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Concise Derivation of Scattering Function from

Channel Entropy Maximization
François-Xavier Socheleau∗‡, Student Member, IEEE, Christophe Laot∗, Member, IEEE, and

Jean-Michel Passerieux‡

Abstract

In order to provide a concise time-varying SISO channel model, the principle of maximum entropy

is applied to scattering function derivation. The resulting model is driven by few parameters that are

expressed as moments such as the channel average power or theDoppler spread. Physical interpretations

of the model outputs are discussed. In particular, it is shown that common Doppler spectra such as the

flat or the Jakes spectrum fit well into the maximum entropy framework. The Matlab code corresponding

to the proposed model is available at http://perso.telecom-bretagne.eu/fxsocheleau/software.

Index Terms
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I. I NTRODUCTION

The scattering function (SF) fully characterizes the second-order statistics of a random, linear time-

varying process that satisfies the wide-sense stationary uncorrelated scattering (WSSUS) assumption

[1]. In the context of mobile communication, the SF expressesthe time-frequency selectivity of a

fading channel so that its knowledge is of practical interest in numerous applications such as code

design [2], multicarrier system design [3], channel simulation [4] or channel capacity analysis [5]. The

performance of these applications depends on the chosen SF. This SF is usually either provided by

theoretical considerations on the physical environment [6] or by direct estimation during ongoing data

transmission [7], or results from real-world channel sounding experiments [8]. These various approaches

mainly rely on a given state of channel knowledge and a prioriassumptions.
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In some applications where few data are available, intuitive assumptions are often preponderant to

fulfill the lack of knowledge on the channel properties. A relevant illustration is underwater acoustic

communication channel modeling where, unlike radio channels, there is no consensus on the statistical

characterization of both the probability distribution andthe power spectral density of the fading process

[9]. Such ad-hoc model construction may result ininconsistencies. In our context,consistentmodeling

is defined as the requirement that independent modelers with the same state of channel knowledge must

obtain identical models. The consistency argument is a key element in statistical inference [10]. In

[11], Debbahet al. address the question of consistent channel modeling in light of Bayesian probability

theory and the principle of maximum entropy introduced in [12] by Jaynes. Classically, the maximum

entropy problem consists in deriving a probability densityfunction (pdf) from a finite set of expectations.

Maximizing entropy is shown to be the only way to provide a consistent model that is maximally non-

committal with respect to unavailable information [13]. Choosing the model with the greatest entropy

therefore avoids the arbitrary introduction of information that is not known.

As emphasized in [12], maximum entropy modeling is not meantto represent the physical reality

but rather a state of knowledge of this reality. A crucial task is then to determine the quantity and the

kind of information that the model needs in order to characterize the environment to model with enough

accuracy. Ideally, modelers seek to constraint their modelwith parameters that are very informative and

easy to know or to estimate for a given environment. This desideratum is mainly justified by the will to

provide an accurate channel model that does not require difficult-to-obtain environmental parameters.

The model presented in [11] is very general and considers doubly dispersive channels in a multiple-

input multiple-output (MIMO) context. Its derivation relies on spatial considerations and requires some

knowledge on the angles of departure (resp. arrival) between the scatterers and the transmitting (resp.

receiving) antenna. While spatial considerations suit theMIMO context very well, it may no be the case

for single-input single-output (SISO) channels. In practice, the distribution of the angles of departure or

arrival can hardly be estimated and is rarely known a priori in a SISO scenario, expect for rich scattering

environments (dense urban or indoor communications) wherean isotropic radiation is assumed.

As an alternative to [11] in a SISO context, we here propose a channel model where the time fluctuations

are derived from the knowledge of some moments of the SF ratherthan from a given knowledge on the

distribution of the angles of departure or arrival. In the maximum entropy framework, SF moments prove

to be relevant parameters to constraint SISO models since theyare (i) very informative, in the sense

that only a few moments are needed to get an accurate model (ii) easy to estimate when real data are

available and (iii) easy to physically interpret so that their order of magnitude is usually known a priori
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for a given environment. A typical example addressed in thispaper is the derivation of SF with the only

knowledge of the channel average power and Doppler spread. It is shown that this approach leads to a

concisemodel where the channel behavior can be expressed through few variables.

The paper is organized as follows. Section II reviews some basic characterizations of WSSUS channels.

After recalling some results of [11] to model the channel pdf, the principle of maximum entropy is

applied to SF derivation in section III. In section IV, we showsome outputs provided by the resulting

channel model and give a physical interpretation of their entropy. Finally, conclusions are given in

section V. Additionally, the Matlab code corresponding to the model is available at http://perso.telecom-

bretagne.eu/fxsocheleau/software.

II. WSSUSCHANNEL MODEL

A propagation channel can be usually modeled as a linear random time-varying system defined by its

impulse responseh(τ, t) or equivalently by its (delay-Doppler) spreading functionS(τ, ν) such that the

input x(t) and the outputy(t) of this system satisfy

y(t) =

∫ ∞

−∞
h(τ, t)x(t − τ)dτ =

∫ ∞

−∞

∫ ∞

−∞
S(τ, ν)x(t − τ)e2iπνtdτdν. (1)

S(τ, ν) characterizes the attenuation and scatterer reflectivity associated with paths of delayτ and Doppler

ν. It verifies S(τ, ν) =
∫∞
−∞ h(τ, t)e−2iπνtdt.

Generally, a statistical characterization of the channel is preferred to a deterministic description since

it provides a more concise channel representation. In this case, the impulse response is modeled as a two-

dimensional random process. The second-order statistics ofthe channel then depends on four variables.

A significant simplification is obtained by invoking the wide-sense stationary uncorrelated scattering

(WSSUS) assumption [1]. For WSSUS channels, the correlation is reduced from four to two dimensions

so that scatterers with different delay or different Doppler are uncorrelated, i.e.,

E
[

S(τ, ν)S∗(τ ′, ν ′)
]

= C(τ, ν)δ(τ − τ ′)δ(ν − ν ′) (2)

whereC(τ, ν) is the so-called scattering function defined as

C(τ, ν) = E
[

|S(τ, ν)|2
]

=

∫ ∞

−∞
E [h(τ, t)h∗(τ, t + ∆t)] e−2iπν∆td∆t. (3)

In a baseband equivalent discrete-time setting, the channel input-output relation satisfies

y[k] =

L−1
∑

l=0

hl[k]x[k − l] (4)
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wherex[k], y[k], andhl[k] are sampled versions ofx(t), y(t), andh(τ, t), with sampling frequency larger

than the system bandwidth.L denotes the total number of channel taps. The channel is assumed to be a

multi-variate random process expressed asH(k) = [h0[k], · · · , hL−1[k]].

In discrete-time, the scattering function becomes

Cl(ν) =
+∞
∑

u=−∞

E [hl [k] h∗
l [k + u]] e−2iπνu. (5)

For l fixed to l = l0, Cl0(ν) corresponds to the power spectral density or Doppler power spectrum of the

random processhl0 [k]. Note thatCl(ν) is discrete in delay but continuous in Doppler.

III. M AXIMUM ENTROPY MODELING

A. Gaussian channel model

The vast majority of models assume that the channel impulse response is a Gaussian process. The

assumption usually relies on the physical argument that fora fixed delay the received signal is the sum

of the contribution of a large number of scattered reflections. Instead of being assumed, Gaussianity can

be formally justified in light of inductive inference and the principle of maximum entropy [11].

For instance, in the case where the only known information about the channel is that its total energy

is finite and equal toσ2, the channel probability density functionP (H) can be obtained by maximizing

the entropy

−
∫

log P (H)dP (H) (6)

under the constraint that
∫

dP (H) = 1 and
∫ L−1
∑

l=0

|hl|2 dP (H) = σ
2. (7)

Note that the indexk is voluntary omitted when there are no references to time-related properties. This

maximization problem can be solved using the method of Lagrange multipliers

L(P ) = −
∫

log P (H)dP (H) + α

(

1 −
∫

dP (H)

)

+ λ

(

σ
2 −

∫ L−1
∑

l=0

|hl|2 dP (H)

)

(8)

and setting the functional derivative ofL(P ) to 0

δL(P )

δP
= − log P (H) − 1 − α − λ

L−1
∑

l=0

|hl|2 = 0. (9)

Solving the system of equations (7) and (9) then leads to i.i.dand Gaussian distributed channel taps [11],

i.e.,

P (H) =
1

(πσ
2/L)L

L−1
∏

l=0

e−
L|hl|

2

σ2 . (10)
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As opposed to classical channel model derivation, Gaussianity as well as taps independence were not

prior assumptions but a consequence of the only constraint of finite energy.

Each time a new information on the channel is available, the model of Eq. (10) can be refined. For

instance, in many applications the channel power-delay profile is known so that each tapl has a power

given by E

[

|hl|2
]

= σ2
l + |sl|2 wheresl = E[hl] is the expression of a potential specular component

(that can be null). In this case, the channel pdf that maximizes the entropy becomes

P (H) =
L−1
∏

l=0

1

(πσ2
l )

e
−
|hl−sl|

2

σ2

l . (11)

This result indicates that when the channel knowledge is limited to its first and second order statistics,

the less arbitrary model to implement according to the principle of maximum entropy is the Gaussian

model. A Gaussian pdf induces Rice or Rayleigh fading depending on whethersl is null or not.

B. Scattering function derivation

From the result of Eq. (11), it can be deduced that the joint entropy of the multivariate random process

H can be expressed as the sum of the entropy of each processhl. Thus, maximizing the entropy ofH is

equivalent to maximizing the entropy of the differenthl independently. Therefore, the SF that maximizes

the entropy is obtained by independent derivation of the Doppler spectrum of each channel tap. For this

reason and for the sake of readability the indexl is voluntary omitted throughout this subsection.

The dynamic of a stationary Gaussian process is fully characterized by its second order statistics or

“color” that is expressed under the stationary assumption by its power spectral density or Doppler power

spectrumC(ν) (see Eq. (5)). Thanks to Kolmogorov, the entropy rateh̄ of a discrete-time Gaussian

processesh[k] can be expressed as a function of this power spectral densityso that [14]

h̄ =
1

2
log (2πe) +

1

2

∫ 1/2

−1/2
log C(ν)dν. (12)

The processh[k] is implicitly assumed to be sampled at a period that verifies Shannon’s theorem such

that C(ν) has a bounded normalized support[νmin, νmax] with −1/2 ≤ νmin ≤ ν ≤ νmax ≤ 1/2.

To be consistent with the principle of maximum entropy as articulated previously, our objective is to

find, for each tap, theC(ν) that maximizes the entropy ratēh subject to some constraints that translates

our state of knowledge of the channel time fluctuations. In general, this knowledge can be expressed for

each tap as a set of spectral momentsµp of known functionsmp(ν), p ∈ P whereP denotes the set of

constraint orders, i.e.,

µp =

∫ νmax

νmin

mp(ν)C(ν)dν. (13)
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In maximum entropy spectral analysis [15], it is classically assumed that at leastN equally-spaced

points of the autocorrelation function are known. In this case, µp corresponds to the autocorrelation

function µp = E [h [k] h∗ [k + p]] that can also be expressed as trigonometric spectral moments such that

mp(ν) = e2iπpν andP = {0, 1, · · · , N − 1}. Such representation of the channel may not be adapted

to concise modeling since it requires the knowledge ofN correlation points. A shortcut toward concise

modeling could be to chooseN small but this may not be a good option since it may not characterize

the channel with enough accuracy. An alternative approach is to express our state of knowledge of the

channel time fluctuations in terms of geometrical moments such thatmp(ν) = νp. Such moments have

the main advantage of being easy to physically interpret so that their order of magnitude is usually known

for a given environment. Typically,µ0 is the total average power ofh [k], µ1 is the barycenter ofC(ν)

(that can be seen as an indicator of spectral symmetry) andµ2 expresses the root-mean-square (rms)

Doppler spreadDs of h [k] such thatDs =
√

µ2/µ0 − (µ1/µ0)2.

Therefore, from Eqs (12) and (13), the analytical expression of the SF is obtained by solving, for each

tap, the following optimization problem

max
C(ν)

∫ νmax

νmin

log C(ν)dν,

subject to
∫ νmax

νmin

νpC(ν)dν = µp,∀ p ∈ P. (14)

As articulated in the previous subsection, the solution is provided thanks to the Lagrange multipliers

L(C) =

∫

log C(ν)dν −
∑

p∈P

λp

(

µp −
∫

νpC(ν)dν

)

. (15)

By differentiatingL(C) with respect toC, we get

C(ν) =
1

∑

p∈P λpνp
. (16)

The multipliersλp are then found by solving the set of non-linear equations
∫ νmax

νmin

νq

∑

p∈P λpνp
dν = µq, ∀ q ∈ P. (17)

Depending on the setP, an analytical solution of such system of equations is in general not straightforward

to obtain. Therefore, to facilitate the computation of the multipliers λp, a numerical approach such as

the one presented in appendix A is advocated.

IV. I LLUSTRATIONS

Through three case studies, we analyze in this section the behavior of the Doppler spectrumC(ν) as

well as the entropy of the associated process when it is subjected to various constraints. In particular, we
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analyze the maximum entropy model constrained by the spectral moments from a “spatial” perspective.

An example of practical application of the proposed model isalso discussed. It shows, for instance, that

second-order moments can be very informative. As we focus onconcise modeling, the channel time

fluctuations are here only constrained by the spectral momentµ2 that is homogeneous to the square of

the Doppler spread. Unless otherwise stated, in all the following examples,νmin = −1/2, νmax = 1/2

andµ0 is set to 1 (unitary power).

A. Flat Doppler Spectrum

The first question to answer when using the proposed method is: “What is the time-varying channel

model maximally non-committal with respect to unavailableinformation when almost nothing is known

about its time fluctuations?”. The term “almost” expresses theidea that even ifνmin, νmax and theµp, p ≥ 1

are unknown, it is always possible to bound the channel dynamic by physical considerations. Typically,

νmin and νmax can be upper-bounded byνlimit that is obtained from the knowledge of the transmission

carrier frequencyfc, the speed of wave propagationc and the maximum relative speed between the

transmitter and the receivervlimit (max. car speed in urban communications, max. boat or AUV speed

in underwater communications etc.), i.eνlimit = vlimitfc/c. Moreover, to maximize the channel entropy,

the inphase and quadrature components of each tap have to be uncorrelated which is equivalent to

considering symmetrical Doppler power spectrum, i.e.νmin = −νmax. The principle of maximum entropy

then attributes a uniform distribution toνmax over [0, νlimit ]. Onceνmax is randomly drawn and given that

nothing more is known about the channel dynamic,C(ν) is given, according to Eq. (16), by

C(ν) =
1

2νmax
, −νmax ≤ ν ≤ νmax. (18)

This flat Doppler spectrum proved to be the one that maximizes the entropy when there is (almost) no

prior on the channel dynamic. This is in total agreement with the physical interpretation of a flat Doppler

spectrum. As shown in [6], this spectrum corresponds to a 3-Disotropic scattering environment where

the angles of arrival are uniformly distributed in both the elevation and the azimuth plane. We recall that

the uniform distribution represents the state of maximum ignorance according to [12].

B. Jakes Doppler Spectrum

The Jakes Doppler spectrum is widely used in mobile wireless propagation and is expressed forνmin =

−1/2, νmax = 1/2 andµ0 = 1 as

C(ν) =
1

π/2
√

1 − (2ν)2
. (19)
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The Jakes spectrum is based on the assumption that the angles of arrival of the radio-waves at reception

are uniformly distributed over[0, 2π] in the azimuth plane. Thanks to this uniform distribution andeven if

Eq. (19) cannot be analytically expressed as in Eq. (16), this spectrum should well fit into the maximum

entropy framework. To validate this hypothesis, the maximum entropy model is constrained byµ2 = 1/8,

the rms Doppler spread of Eq. (19) being1/
√

8. Theoretically, there is an infinite number of spectrum

with µ2 = 1/8 but as shown in Figure 1, the one that maximizes the entropy is very close to the Jakes

spectrum. The maximum entropy spectrum gets even closer to Jakes’ when a fourth-order constraint is

applied to our model.

C. Entropy rate vs Doppler spread

Figure 2 presents the evolution of the entropy rate as a function of µ2. Because the Doppler spread
√

µ2 cannot exceed the Doppler width equal to(νmax− νmin)/2 = 1/2, µ2 is upper-bounded by1/4. The

first observation on this figure is that the overall maximum entropy is obtained forµ2 = 1/12 which

corresponds, in agreement with subsection IV-A, to a flat Doppler spectrum. Moreover, for limit cases

whereµ2 = 0 or 1/4, the entropy tends to−∞. These cases correspond to a Doppler spectrum that can

be expressed as Dirac delta functions. According to [14], the minimum mean-squared error (MMSE) of

the best estimator of a sample of the process given the infinitepast is

MMSE =
1

2πe
22h̄ (20)

so that an entropy equaling−∞ leads to a totally predictable process. Another strong deduction that can

be made from this equation is that when there is no noise, the performance of causal adaptive channel

estimation is only dependent on the channel entropy and not directly on the Doppler spread or the shape

of the Doppler spectrum. Channels with a different SF but withthe same entropy rate can theoretically

be estimated with the same performance. Figure 3 shows two Doppler spectra with the same entropy of

1.8 but with a different shape and a different Doppler spread.

D. Example of a practical application

The proposed model can be of practical interest in various applications such as those listed in the

introduction. For instance, from the only knowledge of somemoments of the SF, it is possible to generate

channel impulse response realizations that can be useful tohelp the design of communication systems1.

1The channel realizations can be generated from the SF using sum-of-sinusoids methods or by Gaussian processes filtering

[4].

April 13, 2010 DRAFT



9

This is particularly relevant in domains like underwater acoustics where the research community agrees

on the order of magnitude of some moments such as the Doppler spread but where there is yet no

consensus on the full statistical characterization of the channel [9]. Figure 4-(a) shows an example of a

real underwater acoustic channel probed in the Atlantic ocean at 17.5 kHz and over a bandwidth of 3

kHz. Figure 4-(b) displays a realization of the maximum entropy simulator trying to “mimic” this real

channel. The simulator is constrained with the values ofµ0, µ2 and νmax measured on the real data

recorded at sea. To assess the accuracy of the simulator, we compare in Figure 5 the level crossing rate

(LCR) of the original channel with the one resulting from the maximum entropy model. The LCR is

defined as the rate at which the channel envelope crosses a specified levelρ in the positive slope [4]. This

statistics, that depends on the power spectral density of the fading process, is a way of characterizing the

severity of the fading over the time and is commonly employedto design interleavers and error-correcting

codes. It can be seen that there is a good match between the statistics of the two channels. Note that

the channel impulse response probed at sea is a single realization of the underlying random process so

that its fading statistics are estimated with a large variance whereas the results of the maximum entropy

model are averaged over 100 realizations. Complementary statistics (not shown here) such as average

fade durations or bit error rates have been measured and alsoindicate that bounding the parameters to

the second-order moments (i.e.sup{P} = 2) usually convey enough information to make the model

accurate.
V. CONCLUSION

Throughout this paper, we have shown that the maximum entropyprinciple proves to be a relevant

framework for a concise and consistent derivation of the scattering function. An exhaustive knowledge

of the propagation phenomena is not required to obtain a channel model. Fading statistics measurements

indicate that limiting this knowledge to the channel average power and Doppler spread can lead to accurate

models.
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APPENDIX A

NUMERICAL SOLUTION OF EQUATION (17)

To obtain the lagrange multipliersλp of Eq. (17), a simple gradient based method as the one presented

in [16] is suggested. The vectorΛ = [λp]p∈P is found by solving the system

Gq(Λ) =

∫ νmax

νmin

νq

∑

p∈P λpνp
dν = µq, q ∈ P.

This equation is solved iteratively by first developing theGq(Λ) in Taylor’s series around an initial vector

Λ
0.

Gq(Λ) ≈ Gq(Λ
0) + (Λ − Λ

0)T grad(Gq(Λ))(Λ=Λ
0) .

If ǫ andv are defined as

ǫ = Λ − Λ
0, v = [µq − Gq(Λ

0)]Tq∈P andΓ = (γqn) =

(

∂Gq(Λ)

∂λn

)

(Λ=Λ
0)

thenΓǫ = v. Note that the matrixΓ is symmetric so that

γqn = γnq = −
∫ νmax

νmin

νq+n

(

∑

p∈P λpνp
)2 dν.

At each iteration,ǫ is computed and a newΛ0 that verifiesΛ0 = Λ − ǫ is set. The iterations continue

until ǫ is small enough.
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(b)

Fig. 4. Comparison between a real underwater acoustic channel probed in the Atlantic ocean and a realization of its equivalent

maximum entropy model. (a) Real probed channel, (b) Maximum entropy channel. The rms Doppler spread of each tap is

estimated using the algorithm presented in [17] and ranges from 0.7 to 3.8Hz. The maximum Doppler frequency is measured

using the method detailed in [18] and is equal to 6.5 Hz.
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Fig. 5. Fading statistics comparison between a real underwater acoustic channel probed in the Atlantic ocean and a realization

of its equivalent maximum entropy model.
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