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Concise Derivation of Scattering Function from

Channel Entropy Maximization

Francgois-Xavier Sochele&y Student Member, IEEEChristophe Ladt, Member, IEEE and

Jean-Michel Passerietix

Abstract

In order to provide a concise time-varying SISO channel rhdtle principle of maximum entropy
is applied to scattering function derivation. The resgitimodel is driven by few parameters that are
expressed as moments such as the channel average poweDmpler spread. Physical interpretations
of the model outputs are discussed. In particular, it is shtdvat common Doppler spectra such as the
flat or the Jakes spectrum fit well into the maximum entropynfrork. The Matlab code corresponding

to the proposed model is available at http://perso.telebostagne.eu/fxsocheleau/software.

Index Terms

Scattering function, entropy, channel model, propagatimerwater acoustic communications

. INTRODUCTION

The scattering function (SF) fully characterizes the secaudé+ostatistics of a random, linear time-
varying process that satisfies the wide-sense stationargrighated scattering (WSSUS) assumption
[1]. In the context of mobile communication, the SF exprestes time-frequency selectivity of a
fading channel so that its knowledge is of practical inteiesnumerous applications such as code
design [2], multicarrier system design [3], channel sirtiata[4] or channel capacity analysis [5]. The
performance of these applications depends on the chosen $SFhis usually either provided by
theoretical considerations on the physical environmehbfoby direct estimation during ongoing data
transmission [7], or results from real-world channel sangdexperiments [8]. These various approaches

mainly rely on a given state of channel knowledge and a pessumptions.
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In some applications where few data are available, intiiésumptions are often preponderant to
fulfill the lack of knowledge on the channel properties. A velet illustration is underwater acoustic
communication channel modeling where, unlike radio chbmribere is no consensus on the statistical
characterization of both the probability distribution ahé power spectral density of the fading process
[9]. Such ad-hoc model construction may resultinoonsistenciesin our context,consistentmodeling
is defined as the requirement that independent modelers ldtkame state of channel knowledge must
obtain identical models. The consistency argument is a keyneht in statistical inference [10]. In
[11], Debbahet al. address the question of consistent channel modeling i i§gBayesian probability
theory and the principle of maximum entropy introduced i@][by Jaynes. Classically, the maximum
entropy problem consists in deriving a probability densityction (pdf) from a finite set of expectations.
Maximizing entropy is shown to be the only way to provide asistent model that is maximally non-
committal with respect to unavailable information [13]. doising the model with the greatest entropy
therefore avoids the arbitrary introduction of informatithat is not known.

As emphasized in [12], maximum entropy modeling is not meantepresent the physical reality
but rather a state of knowledge of this reality. A cruciakt#s then to determine the quantity and the
kind of information that the model needs in order to charaagethe environment to model with enough
accuracy. ldeally, modelers seek to constraint their madiél parameters that are very informative and
easy to know or to estimate for a given environment. This é&eatdm is mainly justified by the will to
provide an accurate channel model that does not requireutiffi-obtain environmental parameters.

The model presented in [11] is very general and considersIgalipersive channels in a multiple-
input multiple-output (MIMO) context. Its derivation reb on spatial considerations and requires some
knowledge on the angles of departure (resp. arrival) betvibe scatterers and the transmitting (resp.
receiving) antenna. While spatial considerations suitMh&lO context very well, it may no be the case
for single-input single-output (SISO) channels. In pragtibe distribution of the angles of departure or
arrival can hardly be estimated and is rarely known a prioa iSISO scenario, expect for rich scattering
environments (dense urban or indoor communications) waerisotropic radiation is assumed.

As an alternative to [11] in a SISO context, we here propose areianodel where the time fluctuations
are derived from the knowledge of some moments of the SF rétlaerfrom a given knowledge on the
distribution of the angles of departure or arrival. In thexmaum entropy framework, SF moments prove
to be relevant parameters to constraint SISO models sincedteyi) very informative, in the sense
that only a few moments are needed to get an accurate mogdeliy to estimate when real data are

available and (iii) easy to physically interpret so thatittegder of magnitude is usually known a priori
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for a given environment. A typical example addressed in plaiger is the derivation of SF with the only
knowledge of the channel average power and Doppler spre&ishown that this approach leads to a
concisemodel where the channel behavior can be expressed throughafgéables.

The paper is organized as follows. Sectian Il reviews somelwdmsiracterizations of WSSUS channels.
After recalling some results of [11] to model the channel,gtie principle of maximum entropy is
applied to SF derivation in section Ill. In section 1V, we sheame outputs provided by the resulting
channel model and give a physical interpretation of theiragay. Finally, conclusions are given in
section V. Additionally, the Matlab code correspondinghe model is available at http:/perso.telecom-
bretagne.eu/fxsocheleau/software.

Il. WSSUSCHANNEL MODEL

A propagation channel can be usually modeled as a lineaormaniine-varying system defined by its
impulse responsé(r,t) or equivalently by its (delay-Doppler) spreading functifr, ») such that the
input z(¢) and the outpuy(t) of this system satisfy

y(t) = /_ Z hr, D (t — 7)dr = /_ O; /_ Z S(r V)t — 7)™ drdy. (1)

S(r,v) characterizes the attenuation and scatterer reflectivitycgasted with paths of delayand Doppler
v. It verifies S(r,v) = [*_ h(r,t)e 2™ dL.

Generally, a statistical characterization of the chansgdreferred to a deterministic description since
it provides a more concise channel representation. In #de,c¢he impulse response is modeled as a two-
dimensional random process. The second-order statistitseathannel then depends on four variables.
A significant simplification is obtained by invoking the widerse stationary uncorrelated scattering
(WSSUS) assumption [1]. For WSSUS channels, the correlatiordiscesl from four to two dimensions

so that scatterers with different delay or different Dop@ee uncorrelated, i.e.,
E [S(T, v)S*(7, V’)} =C(r,v)é(r —7")o(v =1/ (2)
whereC(r,v) is the so-called scattering function defined as
C(r,v) =E[|S(r,v)]*] = /OO E [h(r,t)h* (1,t + At)] e 2™ AL AL, (3)

—00

In a baseband equivalent discrete-time setting, the chammet-output relation satisfies

yk = 3 hylkalk — 1 (4)
=0
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wherez k], y[k|, andh;[k] are sampled versions eft), y(t), andh(r,t), with sampling frequency larger
than the system bandwidtlh. denotes the total number of channel taps. The channel is asstmbe a
multi-variate random process expressed#g) = [holk], -, hr—1[k]].

In discrete-time, the scattering function becomes

+oo
Civ)= ) E[m[k]hj [k+ul]e” ™. (5)

U=—00

For fixed tol = Iy, C;,(v) corresponds to the power spectral density or Doppler popectsum of the

random process,, [k]. Note thatC;(v) is discrete in delay but continuous in Doppler.

I11. M AXIMUM ENTROPY MODELING
A. Gaussian channel model

The vast majority of models assume that the channel impulggonse is a Gaussian process. The
assumption usually relies on the physical argument thaaffixed delay the received signal is the sum
of the contribution of a large number of scattered reflectibmstead of being assumed, Gaussianity can
be formally justified in light of inductive inference and thaneiple of maximum entropy [11].

For instance, in the case where the only known informatiasutithe channel is that its total energy
is finite and equal t@r?, the channel probability density functid?(H) can be obtained by maximizing

the entropy

—/logP(H)dP(H) (6)
under the constraint that
L—1
/dP(H) — 1 and /Z 2 dP(H) = o, )
=0

Note that the indeX is voluntary omitted when there are no references to tinetae properties. This

maximization problem can be solved using the method of Lagranultipliers

L(P) = — / log P(H)dP(H) + o (1 _ / dP(H)> A <0'2 _ / Lz_l yhldep(H)> (8)
=0

and setting the functional derivative éf P) to O

L—1
(ﬂ_;lf):—logP(H)—l—a—)\lz;le:O. (9)
Solving the system of equations (7) and (9) then leads toandl Gaussian distributed channel taps [11],
i.e.,
1 L—1 L‘hl‘Q
P(H) = e H e o7, (10)
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As opposed to classical channel model derivation, Gausgias well as taps independence were not
prior assumptions but a consequence of the only constréifinite energy.

Each time a new information on the channel is available, thdehof Eq. (10) can be refined. For
instance, in many applications the channel power-delafilprs known so that each taphas a power
given by E [|hl\2} = o7 + |s;|? wheres; = E[iy] is the expression of a potential specular component
(that can be null). In this case, the channel pdf that maxasihe entropy becomes

L-1 1 7|hl—sl‘2

P(H) = — . 11

(1) =11 ooy 1)
1=0

This result indicates that when the channel knowledge igdithto its first and second order statistics,

the less arbitrary model to implement according to the [iplecof maximum entropy is the Gaussian

model. A Gaussian pdf induces Rice or Rayleigh fading deipgndn whethers; is null or not.

B. Scattering function derivation

From the result of Eq! (11), it can be deduced that the joinbpgtof the multivariate random process
H can be expressed as the sum of the entropy of each prbgceBsus, maximizing the entropy df is
equivalent to maximizing the entropy of the differéntindependently. Therefore, the SF that maximizes
the entropy is obtained by independent derivation of thed@apspectrum of each channel tap. For this
reason and for the sake of readability the indés voluntary omitted throughout this subsection.

The dynamic of a stationary Gaussian process is fully charaed by its second order statistics or
“color” that is expressed under the stationary assumptioitsbpower spectral density or Doppler power
spectrumC(v) (see Eq.[(5)). Thanks to Kolmogorov, the entropy ratef a discrete-time Gaussian

processe&[k| can be expressed as a function of this power spectral deswsithiat [14]
h= 1log (2me) + 1 /1/2 log C(v)dv. (12)
2 2J 12
The processi[k] is implicitly assumed to be sampled at a period that verifiesSti's theorem such
that C'(v) has a bounded normalized suppprtin, Ymax] With —1/2 < vmin < v < vmax < 1/2.

To be consistent with the principle of maximum entropy agaldted previously, our objective is to
find, for each tap, th€ () that maximizes the entropy ratesubject to some constraints that translates
our state of knowledge of the channel time fluctuations. Ineganthis knowledge can be expressed for
each tap as a set of spectral momemntsf known functionsm,,(v), p € P where’P denotes the set of

constraint orders, i.e.,
p :/ my(v)C(v)dv. (13)

‘min
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In maximum entropy spectral analysis [15], it is classicabsumed that at leas{ equally-spaced
points of the autocorrelation function are known. In thisesg., corresponds to the autocorrelation
function p, = E [k [k] h* [k + p]] that can also be expressed as trigonometric spectral meraaoh that
my(v) = 2™ andP = {0,1,--- , N — 1}. Such representation of the channel may not be adapted
to concise modeling since it requires the knowledgéVotorrelation points. A shortcut toward concise
modeling could be to choos® small but this may not be a good option since it may not chareet
the channel with enough accuracy. An alternative approadb express our state of knowledge of the
channel time fluctuations in terms of geometrical moment$ shatm, () = v?. Such moments have
the main advantage of being easy to physically interprehabtheir order of magnitude is usually known
for a given environment. Typicallyy is the total average power @f[k], 11 is the barycenter of’(v)
(that can be seen as an indicator of spectral symmetry)@nelxpresses the root-mean-square (rms)
Doppler spread); of h [k] such thatDs = \/ua/po — (11/10)?.

Therefore, from Eqs (12) and (13), the analytical expressidheSF is obtained by solving, for each

tap, the following optimization problem

max rnaxlo C(v)dv,
max [ ogcw)

'min

subject to / " PCW)dy =y, p € P (14)

Vmin

As articulated in the previous subsection, the solutionr@iped thanks to the Lagrange multipliers

L(C) = / log C(v)dv — 3" Ay <Mp _ / wcmw) | (15)

peEP

By differentiatingL(C') with respect toC, we get

1
Clv) = =——. (16)
Zpep ApVP
The multipliers ), are then found by solving the set of non-linear equations
Vmax Vq
dv =g, ¥V q €P. (17)

Vmin ZPEP )\pyp
Depending on the s, an analytical solution of such system of equations is ireggmot straightforward

to obtain. Therefore, to facilitate the computation of theltmpliers \,, a numerical approach such as

the one presented in appendix A is advocated.

IV. | LLUSTRATIONS

Through three case studies, we analyze in this section theviwetof the Doppler spectrur@'(v) as

well as the entropy of the associated process when it is stgloje¢o various constraints. In particular, we
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analyze the maximum entropy model constrained by the sleoibments from a “spatial” perspective.
An example of practical application of the proposed modeall$® discussed. It shows, for instance, that
second-order moments can be very informative. As we focusantise modeling, the channel time
fluctuations are here only constrained by the spectral momemhat is homogeneous to the square of
the Doppler spread. Unless otherwise stated, in all theatg exampleSymin = —1/2, vmax = 1/2

and u is set to 1 (unitary power).

A. Flat Doppler Spectrum

The first question to answer when using the proposed method\Mkat is the time-varying channel
model maximally non-committal with respect to unavailaimfrmation when almost nothing is known
about its time fluctuations?”. The term “almost” expressesdba that even ifmin, vmaxand thew,, p > 1
are unknown, it is always possible to bound the channel dynas physical considerations. Typically,
Umin and vmax Can be upper-bounded by, that is obtained from the knowledge of the transmission
carrier frequencyf., the speed of wave propagatienand the maximum relative speed between the
transmitter and the receivefin: (max. car speed in urban communications, max. boat or AU\é&pe
in underwater communications etc.), ignit = vimit f/c. Moreover, to maximize the channel entropy,
the inphase and quadrature components of each tap have todoerelated which is equivalent to
considering symmetrical Doppler power spectrum, g, = —Vmax. The principle of maximum entropy
then attributes a uniform distribution gnax over [0, vimit]. ONcermax is randomly drawn and given that

nothing more is known about the channel dynanii¢y) is given, according to Eq. (16), by

Clv) =

= y —Vmax <V < Vmax- (18)
2Vmax

This flat Doppler spectrum proved to be the one that maximizesttiropy when there is (almost) no
prior on the channel dynamic. This is in total agreement withghysical interpretation of a flat Doppler
spectrum. As shown in [6], this spectrum corresponds to ai8eopic scattering environment where
the angles of arrival are uniformly distributed in both thevation and the azimuth plane. We recall that

the uniform distribution represents the state of maximunoignce according to [12].

B. Jakes Doppler Spectrum
The Jakes Doppler spectrum is widely used in mobile wirelespagation and is expressed igfi, =

C(v) (19)

1
T r/21- @)
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The Jakes spectrum is based on the assumption that the ahglet/al of the radio-waves at reception
are uniformly distributed ove, 2] in the azimuth plane. Thanks to this uniform distribution &wehn if
Eqg. (19) cannot be analytically expressed as in Eq. (16), gestsum should well fit into the maximum
entropy framework. To validate this hypothesis, the maximentropy model is constrained ly = 1/8,
the rms Doppler spread of Eq. (19) beiigy/8. Theoretically, there is an infinite number of spectrum
with pe = 1/8 but as shown in Figure 1, the one that maximizes the entropgrg close to the Jakes
spectrum. The maximum entropy spectrum gets even closerkas' Jahen a fourth-order constraint is

applied to our model.

C. Entropy rate vs Doppler spread

Figure! 2 presents the evolution of the entropy rate as a fumaif ;1o Because the Doppler spread
V2 cannot exceed the Doppler width equal(tehax— vmin) /2 = 1/2, u2 is upper-bounded by/4. The
first observation on this figure is that the overall maximum @pyris obtained foruy = 1/12 which
corresponds, in agreement with subsection IV-A, to a flat DeEpgpectrum. Moreover, for limit cases
whereps = 0 or 1/4, the entropy tends te-oo. These cases correspond to a Doppler spectrum that can
be expressed as Dirac delta functions. According to [14,ntiinimum mean-squared error (MMSE) of

the best estimator of a sample of the process given the infiaise is

MMSE — — 22h (20)
2

e
so that an entropy equalingoo leads to a totally predictable process. Another strong cisauthat can
be made from this equation is that when there is no noise, ¢n®nmance of causal adaptive channel
estimation is only dependent on the channel entropy andinettly on the Doppler spread or the shape
of the Doppler spectrum. Channels with a different SF but \tlih same entropy rate can theoretically
be estimated with the same performance. Figure 3 shows tw@lBoppectra with the same entropy of

1.8 but with a different shape and a different Doppler spread

D. Example of a practical application

The proposed model can be of practical interest in varioudicgtipns such as those listed in the
introduction. For instance, from the only knowledge of sam@ments of the SF, it is possible to generate

channel impulse response realizations that can be usehélpthe design of communication systems

The channel realizations can be generated from the SF using suimiebils methods or by Gaussian processes filtering

[4].
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This is particularly relevant in domains like underwater ustics where the research community agrees
on the order of magnitude of some moments such as the Dopptead but where there is yet no
consensus on the full statistical characterization of th@nael [9]. Figure 4-(a) shows an example of a
real underwater acoustic channel probed in the Atlantiaocat 17.5 kHz and over a bandwidth of 3
kHz. Figure 4-(b) displays a realization of the maximum epyrsimulator trying to “mimic” this real
channel. The simulator is constrained with the values:@f 1o and vmax measured on the real data
recorded at sea. To assess the accuracy of the simulatopmwweace in Figure 5 the level crossing rate
(LCR) of the original channel with the one resulting from th@ximum entropy model. The LCR is
defined as the rate at which the channel envelope crossesifiezpkavel p in the positive slope [4]. This
statistics, that depends on the power spectral densityeofating process, is a way of characterizing the
severity of the fading over the time and is commonly emplayedesign interleavers and error-correcting
codes. It can be seen that there is a good match between traticteof the two channels. Note that
the channel impulse response probed at sea is a singleatgatiof the underlying random process so
that its fading statistics are estimated with a large vagawhereas the results of the maximum entropy
model are averaged over 100 realizations. Complementatiststs (not shown here) such as average
fade durations or bit error rates have been measured andnalsate that bounding the parameters to
the second-order moments (ieip{P} = 2) usually convey enough information to make the model

accurate.
V. CONCLUSION

Throughout this paper, we have shown that the maximum entpojngiple proves to be a relevant
framework for a concise and consistent derivation of thdtedag function. An exhaustive knowledge
of the propagation phenomena is not required to obtain ameanodel. Fading statistics measurements
indicate that limiting this knowledge to the channel averpgwer and Doppler spread can lead to accurate

models.
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APPENDIXA

NUMERICAL SOLUTION OF EQUATION(17)

To obtain the lagrange multipliers, of Eq. (17), a simple gradient based method as the one presente

in [16] is suggested. The vectdx = [\,],cp is found by solving the system
Vmax Vq

Vmin ZPEP Apyp
This equation is solved iteratively by first developing thg(A) in Taylor’s series around an initial vector
AL,

Gy(A) = dv = pg, q € P.

Gy(A) = G4(A”) + (A — A%)Tgrad(G,(A)) 4 _yo)-
If ¢ andv are defined as

0G4 (A
e=A—-A" v= = Gq(AO)]qTGP andl = (ygn) = ﬁ
M/ (A=A9)

thenI'e = v. Note that the matriX® is symmetric so that

Vmax Vq+n
Vmin (ZPGP )\pyp)
At each iteratione is computed and a new’ that verifiesA® = A — ¢ is set. The iterations continue

until € is small enough.
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Fig. 1. Jakes Doppler spectrum approximated by entropy maximization.
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Fig. 2. Channel entropy as a function of the second-order spectriademt /..

Fig. 3. lllustration of two Doppler spectra with a different Doppler spreasliting in Gaussian processes with the same

entropy.u2 = 0.0355 for the plain line spectrum and, = 0.1531 for the dash-dot line spectrum.
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(b)

Fig. 4. Comparison between a real underwater acoustic channedgiolthe Atlantic ocean and a realization of its equivalent
maximum entropy model. (a) Real probed channel, (b) Maximum eptobyannel. The rms Doppler spread of each tap is
estimated using the algorithm presented in [17] and ranges from 0.7 tdZ3.8he maximum Doppler frequency is measured

using the method detailed in [18] and is equal to 6.5 Hz.
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Fig. 5. Fading statistics comparison between a real underwater acoustinet probed in the Atlantic ocean and a realization
of its equivalent maximum entropy model.
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