N

N

Adiabatic control of the Schrodinger equation via
conical intersections of the eigenvalues

Ugo Boscain, Francesca Chittaro, Paolo Mason, Mario Sigalotti

» To cite this version:

Ugo Boscain, Francesca Chittaro, Paolo Mason, Mario Sigalotti. Adiabatic control of the Schrédinger
equation via conical intersections of the eigenvalues. IEEE Transactions on Automatic Control, 2012,
57 (8), pp.1970-1983. 10.1109/TAC.2012.2195862 . hal-00565773

HAL Id: hal-00565773
https://hal.science/hal-00565773
Submitted on 15 Feb 2011

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00565773
https://hal.archives-ouvertes.fr

1

Adiabatic control of the Scladinger equation

via conical intersections of the eigenvalues

U. Boscain F. Chittaro P. Mason M. Sigalotti

Abstract

In this paper we present a constructive method to controbilireear Schrodinger equation via two
controls. The method is based on adiabatic techniques amkbvifothe spectrum of the Hamiltonian
admits eigenvalue intersections, and if the latter are aanas it happens generically). We provide

sharp estimates of the relation between the error and theatiability time.

|. INTRODUCTION
In this paper we are concerned with the problem of contrgltime Schrodinger equation

O = o+ Yo wln) B ) wie). @
k=1

Here belongs to the Hilbert sphef of a complex separable Hilbert spaieand H, . .., H,,
are self-adjoint operators oK. The controlsu,,...,u,, are scalar-valued and represent the
action of external fieldsH, describes the “internal” dynamics of the system, witile ... H,,
the interrelation between the system and the controls.
The reference model is the one in whi¢h = —A + Vy(x), H; = Vi(z), wherez belongs
to a domainD C R" and Vj,...,V,, are real functions (identified with the corresponding

multiplicative operators). However, equatidh (1) can bedu® describe more general controlled
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dynamics. For instance, a quantum particle on a Riemannamifold subject to external fields
(in this caseA is the Laplace—Beltrami operator) or a two-level ion trappe a harmonic
potential (the so-called Eberly and Law modfl [4], [7]). Imetlast case, as in many other
relevant physical situations, the operatéy cannot be written as the sum of a Laplacian plus a
potential.

The controllability problem consists in establishing wiest for every pair of stateg, and
Y1, there exist controls,,(-) and a time7" such that the solution of](1) with initial condition
¥(0) = 1 satisfiesy)(T') = 1. The answer to this question is negative wi#nis infinite-
dimensional. Indeed, Ball, Marsden and Slemrod prove{lfira[@sult which implies (sed [BO])
that equation[{1) is not controllable in (the Hilbert sphef #{. Hence one has to look for
weaker controllability properties as, for instance, apprate controllability or controllability
between the eigenstates Hf, (which are the most relevant physical states). Howevergrtam
cases one can describe quite precisely the set of state$ wait be connected by admissible
paths (see[]J4],[]51,[123])-

In [L3] an approximate controllability result foff] (1) wasoped via finite-dimensional geomet-
ric control techniques applied to the Galerkin approximasi The main hypothesis is that the
spectrum ofH, is discrete and without rational resonances, which meaatstile gaps between
the eigenvalues off, should beQ-linearly independent. Another crucial hypothesis is tifnt
operator H,; couples all eigenvectors aff,. This result has been improved if] [9] where the
hypothesis ofQ-linear independence was weakened. Similar results hage bbtained, with
different techniques, inJ22] (see aldo]2d],][23]).

The practical application of the results discussed abovailsrtihree main difficulties:

¢ In most cases the techniques used to get controllabilitylisedo not permit to obtain (even
numerically) the controls necessary to steer the systemeeet two given states.

e Even in the cases in which one can get the controls as a bygrotithe controllability result,
they happen to be highly oscillating and hence they can bieulifto implement, depending on
the experimental conditions. Roughly speaking, since boelsl move in an infinite dimensional
space with only one control, one should generate many éeraie brackets. This is particularly
evident in the paperg][9][[12], where the use of Galerkinrappnations permits to highlight
the Lie algebra structure.

e Explicit expressions of time estimates, for the norm of owoistand for their total variations
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are extremely difficult to obtain. (For some lower bounds oitcollability time and estimates
of the L' norm of the controls se¢][9].)

In most of the results in the literature only the case= 1 is considered. In this paper we
study the casen = 2 and we get both controllability results and explicit exgiess of the
external fields realizing the transition. The system unaersaeration is then

d
zd—tz/)(t) = H(uy(t), us(t))1h(t),

with H (uy,us) = Ho+ui Hy+usHy. The idea is to use two slowly varying controls and climb the
energy levels through conical intersections, if they amsent. Conical eigenvalue intersections
have been used to get population transfers in the finite dirneal case in[[10][133],[139][129],
[BT]. Some preliminary ideas given in the present paper @fobnd in [P], where a specific
example (which is a version of the Eberly and Law model) islya®al, and in [I}1]. The main
ingredients of our approach are the following:

e The adiabatic theorem that, in its rougher form, statesdhevfing: let \(u,, uy) be an eigen-
value of H(uy,us) depending continuously ofu;, us) and assume that, for eveny, u, € K
(K compact subset dR?), \(uy,us) is simple. Letg(ui, us) be the corresponding eigenvector
(defined up to a phase). Consider a p&éth,u,) : [0,1] — K and its reparametrization
(ui(t),u5(t)) = (ui(et), uq(et)), defined on[0,1/¢]. Then the solution).(¢) of the equation
z’dj; = (Ho + uj(t)Hy + u5(t) H2).(t) with initial condition 1.(0) = ¢(u1(0), u2(0)) satisfies

[v0e (1/€) = €7 (ui (1)) ,u5 (1/€))|| < Ce ()

for somed = 9J(¢) € R. This means that, if the controls are slow enough, then, yghéses, the
state of the system follows the evolution of the eigenstafdbe time-dependent Hamiltonian.
The constant”' depends on the gap between the eigenvalaad the other eigenvalues.

e The crossing of conical intersections. Generalizationthefadiabatic theory guarantee that,
if the path (u;(-), us(-)) passes (once) through a conical intersection between gen&ilues
Mo < A\, then

l-(1/2) — " ér(ui(1/e), uz(1/e))]| < CVe 3)

where.(t) is the solution of the equatioifs = (H, + u5(t)Hy + u5(t)H)v.(t) with initial
condition . (0) = ¢o(uj(0),u5(0)) and ¢o, ¢, are the eigenvectors corresponding respectively

to the eigenvalues, \; (see [2J]). Figurd]l illustrates a closed slow path in thecspaf
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Fig. 1. A slow path climbing the spectrum &f (u1,u2), plotted in function of(u1, u2).

controls producing a transition from the eigenvector cspomding to the eigenvalug, to the
eigenvector corresponding #@ by crossing two conical singularities. Notice that the pathld
not be closed if only one control was present. Inde&d would pass back and forth through the
same singularity and the trajectory would come back to tigiral state. One of our main results
is that choosing special curves that pass through the dasiigularity the estimate irf](3) can be
improved by replacing/c by . Hence if some energy levels, . . ., A\, of the spectrum of{ are
connected by conical singularities, then one can steeria t/<, an eigenstate corresponding
to Ao to an eigenstate corresponding X with an error of ordek.

e The behavior of the eigenstates in a neighborhood of corscajularities. If the path
(u1(+),uz(+)) is a piecewise smooth curve with\eertex (i.e. discontinuity at theC! level) at
the conical singularity, the state of the system evolve$ wiintinuity, while the eigenstates
corresponding to the degenerate eigenvalue are subject itostntaneous rotation. The angle
made by the path at the vertex can be used to control theirsplat probabilities between the
two energy levels (see Figuf¢ 1). This splitting phenomehas already been described and
exploited for controllability purposes on a two-dimensibeystem in [I1].

The ideas introduced above lead to the following resulthd energy levels,,, ..., \,, are
connected by conical singularities, then the system is aqumately spread controllablei.e.,

for every givene > 0 andpy,...,p, > 0 such that} " p? = 1, there exists a contrah

February 15, 2011 DRAFT



AL oA
s

+
I L

Ao

u1l

Fig. 2. Passages through a conical intersection.

defined on[0, 1/¢], k + 1 phases),, ..., U, € R, and a trajectory corresponding tosatisfying
¥(0) = ¢o and ||[¢(1/e) — Z?lejewjgbj(ul)ﬂ < e. Moreover the control can be taken of
the formu(t) = ~(et), wherev : [0,1] — R? is characterized explicitly. Hence the method
provides precise time estimates in relation with the regfuiprecision. The method cannot be
easily reversed, in order to explicitly characterize patieering a state which is spread on several
eigenstates to a single one. The difficulty lies on the logafofmation about the relative phases
during adiabatic evolution.

We finally remark that systems for which the method can beiegpdre rather frequent.
Indeed intersections of eigenvalues are generically ebfor Hamiltonians of the form-A +
Vo +uiVi + uyVsy, as explained in Section] I1.

The structure of the paper is the following. In Sectidn Il, w&oduce the framework and we
state the main result. In Sectipn Il we recall the time adtabtheorem and some results on the
regularity of eigenvalues and eigenstates of parametserakent Hamiltonians. In Sectipn]IV we
deepen our analysis of conical intersection; in particuar state and prove a sufficient condition
for an intersection to be conical. Sectiph V is devoted todmstruction of some special curves
along which we can obtain our controllability result, whitee proof of the main theorem is the
subject of Sectiof YI. Finally, in Sectidn VII, we show thatetsame controllability result holds

also for more general curves than those presented in Sedtion
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II. DEFINITIONS AND MAIN RESULTS

We consider the Hamiltonian
H(u) = H() + U1H1 + UQHQ,

for u = (u1,u) € R2. From now on we assume that(-) satisfies the following assumption:

(HO) H, is a self-adjoint operator on a separable Hilbert spd¢cend H; and H, are bounded

self-adjoint operators of.
When necessary, we also make the following assumption oiémeiltonian 4 (-):

(H1) There exists an orthonormal basfg,}; of the Hilbert spaceH such that the matrix

elements(x;, Hoxx), (x;j, Hixx) and (x;, Haxy) are real for anyj, k.

Remark 2.1:HypothesigH1) ensures that, with eaahand each eigenvalue &f(u) (counted
according to their multiplicity), it is possible to assdeian eigenstate whose components with
respect to the basiy;}, are all real.

A typical case for whic{HO) and(H1) are satisfied is whell, = —A 4+ V, whereA is the
Laplacian on a bounded domath c R? with Dirichlet boundary conditionsy’ € L>(Q,R),

H = L*(Q,C), and H,, H, are two bounded multiplication operators by real valuec:fioms.
In this case the spectrum @, is discrete.
The dynamics are described by the time-dependent Scly@daqguation

dy
iy = H(u(t))w(t). (4)

Such equation has classical solutions under hypothe#d3, u(-) piecewiseC! and with an
initial condition in the domain off, (see [2F] and alsd]3]).

We are interested in controlling] (4) inside some portion le# tiscrete spectrum df (u).
Since we use adiabatic techniques, the structure of therspeshall satisfy some particular
features: roughly, the portion of discrete spectrum we icmnanust be well separated from its
complement in the spectrum of the Hamiltonian, and this @rgpmust hold uniformly foru
belonging to some domain iR2.

All these properties are formalized by the following notion

Definition 2.2: Let w be a domain inR%. A map ¥ defined onw that associates with each
u € w a subseb(u) of the discrete spectrum @f (u) is said to be s&eparated discrete spectrum

on w if there exist two continuous functiong, f> : w — R such that:
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. fl(l,l) < fg(ll) and Z(U) C [fl(u),fg(u)] Yu € w.
« there existd" > 0 such that

inf inf )dist()\, [fi(u), fo(u)])) > T.

ucw AeSpec(H(u)\E(u
Notation From now on we label the eigenvalues belonging’ta1) in such a way that we
can writeX(u) = {Ag(u),..., \x(u)}, where \g(u) < --- < Ai(u) are counted according to
their multiplicity (note that the separation &f from the rest of the spectrum guarantees that
k is constant). Moreover we denote by(u), ..., ¢,(u) an orthonormal family of eigenstates
corresponding to\q(u), ..., Ax(u). Notice that in this notation\, needs not being the ground

state of the system.

Definition 2.3: Let ¥ be a separated discrete spectrum.oiVe say that[{4) is approximately
spread-controllableon X if for every u’, u'! € w such that>(u’) andX(u') are non-degenerate,
for every ¢ € {po(u?), ..., ¢x(u®)}, p € [0, 1! such thaty "), p? = 1, and every: > 0 there
existT > 0, ¥y, ..., Y, € R and a piecewis€' controlu(-) : [0,7] — R? such that

k
[W(T) = pieig;(u)| <e, (5)
§=0

where(-) is the solution of [[B) withy(0) = ¢.

Our techniques rely on the existence of conical intersestletween the eigenvalues. Conical
intersections constitute a well-known notion in molecyaysics. They have an important role
in the Born—Oppenheimer approximations (see for instaBte[[8], [£4], where they appear
for finite dimensional operators). In the finite dimensionake they have been classified by
Hagedorn [T4].

A unified characterization of conical intersections seembBd missing. The following defini-
tion meets all the features commonly attributed to them.

Definition 2.4: Let H(-) satisfy hypothesi¢H0). We say thati € R? is aconical intersection
between the eigenvalugs and \;.; if A\;(u) = \;+1(1) has multiplicity two and there exists a

constantc > 0 such that for any unit vector € R? and¢ > 0 small enough we have that

Npr(@+tv) = N(a+tv) > ct. (6)
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It is worth noticing that conical intersections are not édigical phenomena. On the contrary,
they happen to be generic in the following sense. Considerréfierence case whefd =
L2(Q,C), Hy = —A +V, : D(Hy) = H*(Q,C) N HY(Q,C) — L*(Q,C), H, = Vi, Hy = V3,
with 0 a bounded domain oR? for somed € N andV; € C°(Q,R) for j = 0,1,2. Then,
generically with respect to the pdiv;, V) in C°(©2,R) x C°(Q2, R) (that is, for all pairs(V;, V)
in a countable intersection of open and dense subseaf$(6f R) x C°(Q, R)), for eachu € R?
and )\ € R such that\ is a multiple eigenvalue ofl, + u; H; + us H,, the eigenvalue intersection
u is conical.

In order to check that this is true, we can apply the trans¥edensity theorem (se¢][1,
Theorem 19.1]) withez = C°(Q,R) x C°(,R), X = R?, Y = C°(Q,R), p((Vi,Va),u) =
Vo + ur Vi + usVa, and

W={Vel(QR)| -A+V:HQ C)N Hi(Q C)— L*(Q,C) has multiple eigenvalugs

The covering ofi¥ by manifolds of codimension two is obtained [n][28], basedlmproperties
proved in [§] (see alsd[17]). We obtain that, genericallyhwiespect td V7, 13), the intersection
of p((V1,V,),R?) with W is transverse. Equivalently said, generically with respgedqV;, V5),
for everyu € R? and )\ € R such that\ is a multiple eigenvalue of A + Vy + u Vi + us Vs,
for every (v, vy) € R?\ {0}, the line {(u; + tvy)Vi + (uz + tvy)Va | t € R} is not tangent to
W, i.e., the eigenvalue intersectianis conical.

Moreover, each conical intersectidm,, us) is structurally stable, in the sense that small
perturbations ofl;, V; and V; give rise, in a neighborhood ofi, to conical intersections
for the perturbedH. Structural stability properties can be proved withoubréeg to abstract
transversality theory, as will be shown in Sect[gn V, Theof&I0.

Our main result is the following: it states that spread adtebility holds for a class of systems
having pairwise conical intersections, providing in adlitan estimate of the controllability time.
As a byproduct of the proof, we will also get an explicit chaesization of the motion planning
strategy (the path(-) below).

Theorem 2.5: Let H(u) = Hy + uy Hy + ugHo satisfy hypothese@H0)-(H1). Let ¥ : u —
{Xo(u),..., \(u)} be a separated discrete spectrumwort R? and assume that there exist
conical intersections1; € w, j = 0,...,k — 1, between the eigenvalues, A, ,, with \;(u,)

simple ifl # j,7 + 1. Then, for everyu® andu® such that:(u’) andX(u') are non-degenerate,
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for every ¢ € {¢o(u’), ..., ¢r(u®)}, andp € [0,1]*+" such thatyF , p? = 1, there existC' > 0
and a continuous control(-) : [0, 1] — R? with v(0) = u” and~(1) = u', such that for every

e>0

k
l(1/e) = pieig ()| < Ce,
j=0

where(-) is the solution of [[4) withy(0) = ¢, u(t) = y(ct), anddy, ..., 9, € R are some

phases depending anand~. In particular, [B) is approximately spread controllabfea

[1l. SURVEY OF BASIC RESULTS
A. The adiabatic theorem

One of the main tools used in this paper is the adiabatic émed¢@], [I3], [21], [Z4]); here we
recall its formulation, adapting it to our framework. For @angral overview see the monograph
[E7]. We remark that we refer here exclusively to the timehdltic theorem.

The adiabatic theorem deals with quantum systems govemétamiltonians that explicitly
depend on time, but whose dependence is slow. While in qoastgstems driven by time-
independent Hamiltonians the evolution preserves the patmn probabilities of the energy
levels, this is in general not true for time-dependent Haomians. The adiabatic theorem states
that if the time-dependence is slow, then the occupatiobability of the energy levels, which
also evolve in time, is approximately conserved by the eiamtu

More precisely, considel(t) = Hy + u1(t)Hy + ua(t)Hs, t € I = [to, ty], satisfying(HO),
and assume that the map- (u:(t), ux(t)) belongs taC?(I). Assume moreover that there exists
w C R? such that(u,(t), us(t)) € w for all t € I and X is a separated discrete spectrumuan

We introduce a small parameter> 0 that controls the time scale, and consider the slow
Hamiltonianh(ct), t € [to/c,ts/c]. The time evolution (front, /< to t) ﬁs(t,to/s) generated by
h(e-) satisfies the equatiohj—t(j'a(t,to/e) — h(et)US(t, to/e). Let 7 = et belong to[to, ts] and
7o = to; the time evolutions (7, 7o) := U%(7 /e, 7o /) satisfies the equation

ie%UE(T, 7o) = h(T)U* (7, 70)- (7

Notice thatU¢(r, 7y) does not preserve the probability of occupations: in fdolvé denote by
P.(1) the spectral projection ofi(7) on X(u(r)), then P.(7)U¢(r, ) is in general different
from U= (7, 1) Pi(70)-

February 15, 2011 DRAFT



10

Let us consider thadiabatic Hamiltonianassociated with::
ho(T) = h(T) — ié’:‘P*(T)P* (1) — iéPj(T)Pj(T),

where P (1) = id — P.(7) andid denotes the identity oi. Here and in the following the time-
derivatives shall be intended with respect to the repanazeettimer. The adiabatic propagator

associated witth, (7), denoted byU: (7, 79), is the solution of the equation

iedii_Uj(T, 7o) = ho(T)UZ (T, 7o) (8)

with Ug(To, 7'0) = id.
Notice that
P.(1)Us(7,70) = Ug (1, 70) Pu(70),

that is, the adiabatic evolution preserves the occupatiobgbility of the band:.

Now we can adapt to our setting the strong version of the gquarddiabatic theorem, as
stated in [2]].

Theorem 3.1: Assume that{ (u) = Hy+uy H,+us H, satisfieqHO0), and that: is a separated
discrete spectrum o C R?. Let I = [to,ts], u: I — w be aC? curve and set(t) = H(u(t)).
Then P, € C*(I, L(H)) and there exists a constafit> 0 such that for allr, 7y € T

|U=(7,70) = Ug(m,70) || < Ce (1 + |7 = 70]) - 9)

Remark 3.2:1f there are more than two parts of the spectrum which areratgzhby a gap,

then it is possible to generalize the adiabatic Hamiltommathe following way ([21]):
ha(T) = h(r) —ie Y Po(7)Pal(r)

where eachP, (1) is the spectral projection associated with a separatedopaf the spectrum,
partitioning it asa varies.

Remark 3.3:In general the adiabatic theorem is stated for a time deperdemiltonianh(t)
satisfying the following hypotheses: it is assumed thathed| Hamiltoniang:(¢) have a common
dense domairD and that the function — h(t) is C*(I) and bounded as a function fromto
Ls.(D,H), whereL,, (D, H) denotes the space of bounded self-adjoint linear oper&torsD
to # and D is endowed with the norm of the graph bft), for somet € I. These hypotheses
are satisfied for an Hamiltonian of the forhit) = Hy + uy(t) Hy + ua(t) H2 under assumption
(HO), provided that the curva(-) is C2.
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In this paper we are particularly interested in the adiabewolution across conical intersec-
tions between eigenvalues. A result in this direction carfiooed in [Z], Corollary 2.5]. In the
language of control theory it reads as follows.

Proposition 3.4: Let X : u+— {Ag(u),..., \x(u)} be a separated discrete spectrumwomh.et
w,u' u; ew, j=0,...,k—1. Assume that\,(u’) and\;(u') are simple for all = 0,...,k,
and that, for anyj = 0,...,k —1, 1, is a conical intersection betweey and \;;, with \;(u,)
simple if I # j,j + 1. Let y(-) : [0,1] — w be aC? curve withy(0) = u® and~(1) = u'
and such that the eigenstates corresponding to the eigesval can be chose@! along v
for all [ = 0,...,k Assume moreover that there exist times< ¢y < -+ < f,_; < 1 with
v(t;) = u;, 4(t;) #0, 7 =0,...,k—1, and that for any = 1,...,k X\ (y(¢)) is simple for
everyt #t;, j=1,....k—1.

Then there exist§' > 0 such that, for any > 0

[(1/e) — || < OV, (10)

whered € R and(-) is the solution of equatior(](4) witkh(0) = ¢,(u") corresponding to the
controlu : [0, 1/¢] — w defined byu(t) = v(et).

In this paper we are interested in finding control paths alahich we have a knowledge
of adiabatic evolution finer than irf_{(10). This allows alsoher control strategies than those
described in Proposition 3.4, as it is needed to prove spreattollability. For this purpose we
write an effective Hamiltonian describing the dynamicddesa two-dimensional band, possibly
with conical intersections.

Let us then consider the band constituted by the eigenvalyes_; € ¥; we can find an
open domainy’ C w such that{\;, \;+,} is a separated discrete spectrumugn

As above, we consider a control functiait-) € C?(1,w’), for a given time interval. We can

then apply the adiabatic theorem to the separated disquetdram’ : u — {\;(u), A;11(u)},
u € w': we call P(7) the spectral projection on the bagd,(u(7)), A\j41(u(r))} andH(r) =
P(7)H its range, which is the direct sum of the eigenspaces$;0f(7)) and \;(u(r)). We
consider the adiabatic Hamiltoniag () = h(r)—icP(7)P(r)—icP* (7)P*(7) and its associated
propagatotU: (7, 7).

We are interested in describing the dynamics ingide). SinceH(7) is two-dimensional for

anyr, it is possible to map it isomorphically o@* and identify areffective Hamiltonianwhose
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evolution is a representation &f: (7, 7o) |u(-,) on C>.

Let us assume that there exists an eigenstate basis ), ¢s(7)} of H(7) such that,(-), ¢s(-)
belong toC!(7,H). We construct the time-dependent unitary operatér) : H(r) — C? by
defining for anyy) € H(r)

U(TW =€ <¢O¢(T)7 ?/)> + €9 <¢5(7)7 ¢>7 (11)

where{ey, e;} is the canonical basis df?.

We then define theffective propagator
Uea (7, 70) = U(T)Ug (7, 0 )U" (70)- (12)
It is easy to see thdl3; (7, 7) satisfies the equation

N d € € € € H
ie—Uf(7,70) = Hg(T)Uf(7,70), U(70,70) = id, (13)

dr° ‘

where H;(7) is the effective Hamiltoniarwhose form is

He (1) =U(T)ha(T)U(T) + i&U(T)U* (1)

_(p0) 0 ) () belr)) fost) el
0 As(r) ' 5(7)

Theorem[3]1 implies the following.
Theorem 3.5: Assume that{\;, \;;,} is a separated discrete spectrum whand letu :
[to, t;] — w' be aC? curve such that there existsCa-varying basis offl(-) made of eigenstates

of h(-). Then there exists a constaftsuch that

(U= (7, 70) = U™ (1) Ugp (7, 70)U (70)) P(70) | < Ce(1 + |7 — 7o)

€

for everyr, 1y € [to, ty].

B. Regularity of eigenstates

Classical results (se¢ ]25]) say that the map—+ P,, where P, is the spectral projection
relative to a separated discrete spectrum, is analytiw.olm particular, eigenstates relative to
simple eigenvalues can be chosen analytic with respeat to

Similar results hold also for intersecting eigenvaluesypted that the Hamiltonian depends

on one parameter and is analytic. In particulargiis a separated discrete spectrumwomand
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u : I — wis analytic, then it is possible to find two families of anadyfinctionsA; : 7 — R and
Q;: I —-H, j=0,...,k, such that for any in I we haveX(u(t)) = {Ao(t),...,Ax(t)} and
(@o(t),...,Pr(t)) is an orthonormal basis of corresponding eigenstates [[€e[R5, Theorem
X11.13]).

Moreover, we can easily find conditions on the derivativeghef functionsA;, ®;: indeed,
consider aC! curveu : I — R? such that there exist two families 6f functionsA; : I — R
and®;, : I — H, [ = 0,...,k, which for anyt € I, correspond to the eigenvalues and the
(orthonormal) eigenstates @f (u(t)).

By direct computations we obtain that for alE 7 the following equations hold:
Au(t) = (Di(8), (i (t) Hy + (1) Hz) ®(t)) (15)
(A () = M) (@u(t), P (1)) = (Di(t), (i1 (1) Hy + 12 (t) Ha) P (1)), (16)

An immediate consequence ¢f[15) is that the eigenvalyese Lipschitz with respect ta
Let u be a conical intersection betwean(u) and A, (u). Consider the straight liney(t) =
u + t(cosf,sinf), t > 0. Then [Ip) implies that

lim (¢;(re(t)), (cos OHy + sin0Hs)p,41(re(t))) = 0. (a7)

t—0t
[V. CONICAL INTERSECTIONS

From now on, we assume that the Hamiltonian satisfies hypwtliell). Following Re-
mark [2.], we always choose the eigenfunctionsibfu) whose components are real with
respect to the basi§y;}; defined in hypothesigéH1). In particular, this ensures that the values
(Gu(0), Hopm(n)), (¢u(u), Higm(u)) and (¢(u), Hygp(u)), [,m =0,... k, are real for any
u.

In this section, we investigate the features of conicalrggetions and provide also a criterion
for checking if an intersection between two eigenvaluesosical. First of all we notice that
Definition [2.4 can be reformulated by saying that an intéisear between the eigenvalues
and \;.; is conical if and only if there exists > 0 such that, for every straight ling(t) with
r(0) = a, it holds

Sl Pt - a0 2 e

Moreover, the following result guarantees thigt (6) holde tin a neighborhood of a conical

t=0"+

intersection. It follows directly from the Lipschitz contiity of the eigenvalues.
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Lemma 4.1: Let i a conical intersection betweeyy and \;.;. Then there exists a suitably

small neighborhood’ of u andC' > 0 such that
Ajiy1(u) = Aj(u) > Clu—ul, Vae U. (18)

Let us now introduce the following matrix, which plays a dalaole in our controllability
result.

Definition 4.2: Let 1,1, be a pair of elements ok. The conicity matrix associated with

(V1,102) is
M (W1, o) = (11, H11pa) §(<?/)2,H1?/)2> — (¢, H1¢1>) |
(U1, Hotbo) & ((tho, Hatha) — (1, Hatln))

Lemma 4.3: The function (¢, ¢s) — | det M(21,19)]| is invariant under orthogonal trans-

(19)

formation of the argument, that is (@1,$2>T = O(y,1,)T for a pairy, 1, of orthonormal
elements of{ and O € O(2), then one hasdet M (¢, 1s)| = | det M(1by, ).
Proof: We setO = ( 5o sine ) where¢ = +1. A direct computation shows that

¢sSino ¢ COs

~ o~ cos2a —sin 2« ¢ 0
M(¢17¢2) :M(¢17¢2) ( . ) ( ) )
sin 2« cos 2« 01

which immediately leads to the thesis. O

The following result characterizes conical intersectiongerms of the conicity matrix.
Proposition 4.4: Assume that{\;,\;;;} is a separated discrete spectrum, andua) =
Ai+1(a). Let {¢1,74»} be an orthonormal basis of the eigenspace associated vétlidbble
eigenvalue. Them is a conical intersection if and only i#1 (v, 1) is nonsingular.
Proof: Let ry(t) = a+t(cos 6, sin6) and letg?, ¢7, | be the limits ofg;(r4(t)), ¢;+1(ra(t))
ast — 07 (recall that the eigenfunctions;, ¢;.; can be chosen analytic along for ¢ > 0).

Assume that for any > 0 there existg), such that

% [)‘j“(”f(t)) — Aj(ro. (t))] <e

thatis, by [IB)cos 6. ({77, H1977) — (¢%1, Hi¢%1))+sinb. ({877, Ha¢?7) — (¢%), Hao' ) <
e. Moreover, by [(]7), we have thabs Ge(gb ngbjﬂ) + sin Qg(gbj ,H2¢J+1> = 0. Since

0 sino.
det[(‘”? )M(¢ ¢J+I>}<25<HI+H2>,

t=0"1

detM(¢ ¢j+1

—sinf, cosb.
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then, by Lemm4d 4]3 and the arbitrariness=pfve get thatM (v, v») is singular. Thusa is a
conical intersection whem (v, 1,) is nonsingular.

Let us now prove the converse statement: assumetihiata conical intersection and, by
contradiction, that/\/l( ]H) is singular, Whereﬁ +1 are defined as above. By definition

of conical intersection, we have

cos 3 ({0, 116)) = (6] 11, Hi6}.) ) +sin B (6], Had) = (0], e ) #0, (20)

for every 5 € R.

By ([[7) and [2ZP) with5 = 6, it turns out that the two columns of the matrM( g+1)
are not proportional. Thu,M( ]H) can be singular only if its first column is null.

For any angle3, there exists an orthonormal matdx = ( °%2 sina) gych thal(gb ]H)T =

—Sina Cos

O(4] 4 ]H) and, callinglV = cos SH; + sin S H,, we have (by [(q7))

0= (gb W¢J+1> (cos a® — sin a2)< W¢j+1> + sin «v cos «v (< 1 W¢j+1> ( ?, W¢?>) =
= sinacosa (<¢j+17 W¢j+l> < ?7 W¢§>) :

If (09,1, Wl ) — (8%, Wi = 0, the matrix((¢], W¢h,))i,m=j ;+1 is diagonal and proportional
to the identity. Hence the same is true fdr,, W¢2 ), m—;+1. This contradicts[{20), so that
it must besin acosa = 0, that is, the limit basis is unique and therefore it must beaédo
{6,67,,} (up to phases).

Let us now consider the straight ling with
(0541, H1G41) — (6F, H1df)
< j+17H2¢j+1> <¢0' H2¢9'>.
Since, as proved above, the limit basis alongis {¢%,¢7,,} we have that(¢, (cos SH; +
sin SH,)¢f) = (¢4, (cos BHy + sin fH,)¢?, ). By (I3), this contradicts[{20), proving that

M(¢4,¢%,,) is nonsingular. O

tan § =

As noticed above, for any analytic curve that reaches a abimtersection it is possible to
choose continuously the eigenstates along the curve. Alipgty of conical intersections is
that, when approaching the singularity from different direns, the eigenstates corresponding
to the intersecting eigenvalues have different limits, #re&ldependence of such limits from the

direction can be explicitly computed, as shown in the folloyvresult.
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Proposition 4.5: Let u be a conical intersection between the eigenvaligs\;.; and let
9,09, be the limits ag — 0% of the eigenstates;(ro(t)), ¢;+1(ro(t)), for ro(t) = a+ (t,0).
Consider, for anyy € [0, 27), the straight liner,(t) = u + (tcos a, tsin ). Then, up to a sign,

the eigenstates;(r,(t)), ¢,+1(r.(t)) have limits

¢§ = cos E(a)gb? + sin E(a) 2“ (21)
¢ = —sinB(a)d] + cos E(a)¢) (22)

where=Z is a monoton&! function defined o0, 27) with £(0) = 0. Depending on the initial

choice of¢), 47, , the range oE is either[0, 7) or (—m, 0]. Moreover,Z(-) satisfies the equation

(COSOz,sina) M(e), ¢2,1) (COSQE(@)) = 0. (23)

sin 22 («)

Proof: Let us write¢, ¢, , as in [21){2R). TherE(«a) satisfies

0 = (¢, (cos oy + sin aH) ¢S, )

= cos 28 (a)( 2, (cosaHy + sin aHg)gb?H)—l-

L. . .
+ 5 sin 28(a) (( 2+1, (cosaHy + sin aH2)¢2+1> — 2, (cosaH; + sin aHg)gb?))

' 0 .0 cos 25 ()
(om0 (725).

proving (23). Equation[(23) has exactly four solutions foy avalue of o, differing one from
the other by multiples ofr/2. By the Implicit Function Theorem, it turns out that each leérm
is aC! monotone function defined o0, 27).

We defineZ(-) as the one that satisfiés(0) = 0. We are left to prove that the range &f
is [0,7) or (—m,0]. We first observe that when = 7 the possible solutions of equatiop(23)
are multiples ofr/2. If |E(7)| > =/2, then by continuity there should exigt € (0, 7) with
|Z(a)| = 7/2. This is impossible because of equatin| (23). TEUmaps|0, 7| into [0, 7/2] or
[—7/2,0] and, by symmetry, the claim is proved. O

Remark 4.6:From Propositiorf 4]5 it is straightforward to see that it @ possible to define
continuously the eigenstates, ¢,., of H(u) on a closed path that encloses the singularity:

after a complete turn, a change of sign appears.
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V. NON-MIXING CURVES

Throughout this section we will assume that;, \;,,} is a separated discrete spectrum on
some open domaiw, and thatd € w is a conical intersection between the eigenvalues. Without
loss of generality, in the following we always assume thé the only intersection betweey,

Ajg1 N w.

Following Section[II-A, the effective Hamiltoniai/:;, defined as in[(14), (approximately)
describes the dynamics inside the eigenspaces associdéted \w\;.;, for u slowly varying
insidew.

When integrating the effective Hamiltonian, the seconchter (I4) gives a total contribution
that a priori is of orderO(1). In particular the contribution of the non-diagonal termisHy;
induce a (a priori) non-negligible probability transfertween the two levels.

To tackle this issue we consider trajectories satisfyirgftllowing dynamical system
Uy = — (¢, Hapj41)
iy = (@5, Hidj11).
Notice that the right-hand side df {24) can be taken realeclunder hypothesiéH1). It is

defined up to a sign, because of the freedom in the choice ofithe of the eigenstates.

(24)

Nevertheless, locally around points whexe # \,.4, it is possible to choose the sign in
such a way that the right-hand side ¢f](24) is smooth, andn femuation [(1]6), we see that
(pj(v(1)), éjﬂ(y(t))) = (0 along any integral curve of (£4). Here and in the following we use
the notationg(+(-)) to denoteZ ((y(-))).

Let now H* be the real Hilbert space generated by the bégig, defined in Remark2.1,
and letGry(H®) be the 2-Grassmannian @t%, i.e. the set of all two-dimensional subspaces
of H%. This set has a natural structure of metric space defined dydigtanced(1W,, W) =
| Pw, — Pw,||, where Py, , Py, are the orthogonal projections on the two-dimensional gatss

Wi, Ws. Lemma[4.B allows us to define the function
F:Gry(H®) =R (25)
W — | det M(vy,v9)],
where{uv;, v} is any orthonormal basis d# € Gr,(H®). It is straightforward to see that is

continuous.
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Let P, be the spectral projection associated with the gaif(u), A;11(u)}. We know from
Section[Tl-B thatP, is analytic onw. Thereforeu — P,H NHE is continuous in Gi(H®). Let
now F(u) := | det M(¢;(u), ¢,,1(n))|. Since F(u) = F(P,H NH¥) and by Propositiof 4.4
we get the following result.

Lemma 5.1: The functionu — F'(u) is well defined and continuous in. In particularF" is
different from0 in a neighborhood ofi = 0.

Without loss of generality, we assume from now on thais different from zero onw.

Lemma 5.2: There exists &> choice of the right-hand side df (24) in\ {0} such that, if
u(-) is a corresponding solution, then

D) ~ ()] = ~Fa) (26)
onw \ {0}.

Proof: Observe that
4
dt
This expression, evaluated along the solutiong df (24)qiskeither toF'(u(t)) or to —F(u(t)),

[)‘j-i-l(u(t))_)‘j(u(t))] = 1 ((@j1, H1j1)— (b, H1j)) +ita ({541, Habjr) — (¢, Hah;)).

depending on the choice of the sign [n](24). Sida) # 0 onw, there exists a unique choice of
this sign such that equatiop (26) is satisfied. The local shm@ss of the eigenfunctions ensures

that this choice is smooth. O

We now define thenon-mixing field denoted byXp, as the smooth vector field an\ {0}
identified by the preceding lemma. Its integral curves@rein w \ {0}. Moreover, its norm is
equal to the norm of the first row o8 (¢;, ¢;11), and therefore bounded both from above and
from below by positive constants in\ {0}.

By considering);;1(u) — A;(u) as a local Lyapunov function, the above results lead to the
following proposition.

Proposition 5.3: There exists a punctured neighborhodof 0 such that all the integral
curves of Xp starting fromU reach the origin in finite time.

Our purpose now is to prove that each of these curves admit¥ a&xtension up to the
singularity. As a preliminary result we get the following.

Proposition 5.4: Let u = 0 be a conical intersection with;(0) = X;11(0), and let the map

u— {\;j(u),\;11(u)} be a separated discrete spectrum on a neighborhoodTien, for any
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C, > 0, there exist a neighborhoatof t = 0 and C; > 0 such that for anyC? trajectory~(-)
with v(0) = 0, |4(0)] = 1 and |||z~ < C1, one has|g;(y(t))|| < Ca, I = j,j + 1, for every
t eI\ {0}.

Proof: Let us assume without loss of generality that0) = A\;,(0) = 0. Fort # 0 define
p(t) = 4(t) — y(t)/t. Notice thatp(t) = 35(0)t + o(¢).

By (I8), we have
; {9y, (mHy + 2 He)@i41) | (@4, (prH1 + paHa)djia)
(@i (v(1), dj1(7(1))) = Dy — ) + o=\

Notice that(¢; (u), (ui Hy + ua Hz)¢j1(0)) = —(¢;(u), Hopj 1 () = —(¢;(0)—Pog;(w), Ho(¢j41 (1)~
Pygjia(u))). Since

@

1o (6;(w) = Pocj(w)) || = [1A; (w)d;(w) — us Hi;(u) — uzHag;(u)
< [N ()] + [uf ([ Hyl] + [[Hzl])

< sup [ (¢;(v), (urHy + uz2H2);(v)) | + [a|([[Hi| + [ Hz])

vEW

< 2(|[Hall + [ H[) u]

and by smoothness of the projector, we get thiat(u) — Pog; (), Ho(¢s41(u) = Podj41(u)))| <
2C (|| Hy|| + || H2|)|u|?, for a suitableC > 0. Being |y(¢)| = O(t) and \j;1(u) — \;(u) > c|u]
(Lemma[4.]l), we deduce that the modulus of the first term inritpet-hand side of[(37) is
uniformly bounded. The uniform bound of the second term igidat consequence of the
fact that|p(t)| = O(t) and that|y(t)| > ¢|t|, for somec > 0, if ¢t is small enough. Thus

(&5 (7(£)), dy41(7(t)))] is uniformly bounded.
Let us write P = id — P,. Since P- commutes withH (u), one has

(H(5()) = A1 (v(8))id) Pyt S01 (7(1)) = = Poy (1 () Hy + Fa(8) Ho) 51 (7(1)).

Since H (u) — ;41 (u)id is invertible onP;-#H with uniformly bounded inverse an, we get that
|P5;,y @541 is uniformly bounded orf \ {0}. Thus we obtain thalt¢; .|| is bounded, uniformly
on the set of curves(-) satisfying the assumptions of the proposition. The sameshialr ||¢j||.
0]

Corollary 5.5: Let u = 0 be a conical intersection with;(0) = X;1(0), and let the map

u — {);(u),\;11(u)} be a separated discrete spectrum on a neighborhodd Denote by
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o:(p,0) the eigenstatey,(pcosd, psind), | = j,j + 1, where (p,6) are angular coordinates
around0, i.e. p = |u| and § = arctan ;2. Set ¢,(0,6) = lim, o+ &i(p,0). Then the function
&1(p, 0) is continuous in0, ] x [0, 2], for someR > 0 andl = j, j + 1.
Proof: If p > 0, the functiongl(p, #) can be defined continuously. Moreover, the function
0 — 51(0,9) is uniformly continuous, thanks to Propositipn]4.5.
Let us now consider a sequenge., f,) converging to(0, §). Then we have

|01(prs 01) — 1(0,0)| < |d(pr. O) — 61(0,01)| + |10, 61,) — ¢1(0, )]
< Cipi, + |41(0,61,) — ¢1(0,0)

9

whereC; comes from Propositiop §.4 and the second term goes to zera@ass to infinity.[]

Proposition 5.6: The eigenstate®;, ¢;.; can be extended continuously to the singularity
along the integral curves ot’», and, in a small enough punctured neighborhood &f 0, the
integral curves ofY» admit aC! extension up to the singularity included.

Proof: We prove that the scalar produdl - (—us, u;)”/|u| goes to0 as|u| — 0, that is,
the tangent to the curve has limit whenapproaches zero. This, together with Corollany 5.5,
implies that the eigenstates, ¢;, are continuous along the integral curvesX#, and then
the vector fieldX itself is continuous along its integral curves, up to thegsiarity included.
Therefore its integral curves admitCa extension up to the singularity.

To prove that¥p - (—uy,u;)? /|u| goes to0 as|u| — 0, we show that there exists a constant
C > 0 such that

k() := |Xp(u) - (—ug,u1)| < Clul?. (28)

Sincex(u) = [(¢;(u), (u1 Hy +u2Hs)¢;11(u))|, the thesis comes from the estimates in the proof
of Proposition 5]4. O

We recall that, since integral curves of the non-mixing fidld are C!, then the spectral
projection P, associated with the pair\;(u), A;+1(u)} is C' along each of them. This permits
to prove the following result.

Proposition 5.7: For any integral curvey : [—n,0] — w of Xp with v(0) = 0 there exists

a choice of an orthonormal basis of the eigenspace assocwtdé the double eigenvalue
A (1(0)) = Aj+1(7(0)) that makes the eigenstates((t)), ¢,+1(v(t)) C* on [~n,0).
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Proof: We notice that on the integral curves &f the eigenstates relative to the eigenvalues
A, \j+1 satisfy the equatioiP, o é;(7(t)) = Pynéii((t)) = 0, which implies

P, (7(1)) = 6;(v(1)  Prndin(v(1) = $jaa(y(1)) (29)
for t € [-n,0). The thesis follows from the continuity d®, ), ¢;(7(t)), ¢;+1(v(t)) on [—n, 0].
O
Corollary 5.8: Let~y : [-n,0] — w be an integral curve at’» with v(0) = 0. Then~(-) and
the eigenstates;(v(+)), ¢;+1(7(+)) defined in Propositiof 5.7 a@> on [—n, 0].
Proof: Extend Xp(v(t)) by setting

—(;(7(0)), Ha; 41 (7(0

Xp((0)) = (6;(7(0)), Ha¢j11(7(0))) |
(6;(7(0)), Hi¢j+1(7(0)))

where ¢;(7(0)), ¢;+1(7(0)) denote the limits of the eigenstates as defined in PropodEi@.

ThenXp(v(-)) isC! on[—n, 0], which implies thaty(-) is C* on [—n, 0]. We differentiate equation

(B9) to prove thaty;(v(-)), ¢;+1(7(-)) areC? on [—n,0]. Repeating recursively the argument we

prove the thesis. O
We stress that, thanks to Propositipn] 5.7, if we define thakadic Hamiltoniani,(7) =
H(y(1)) — iePyr Pygry — zsPy(T)P( ), T = ¢t, along integral curves of’p, then it is possible

to define the associated effective Hamiltonian, as in eqogf4).
The following result is crucial to our controllability stegy.
Proposition 5.9: For every unit vectow in R? there exists an integral curve: [—n,0] — w

of Xp with v(0) = 0 such that
y(T
lim 7< ) =
=0~ Y@
Proof: Equation [Z}4) rewrites as

= (0j(p,0), (— cos 0 Hy + sin 0H1)¢;41(p, 0)) (30)

)~ 1<¢]<p, 0), (cos OH, + sin 0H1)354.1(p, 0)). (31)

/\

On a neighborhood’ C w of the singularity, there exist two constarits< ¢; < ¢, such that
c1 < |p| < 2, and the right-hand side of {31) is bounded from above,[Db)). (A% choose the
sign of the functionsgj, $j+1 in such a way thap < 0.

Fix 6 € [0,27] such thatw = (cosf,sinf). Consider, fork large enough, the solutions
(pr(+), 0x(+)) of @B9)-(31) with p,(0) = 1/k and ,(0) = 6, for ¢ belonging to some common
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interval [—n, 0], wheren > 0 is small enough, in order to guarantee that the solutionsato n
exit from U. By Ascoli-Arzela Theorem, up to subsequendeg(-), 6x(-)) converges uniformly
on [—7, 0] to some(5(-), 6(-)).

In particular, for anyr € [—n, 0], (pr(7),0x(7)) converges irJ/. By the uniform boundedness
of p, the range of p..(+), 01(-)) on [—n, 7] is contained in a compact subgétc U\ {0} for every
k. Since the vector field is smooth dn, the curved p.(-), 0x(-)) converge uniformly on—n,, 7|
to the solution of [(J0){(31) with initial conditiop(r) = p(7) andé(r) = A(r). Therefore for
t € [-n,7] (p(-),8(-)) is a solution of [30){[@1). Since is arbitrary, andd(0) = lim 6,(0) = 6,
p(0) = limy, px(0) = 0, we get the thesis. O

We conclude this section by proving a result of structurabgity of conical intersections.
Theorem 5.10: Assume thatH (u) = Hy + ui Hy + usH, satisfies(HO)-(H1) and letu be
a conical intersection fof{ (u) between the eigenvalues and \; ;. Assume moreover that
u— {)\;j(u),\;11(u)} is a separated discrete spectrum in a neighborhoad dhen for every

e > 0 there existsy > 0 such that, ifH (u) = H, + uy H; + us H, satisfies(H0)-(H1) and

||FI0—H0||+||F11—H1||+||FI2—H2|| <, (32)

then the operatof (u) admits a conical intersection of eigenvaluesiawith |a — i| < e.
Proof: Continuous dependence of the eigenvalues with respect rtorrpations of the
Hamiltonian ensures that, éfis small, thenfl admits two eigenvalues;, A, close to;, A, 1.
Moreover{S\j, ;\j+1} is separated from the rest of the spectrum, locally araunéix nowes > 0
in such a way that the vector field, points inside the balB(u, ¢) at every point of its boundary
(this is possible because df {28)) aftiu) > ¢ > 0 on B(u,¢). If § is small enough then
;\j # 5\j+1 on dB(u, e). Similarly, since the conicity matriX\1 varies continuously with respect
to H,, H,, and by continuity of the functiod defined in [2b), we can take small enough
such that|det M| > ¢/2 for any perturbed Hamiltonian. This allows us to define, vdven
\; # \j.+1, the non-mixing field¥, associated witt and corresponding to the bafid;, A };
as in Lemmg5]2, we choosEs in such a way that the time derivative af,, — \; along the
integral curves ofXp is smaller than—c¢/2 and Xp is smooth. In addition, by the uniform
continuity ondB(u, ¢) of the eigenfunctions with respect to perturbations of tremitonian,

if 4 is small enough, thed» points insideB (1, ) at every point ofdB(i, ¢).
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Fix an HamiltonianH(-) satisfying [3R). Any trajectoryj(-) of Xp starting fromB(u,«¢) re-
mains insideB(u, ) in its interval of definition and reaches in final time a paintorresponding

to a double eigenvalug; (1) = A, (11). The conclusion follows from Propositign #.4. [

VI. PROOF OFTHEOREME.G

Based on Proposition 3.9, we consider below trajectorig¢befollowing kind: given a conical
singularityu and a pair of unit vectorsv;, w, € R?, we concatenate the integral curve &
arriving atu with direction w; and the integral curve of X» exiting u with direction ws.
Even if we are not using this fact in the paper, it turns out,tfiaw; = w», then such curve is
globally C.

Proposition 6.1: Let u = 0 be a conical intersection between the eigenvalugs;; and
let @2, 9, , be limits ast — 07 of the eigenstates;(r(7)), ¢,;.1(r(7)), respectively, for(r) =
(1,0). Let v : [0,1] — w be a piecewis€> curve such thaty(r) = 0 for somer, € (0, 1),

(1) = Xp(y(7)) in [0, 7] and¥(7) = —Xp(y(7)) In [, 1]. Definea_, a by

. A(n) : . () :
lim ——— = —(cosa_,sina_), lim ——— = (cosa,sina,). (33)
L e B T T
Then there exist§’ > 0 such that, for any > 0,
[4(1/2) = pre™ih;((0)) — pae™ 1 ;41 (7(0)) || < Ce (34)

whered;, ¥4, € R, 9¥(-) is the solution of equatior{](4) witky(0) = ¢;(v(0)) corresponding
to the controlu : [0, 1/¢] — w defined byu(t) = ~(et),

p1 = [cos (Blay) —E(a)) |, p2 = [sin(E(ay) — E(a-))],

andE(-) is defined as in Propositign 4.5.

Proof: We consider the Hamiltonia# (u(t)), t € [0, 1/¢]. Since the control functiom(-)
is notC* at the singularity, we cannot directly apply the adiabdtieorem. Instead, we consider
separately the evolution on the two subintervals (in tiné, 7, /<] and [y /e, 1/<].

Since the eigenstates(u(t)), ¢;.1(u(t)) are piecewis€' we can apply Theorefn 3.5 in order
to study the evolution inside the spafg . We can then construct the effective Hamiltonian,
which is diagonal on both intervals (in timé [0, 7,] and [, 1]. Remark that the operator-valued
function((-), defined in equation[(11), has a discontinuityrgtout has continuous extensions

on both intervalg0, 7y and 7o, 1].

February 15, 2011 DRAFT



24

Let gb;-t = hmT_H_g: ¢j(~(7)). Integrating the effective Hamiltonian we get

Uz (70,0)1(0) = 65

for somey € R . By Propositio{ 4]5 we have

gbj = cos (F(ay) —F(a_)) ¢; +sin(F(ay) — I (a)) d;
T = —sin (o) — 9(as)) ¢; + cos (F(as) — 9(a)) dryy.

Then, since the effective Hamiltonian is diagonal, we get

US(1,0)1(0) = €™ cos (9(ay) — I(a)) ?;(7(0)) + it sin (9(ag ) — 9a_)) ®;41(7(0)),

and then, applying the adiabatic theorem,

[%(T) — pre®s ¢;(4(0)) — pae™®+1¢;11(7(0))]| < Ce

whereC is a constant depending on the gap andyon O
Remark 6.2:For control purposes, it is interesting to consider the dasehich the initial
probability is concentrated in the first level, the final ggation probabilitiesp? and p3 are
prescribed, and there is an integral curvetf connectingu® to the singularity. Except for the
special caseg? = 0, 1, there are exactly two integral curves-eft,» starting from the singularity
that realize the required splitting (in the sense of Prams[6.]).
Choosings € [0,7/2] such that(p;,p2) = (cos3,sin5), we obtain that the two possible

values fora, are
ar =B (B+E(a) + kym) ap =B (=B+E(a) +k_7),

wherek,, k_ € Z are chosen in such a way that+ E(a_) + k.7 and =+ ZE(a-) + k-7
belong to the range dE.

If (p?,p3) = (0,1), then the path is unique with, = «_ + m, while if (p3,p3) = (1,0), then
the unique path satisfies, = «_.
Proof of Theorem [Z5. For simplicity, we consider the case in whigh(0) = ¢y(u®). The
general case can be treated similarly.

Recall that for any conical intersection between two eigams of a separated discrete
spectrum there exists a neighborhood of the intersectioarevithe two eigenvalues are well

separated from the rest of the spectrum. Let us consides tieighborhoods for the intersections
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%;,7=0,...,k —1, and let us call therw;. Define on eachw; \ {;} the vector fieldX?% as
in Section[V.

We construct the path(-) as described below.

First choose a smooth path(-) starting fromu® and reachingy, along which all the eigenval-
ues inY are simple. Concatenatg with an integral curve oft’? that reaches the poit). Then
choosea!) as one of the angles realizing, for the two-levels systemcisted with the energy
levels Ao, A1, the splitting from(1,0) to (pi,1 —p), as explained in Remafk 6.2, and continue
the path with the integral curve of X2 with outgoing tangent parallel t@:os o, sinaf).

Join the latter with a smooth path (-) connectingy, to w; along which all the eigenvalues
in 3 are simple, and then prolong it with an integral curvef that reaches the poist;. As
above, compute an angle, that realizes the splitting (for the two-levels system agsed with
the energy levels, \;) from (1 —p?,0) to (p3,1— (p? +p3)), and, as above, continue the path
with the integral curve of-X’} with outgoing tangent parallel t@os o, sin o).

Repeat this procedure iteratively until the required sprisarealized. Then reach the final
point u' with a path along which all the eigenvalues are simple. Weirasswithout loss of
generality that the final time is equal to one.

For e > 0, consider the Hamiltonia#/ (u(t)) = H(~(ct)), and setr = «t.

As long asy(7) € R?\ UF-lw;, we approximate the dynamics &f(u) using the adiabatic

Hamiltonian
ha(T) = H(y(7)) —ie ¥ _ Pi(7)Pi(7) — ie P& (1) Ps (1) (35)

where P,(7) is the spectral projector onto the eigenspace relative,t9(7)) and Ps (1) =
id — Y, B(r).

The evolution associated withh {35) conserves the occupgiroebabilities relative to each
energy level inY, therefore the evolution off (v(7)) approximately conserves these occupa-

tion probabilities, with an error of the order, as prescribed by the adiabatic theorem (see

Remark[3.p).

Forv(r) e w;, 7=0,...,k — 1, we use instead the adiabatic Hamiltonian

ha(7) = H(y(7)) = ieP; 141 (T) Py (1) — e Z P(r)P(r) —iePs (T)Pg (1) (36)
lsﬁJHl

where P; ;. (7) is the spectral projector relative {0\;(v(7)), A\j+1(y(7))}.
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The evolution associated with {36) conserves the occupgtiobabilities relative to the band
{\;, Aj11}, to any other energy level iR and to its remainder in the spectrum. Moreover, thanks
to the choice of the fieldlf};, we can also compute the evolution given by (36) inside thelba
{X\j, Aj+1} (which is the one described in Proposition] 6.1).

We end up with final state)(1/¢) satisfying
k

lo(1/e) = > e gi(ut)|| < Ce,

=0
for somed,, ..., Y, € R and some&” > 0 determined by the adiabatic approximation. Thus the

system is approximately spread controllable and the timeaseproved. O

VII. MILDLY MIXING CURVES

In the previous section we constructed some special cuiteag avhich the effective Hamil-
tonian has a simple form, whose evolution is quite easy tdipteln this section, we consider
more general curves passing through the singularities.

We prove below a variation of Propositipn]6.1, which gerieeal to broken curves the result
in [B7, Corollary 2.5]: if we choose any piecewise regularveuwith a vertex at the conical
singularity, then we obtain a distribution of probabilitgtiveen the two levels similar to the one
described by Propositign $.1. In this case, if the final tisié/ic, the error is of ordek/c.

Moreover, we prove that the integral curvesX# are not the only ones that realize the best
accuracy (that is, an error which is of ordeffor a final time equal tal /¢): indeed, this can
be obtained with any curve whose first and second derivativéise singularity are the same as
those of an integral curve otp.

Let us consider &2 curvey : [0,7] — w such thaty(ry) = 0 corresponds to a conical
intersection between; and \;,, and+(7;") # 0. Assume moreover that;, ¢;., areC? along
v (recall that this is true for analytic curves). Let us coesithe HamiltonianH (v(st)),t €
[0,70/¢], and the adiabatic Hamiltoniap {36). Up to a factorizatidrth® trace, the effective

Hamiltonian reads
a(t) —ieb(T)

Heg(7) =
ieb(t) —a(T)

where
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and the dynamical system associated Wify is

[S)

wherez € C?, |z| =1 (as usual, here and below the dot indicates the derivatitie espect to
7).

Note that the condition of conical intersection implies #éxéstence of two positive constants
C1, Cy such that, forr close tory, —Cy < a(7) < —C (as a consequenee |7 — 7| < a(7) <
Cy|m — 10|). As for b(7), it is C* by hypothesis.

We setD(7) = (“(TO)/E _a(OT)/E>, U(r) = exp (=i [; D(s)ds), and we perform the change of

variable¢ = Uz, so that( evolves according to the dynamical systém= I/{Ef(r)g , Where

ff\( ) 1U( )H ( )U( )_1+U( )U( )—1 0 —ib(T)e%fOTa(s)ds
ar(7) = ZU(T) Heg (T)U(7 U(7)™' = .
: ) N ib(T)e‘% Jo a(s)ds 0
Let us express the evolution operator fdf, in the form
*(r)e* Jo als)ds
T T)ee Jo
M.(r,0) = O e
—plr)e = J ol Vi (7)

We claim that||M.(7,0) — id|| < C'y/e, for someC > 0.
Fromi-L M. (7,0) = HE,(T)M.(7,0) we get the equations
U= ub
L= %,ua —vb
with initial datar(0) = 1, u(0) = 0. Sincedet M. = 1 we have thatv| and |u| are bounded,
and then, from the boundednessbpfve get that alsdr| is bounded.

We recall that along the integral curves &% the effective Hamiltonian is diagonal and its
evolution is exactlyU(7), so that the equations above are solvedvby 1, = 0. If b(-) is
not identically equal to zero, then the evolution is not élyadiagonal, but it mixes the two
components of (andz). The error done by assuming the evolution diagonal can bma®d
by evaluating the termu.

By variation of constants we have
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We can rewrite

70 6% J70 a(r)dr $)u(s
(o) :/0 —a(s) a(s)b( Jv(s) ds

oo S [ e ()

e [0 amdr _ 1 2 (70 b(0
= £ b(ro)w(m) lim & EGJwMT_QJJ+

2 T a(T) 20 a(0)
e (™[ 2 (0 4mar d (b(s)v(s)
_ZO(“L(M_Q£<cM))“' (38)

8252 f a('r)dr_l
a(r)
above is of ordee. Then, we are left to estimate the integral term. We have

07 2 g d [b(s)v(s) ™ |g% 0 alr)dr _ )
= fs a(r)ydr _ 1 ds| < / .
/0 (6 ) ds ( a(s) s|<¢ 0 a2(s) ds

We consider the change of variabless ¢.(s) = 2 fm r)dr so that

0 |2 [70 a(r)dr 1 & (0 1
/ v " ‘ds —: / lf7| d.
0 a*(s) 2)o  aEN(2))

From the estimates above anwe easily get that®(¢-!(x)) > Ce3/22%/2 for a suitable positive

Since a(ry) # 0, we obtain thatlim;_,, = (0. The second term in the equation

constantC.
Since [, 1 3/21|dz < [ min{z"Y2,2:7%?}dz < 400, we immediately obtain that the
integral in (3B) is of order/z. Therefore,||M.(79,0) — id|| is of order,/e.

If v is defined also for > 7, and is globallyC?, we recover Corollary 2.5 if[27]. If, instead,

~v is continuous and piecewis®, with different tangent directions at the singularity, rihee
can repeat the same argument as in Proposftign 6.1: at thelaiity the limit basis rotates
instantaneously and we consider separately the evolufitmoodifferent adiabatic Hamiltonians.
The rotation of the limit basis spreads the probabilitieslescribed by equationf {21)-[22), and
this leads to a controllability result in the spirit of Thear[2Z.b, where the error is of ordefe
if the final time is1/e.

The following result shows that the value &fr) at the instant where the curve attains the
singularity depends only on the 2-jet of the curve at the deugty. This allows us, using
piecewise analytic curves that have the same 2-jet at tlgrilginity as an integral curve oftp,

to obtain a controllability result equivalent to Theorgn 2see Propositiop 7.2).
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Lemma 7.1: Let y(-) and¥(-) be twoC? curves onw such thaty(ry) = J(7y) = 0, where0
is a conical intersection between and A, ., with 5(7) = () # 0 and5() = 7(m). Let
0(7) = (651 (7(1)), b5 (3(7))) @NdA(T) = (6541(3(7)), 3 (A(7)))- Thenlim, ., (n(7) —7(r)) =
0.

Proof: First of all, we remark thalty(7)—7(7)| = o((1—7)?) and|5(7)—~(7)| = o(|7—]).

As in the proof of Propositiorf 5.4, we can prove that therestexi’ > 0 such that for
every pointu € w \ {0} and any unitary vectow € R? the directional derivative alongv
satisfies||Ow@i(u)|| < C/|u|. Then we obtain thafi¢,(v(7)) — &/(7(7))|| = o(|T — 1l), | =
7,7+ 1. Moreover, by [I5) we know that the eigenvalues are Lipgadhita neighborhood of the
intersection.

From (Z8) we have
n(r) — (r) = {(¢5(v(7)) — cb;izg@)()ﬂ 57_1})[; (?(12)1512) $i41(7(7)))

L 66(0)), (G = %)H1+(72 72)H2)$511(7(7)))
A1 (7(7)) = A (v(7)

)
A B ) 6y 1) = )
% (17)) = A7)
~ ’Y EY ~ 1 1
GO0 Gt + 8600 (5 =507~ o) )

By previous estimates it follows that all the terms in théntipand side of the equation above

go to zero as goes tory. 0]

Proposition 7.2: Let u = 0 be a conical intersection between the eigenvalugs;; and
let @2, 9, , be limits ast — 0™ of the eigenstates;(r(7)), ¢,;.1(r(7)), respectively, for(7) =
(1,0). Let v : [0,1] — w be a curve such that there existsc (0,1) with ~(7) = 0 if and
only if 7 = 7, v analytic on[0, o] and [, 1], and (") # 0. Let a_ anda, be the angles
describing respectively the inward and the outward tanglneiction at the singularity, as in
(B3). Assume that the integral curves &f having the same inward and outward tangents as
~ at the singularity possess also the same 2-jef asthe singularity. Then there exists > 0

such that for any > 0

1 (1/€) = pre™ ¢;(7(0)) — p2e™+1 61 (7(0))|| < Ce (39)
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whered;, ¥4, € R, 9¥(-) is the solution of equatior{](4) witky(0) = ¢;(v(0)) corresponding

to the controlu : [0, 1/¢] — w defined byu(t) = v(et), and

pr=|cos(F(ay) —d(a))| p2 = [sin(I(ay) —F(a))],

with ¥(-) defined as in Proposition 4.5.

Proof: By Lemma[7.] the function(r) = (¢,.1(7(7)), d;(7(7))) goes to zero as goes

to 7o. Moreover, the analyticity of/(-) easily implies that the ternd: (b(s)v(s)/a(s)) appearing
in (38) is bounded. Thufu(r)| < Ce for a suitableC' > 0.
Then || M. (70,0) — id|| is of ordere, where M. is the evolution operator defined above. We

can obtain an analogous estimate fa. (7, 7,) —id||, 7 > 7,. This completes the proof. ]
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