreover, we prove that the integral curves ofXP are not the only ones that realize the best

accuracy (that is, an error which is of orderε for a final time equal to1/ε): indeed, this can

be obtained with any curve whose first and second derivativesat the singularity are the same as

those of an integral curve ofXP .

Let us consider aC2 curve γ : [0, τ0] → ω such thatγ(τ0) = 0 corresponds to a conical

intersection betweenλj andλj+1, and γ̇(τ−0 ) 6= 0. Assume moreover thatφj, φj+1 areC2 along

γ (recall that this is true for analytic curves). Let us consider the HamiltonianH(γ(εt)), t ∈
[0, τ0/ε], and the adiabatic Hamiltonian (36). Up to a factorization of the trace, the effective

Hamiltonian reads

Hε
eff(τ) =


 a(τ) −iεb(τ)
iεb(τ) −a(τ)




where

a(τ) =
λj+1(γ(τ))− λj(γ(τ))

2
, b(τ) = 〈φj+1(γ(τ)), φ̇j(γ(τ))〉,
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and the dynamical system associated withHε
eff is

iεż = Hε
effz (37)

wherez ∈ C2, |z| = 1 (as usual, here and below the dot indicates the derivative with respect to

τ ).

Note that the condition of conical intersection implies theexistence of two positive constants

C1, C2 such that, forτ close toτ0, −C2 ≤ ȧ(τ) ≤ −C1 (as a consequenceC1|τ − τ0| ≤ a(τ) ≤
C2|τ − τ0|). As for b(τ), it is C1 by hypothesis.

We setD(τ) =
(
a(τ)/ε 0

0 −a(τ)/ε

)
, U(τ) = exp

(
−i
∫ τ
0
D(s)ds

)
, and we perform the change of

variableζ = Uz, so thatζ evolves according to the dynamical systemiζ̇ = Ĥε
eff(τ)ζ , where

Ĥε
eff(τ) =

1

ε
U(τ)Hε

eff(τ)U(τ)
−1 + U̇(τ)U(τ)−1 =


 0 −ib(τ)e 2i

ε

∫ τ
0
a(s)ds

ib(τ)e−
2i
ε

∫ τ
0 a(s)ds 0


 .

Let us express the evolution operator for̂Hε
eff in the form

Mε(τ, 0) =


 ν(τ) µ∗(τ)e

2i
ε

∫ τ
0
a(s)ds

−µ(τ)e− 2i
ε

∫ τ
0 a(s)ds ν∗(τ)


 .

We claim that‖Mε(τ, 0)− id‖ ≤ C
√
ε, for someC > 0.

From i d
dτ
Mε(τ, 0) = Ĥε

eff(τ)Mε(τ, 0) we get the equations




ν̇ = µb

µ̇ = 2i
ε
µa− νb

with initial data ν(0) = 1, µ(0) = 0. SincedetMε = 1 we have that|ν| and |µ| are bounded,

and then, from the boundedness ofb, we get that also|ν̇| is bounded.

We recall that along the integral curves ofXP the effective Hamiltonian is diagonal and its

evolution is exactlyU(τ), so that the equations above are solved byν ≡ 1, µ ≡ 0. If b(·) is

not identically equal to zero, then the evolution is not exactly diagonal, but it mixes the two

components ofζ (andz). The error done by assuming the evolution diagonal can be estimated

by evaluating the termµ.

By variation of constants we have

µ(τ) = −
∫ τ

0

e
2i
ε

∫ τ
s a(r)drb(s)ν(s)ds.
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We can rewrite

µ(τ0) =

∫ τ0

0

−a(s)e
2i
ε

∫ τ0
s a(r)drb(s)ν(s)

a(s)
ds

=
[ ε
2i

(
e

2i
ε

∫ τ0
s

a(r)dr − 1
) b(s)ν(s)

a(s)

]τ0
0
−
∫ τ0

0

ε

2i

(
e

2i
ε

∫ τ0
s

a(r)dr − 1
) d

ds

(
b(s)ν(s)

a(s)

)
ds

=
ε

2i
b(τ0)ν(τ0) lim

τ→τ0

e
2i
ε

∫ τ0
τ

a(r)dr − 1

a(τ)
− ε

2i

(
e

2i
ε

∫ τ0
0 a(r)dr − 1

) b(0)
a(0)

+

− ε

2i

∫ τ0

0

(
e

2i
ε

∫ τ0
s

a(r)dr − 1
) d

ds

(
b(s)ν(s)

a(s)

)
ds. (38)

Since ȧ(τ0) 6= 0, we obtain thatlimt→τ0
e
2i
ε

∫ τ0
t a(r)dr−1
a(τ)

= 0. The second term in the equation

above is of orderε. Then, we are left to estimate the integral term. We have
∣∣∣∣
∫ τ0

0

(
e

2i
ε

∫ τ0
s a(r)dr − 1

) d

ds

(
b(s)ν(s)

a(s)

)
ds

∣∣∣∣ ≤ C

∫ τ0

0

|e 2i
ε

∫ τ0
s a(r)dr − 1|
a2(s)

ds.

We consider the change of variabless 7→ ξε(s) =
2
ε

∫ τ0
s
a(r)dr so that

∫ τ0

0

|e 2i
ε

∫ τ0
s

a(r)dr − 1|
a2(s)

ds =
ε

2

∫ ξε(0)

0

|eix − 1|
a3(ξ−1

ε (x))
dx.

From the estimates above ona we easily get thata3(ξ−1
ε (x)) ≥ C̄ε3/2x3/2 for a suitable positive

constantC̄.

Since
∫ +∞

0
|eiz−1|

z3/2
dz ≤

∫ +∞

0
min{z−1/2, 2z−3/2}dz < +∞, we immediately obtain that the

integral in (38) is of order
√
ε. Therefore,‖Mε(τ0, 0)− id‖ is of order

√
ε.

If γ is defined also forτ > τ0 and is globallyC2, we recover Corollary 2.5 in [27]. If, instead,

γ is continuous and piecewiseC2, with different tangent directions at the singularity, then we

can repeat the same argument as in Proposition 6.1: at the singularity the limit basis rotates

instantaneously and we consider separately the evolution of two different adiabatic Hamiltonians.

The rotation of the limit basis spreads the probabilities asdescribed by equations (21)-(22), and

this leads to a controllability result in the spirit of Theorem 2.5, where the error is of order
√
ε

if the final time is1/ε.

The following result shows that the value ofb(τ) at the instant where the curve attains the

singularity depends only on the 2-jet of the curve at the singularity. This allows us, using

piecewise analytic curves that have the same 2-jet at the singularity as an integral curve ofXP ,

to obtain a controllability result equivalent to Theorem 2.5 (see Proposition 7.2).
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Lemma 7.1: Let γ(·) and γ̂(·) be twoC2 curves onω such thatγ(τ0) = γ̂(τ0) = 0, where0

is a conical intersection betweenλj andλj+1, with γ̇(τ0) = ˙̂γ(τ0) 6= 0 and γ̈(τ0) = ¨̂γ(τ0). Let

η(τ) = 〈φj+1(γ(τ)), φ̇j(γ(τ))〉 andη̂(τ) = 〈φj+1(γ̂(τ)), φ̇j(γ̂(τ))〉. Thenlimτ→τ0(η(τ)− η̂(τ)) =
0.

Proof: First of all, we remark that|γ(τ)−γ̂(τ)| = o((τ−τ0)2) and|γ̇(τ)− ˙̂γ(τ)| = o(|τ−τ0|).
As in the proof of Proposition 5.4, we can prove that there exists C > 0 such that for

every pointu ∈ ω \ {0} and any unitary vectorw ∈ R2 the directional derivative alongw

satisfies‖∂wφl(u)‖ ≤ C/|u|. Then we obtain that‖φl(γ(τ)) − φl(γ̂(τ))‖ = o(|τ − τ0|), l =
j, j+1. Moreover, by (15) we know that the eigenvalues are Lipschitz in a neighborhood of the

intersection.

From (28) we have

η(τ)− η̂(τ) =
〈(φj(γ(τ))− φj(γ̂(τ))) , (γ̇1H1 + γ̇2H2)φj+1(γ(τ))〉

λj+1(γ(τ))− λj(γ(τ))

+
〈φj(γ̂(τ)), ((γ̇1 − ˙̂γ1)H1 + (γ̇2 − ˙̂γ2)H2)φj+1(γ(τ))〉

λj+1(γ(τ))− λj(γ(τ))

+
〈φj(γ̂(τ)), ( ˙̂γ1H1 + ˙̂γ2H2) (φj+1(γ(τ))− φj+1(γ̂(τ)))〉

λj+1(γ(τ))− λj(γ(τ))

+ 〈φj(γ̂(τ)), ( ˙̂γ1H1 + ˙̂γ2H2)φj+1(γ̂(τ))〉
(

1

λj+1(γ(τ))− λj(γ(τ))
− 1

λj+1(γ̂(τ))− λj(γ̂(τ))

)
.

By previous estimates it follows that all the terms in the right-hand side of the equation above

go to zero asτ goes toτ0. �

Proposition 7.2: Let u = 0 be a conical intersection between the eigenvaluesλj, λj+1 and

let φ0
j , φ

0
j+1 be limits asτ → 0+ of the eigenstatesφj(r(τ)), φj+1(r(τ)), respectively, forr(τ) =

(τ, 0). Let γ : [0, 1] → ω be a curve such that there existsτ0 ∈ (0, 1) with γ(τ) = 0 if and

only if τ = τ0, γ analytic on[0, τ0] and [τ0, 1], and γ̇(τ±0 ) 6= 0. Let α− andα+ be the angles

describing respectively the inward and the outward tangentdirection at the singularity, as in

(33). Assume that the integral curves ofXP having the same inward and outward tangents as

γ at the singularity possess also the same 2-jet asγ at the singularity. Then there existsC > 0

such that for anyε > 0

‖ψ(1/ε)− p1e
iϑjφj(γ(0))− p2e

iϑj+1φj+1(γ(0))‖ ≤ Cε (39)

February 15, 2011 DRAFT



30

whereϑj , ϑj+1 ∈ R, ψ(·) is the solution of equation (4) withψ(0) = φj(γ(0)) corresponding

to the controlu : [0, 1/ε] → ω defined byu(t) = γ(εt), and

p1 = | cos (ϑ(α+)− ϑ(α−)) | p2 = | sin (ϑ(α+)− ϑ(α−)) |,

with ϑ(·) defined as in Proposition 4.5.

Proof: By Lemma 7.1 the functionb(τ) = 〈φj+1(γ(τ)), φ̇j(γ(τ))〉 goes to zero asτ goes

to τ0. Moreover, the analyticity ofγ(·) easily implies that the termd
ds

(
b(s)ν(s)/a(s)

)
appearing

in (38) is bounded. Thus|µ(τ0)| ≤ Cε for a suitableC > 0.

Then‖Mε(τ0, 0) − id‖ is of orderε, whereMε is the evolution operator defined above. We

can obtain an analogous estimate for‖Mε(τ, τ0)− id‖, τ > τ0. This completes the proof.�
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