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CONSTRUCTIBLE SHEAVES ON AFFINE GRASSMANNIANS
AND GEOMETRY OF THE DUAL NILPOTENT CONE

PRAMOD N. ACHAR AND SIMON RICHE

Abstract. In this paper we study the derived category of sheaves on the affine

Grassmannian of a complex reductive group Ǧ, contructible with respect to the
stratification by Ǧ(C[[x]])-orbits. Following ideas of Ginzburg and Arkhipov–

Bezrukavnikov–Ginzburg, we describe this category (and a mixed version) in

terms of coherent sheaves on the nilpotent cone of the Langlangs dual re-
ductive group G. We also show, in the mixed case, that restriction to the

nilpotent cone of a Levi subgroup corresponds to hyperbolic localization on

affine Grassmannians.

1. Introduction

1.1. Let Ǧ be a complex connected reductive group, and let

GrǦ := Ǧ(K)/Ǧ(O)

be the associated affine Grassmannian (where K = C((x)) and O = C[[x]]). The
Satake equivalence is an equivalence of tensor categories

SG : Rep(G) ∼−→ PǦ(O)-eq(GrǦ)

between the category PǦ(O)-eq(GrǦ) of Ǧ(O)-equivariant perverse sheaves on GrǦ
(endowed with the convolution product) and the category Rep(G) of finite-dimen-
sional G-modules (endowed with the tensor product), where G is the complex re-
ductive group which is Langlands dual to Ǧ. This equivalence is “functorial with
respect to restriction to a Levi” in the sense that, if L ⊂ G is a Levi subgroup
and Ľ ⊂ Ǧ a dual Levi subgroup, the restriction functor Rep(G)→ Rep(L) can be
realized geometrically as a (renormalized) hyperbolic localization functor

RG
L : PǦ(O)-eq(GrǦ) → PĽ(O)-eq(GrĽ)

in the sense of Braden [Bra].
The forgetful functor

PǦ(O)-eq(GrǦ) → PǦ(O)-mon(GrǦ),

where PǦ(O)-mon(GrǦ) is the category of perverse sheaves constructible with respect
to the stratification by Ǧ(O)-orbits, is an equivalence of categories. Hence the cat-
egory PǦ(O)-eq(GrǦ) is naturally the heart of a t-structure on the full subcategory
Db
Ǧ(O)-mon

(GrǦ) of the derived category of constructible sheaves on GrǦ whose ob-
jects have their cohomology sheaves constructible with respect to the stratification
by Ǧ(O)-orbits. Therefore, one can ask two natural questions:

(1) Is it possible to describe the category Db
Ǧ(O)-mon

(GrǦ) in terms of the ge-
ometry of the group G?

(2) Is this description functorial with respect to restriction to a Levi subgroup?
1
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1.2. First, consider question (1). In [G2], Ginzburg has explained how to describe
morphisms in Db

Ǧ(O)-mon
(GrǦ) between shifts of simple objects of PǦ(O)-mon(GrǦ),

in terms of coherent sheaves on the nilpotent cone NG of G. The next step towards
answering the question is to construct a functor from the category Db

Ǧ(O)-mon
(GrǦ)

to a certain category related to coherent sheaves on NG. This question is rather
subtle, due to the lack of extra structure on the category Db

Ǧ(O)-mon
(GrǦ) (such as

a convolution product). However, one can adapt the constructions of Arkhipov–
Bezrukavnikov–Ginzburg in [ABG] to construct a functor from Db

Ǧ(O)-mon
(GrǦ) to

DGCohGfree(NG), where DGCohGfree(NG) is a certain modified version of the derived
category of G-equivariant coherent sheaves on NG, where G acts on NG by conju-
gation (see §2.2 below for a precise definition). Then, it follows from Ginzburg’s
result that

(1.1) FG : Db
Ǧ(O)-mon

(GrǦ) ∼−→ DGCohGfree(NG)

is an equivalence of triangulated categories.
Note that this result can be deduced directly from the results of [ABG] in the case

G is semisimple of adjoint type. Instead, we give two direct proofs of equivalence
(1.1). The first one is based on the same construction as in [ABG], but is slightly
simpler. This construction uses a refinement of the stratification by Ǧ(O)-orbits,
namely the stratification by orbits of an Iwahori subgroup of Ǧ(O). The latter is
better-behaved than the former, e.g. because, due to results of Beilinson–Ginzburg–
Soergel in [BGS], the category of perverse sheaves for this stratification has enough
projectives, and its derived category is equivalent to the associated constructible
derived category. Another central argument is the formality of a certain dg-algebra,
see §3.4.

Our second proof of equivalence (1.1), inspired by the methods of [BF], is com-
pletely formal, and based on the notion of enhanced triangulated category. The
main argument is again a formality result (at the categorical level), similar to the
one used in the first proof.

1.3. Now, consider question (2). Here our answer is less satisfactory. The functor
RG
L induces a triangulated functor

RG
L : Db

Ǧ(O)-mon
(GrǦ) → Db

Ľ(O)-mon
(GrĽ).

On the coherent side of the picture, the natural functor to consider is the inverse
image functor

(iGL )∗ : DGCohGfree(NG) → DGCohLfree(NL)

for the inclusion NL ↪→ NG. It would be natural to expect that there exists an
isomorphism of functors

(1.2) (iGL )∗ ◦ FG ∼= FL ◦RG
L .

However, we were not able to prove this fact. More precisely, it is easy to check
that the images of perverse sheaves under both functors appearing in (1.2) coincide.
It can also be checked (see Proposition 6.7) that the action of both functors on
morphisms between shifts of perverse sheaves can be identified. However, we were
not able to construct a morphism of functors between (iGL )∗ ◦FG and FL ◦RG

L . The
main reason is that the functor RG

L is not well-behaved on the category of perverse
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sheaves constructible with respect to orbits of an Iwahori subgroup, and hence is
“not compatible with the construction of FG.”

To be able to give an answer to (a variant of) question (2), we have to introduce
more rigidity (or more structure) on the category Db

Ǧ(O)-mon
(GrǦ). This rigidity

is provided by an additional grading, related to weights of Frobenius. In fact,
we replace the category Db

Ǧ(O)-mon
(GrǦ) by its “mixed version” Dmix

Ǧ(O)-mon
(GrǦ),

defined and studied (in a general context) in [AR]. (This definition is based in an
essential way on the results of [BGS].) An easy generalization of the constructions
alluded to above yields an equivalence of categories

(1.3) Fmix
G : Dmix

Ǧ(O)-mon
(GrǦ) ∼−→ Db

freeCohG×Gm(NG),

where Db
freeCohG×Gm(NG) is a certain subcategory of the derived category of G×

Gm-equivariant coherent sheaves onNG, where Gm acts onNG by dilatation. (Note
that a similar construction was already considered in [ABG].)

Using again general constructions from [AR], one can define a “mixed version”

RG,mix
L : Dmix

Ǧ(O)-mon
(GrǦ) → Dmix

Ľ(O)-mon
(GrĽ)

of the functor RG
L . On the coherent side of the picture, one again has an inverse

image functor

(iGL )∗mix : Db
freeCohG×Gm(NG) → Db

freeCohL×Gm(NL).

Our main result is the proof of an isomorphism of functors

(1.4) (iGL )∗mix ◦ Fmix
G

∼= Fmix
L ◦RG,mix

L .

This proof is based on the observation that the category Db
freeCohG×Gm(NG) is

the bounded homotopy category of an Orlov category in the sense of [AR]. Then
(1.4) is a consequence of a general uniqueness result on functors between bounded
homotopy categories of Orlov categories.

1.4. Contents of the paper. In Section 2 we state precisely the main results of
this paper. In Section 3 we give a first proof of equivalences (1.1) and (1.3). In
Section 4 we give a second proof of these equivalences. In Section 5 we explain
the relation between our results and the main results of [ABG, Part II]. In Section
6, we prove isomorphism (1.4). This section also contains a new proof of a result
of Ginzburg [G2] on the geometric realization of the Brylinski–Kostant filtration
in terms of perverse sheaves, which may be of independent interest. In Sections 7
and 8 we study two related questions: the compatibility of our equivalence (1.3)
with convolution of (mixed) perverse sheaves, and compatibility of hyperbolic lo-
calization with convolution. Finally, in Section 9 we describe some of our objects
of study more concretely in the case Ǧ = SL(2).

1.5. Conventions. If X is a complex algebraic variety endowed with an action of
an algebraic group H, recall that an object F of the derived category of sheaves
on X is said to be H-monodromic if for any i ∈ Z, the sheaf Hi(F) is con-
structible with respect to a stratification whose strata are H-stable. We denote
by Db

H-mon(X) the subcategory of the derived category of sheaves on X whose ob-
jects are H-monodromic, and by PH-mon(X) the subcategory of perverse sheaves.
We use the same terminology and notation for Q`-sheaves on varieties defined over
an algebraically closed field of characteristic p 6= l. We also denote by Db

H-eq(X)



4 PRAMOD N. ACHAR AND SIMON RICHE

the equivariant derived category of sheaves on X (see [BL]), and by PH-eq(X) the
subcategory of perverse sheaves.

We will often work with Q`-sheaves on varieties defined over a finite field Fp,
where p 6= l is prime. For our considerations, the choice of l and p is not important;
we fix it once and for all. We fix a square root of q in Q`, which defines a square
root of the Tate sheaf on any such variety. We denote for any i ∈ Z by 〈i〉 the
Tate twist (− i

2 ). We also fix an isomorphism Q`
∼= C. If X is a variety over Fp,

endowed with an action of an algebraic group H, we say that a perverse sheaf on X
is H-monodromic if its pull-back to X ×Spec(Fp) Spec(Fp) is H ×Spec(Fp) Spec(Fp)-
monodromic.

For any dg-algebra A endowed with an action of an algebraic group H, we denote
by DGModH(A) the derived category of H-equivariant A-dg-modules. Recall that
a dgg-algebra is a bigraded algebra endowed with a differential of bidegree (1, 0),
which satisfies the usual Leibniz rule with respect to the first grading. (Here, “dgg”
stands for “differential graded graded.”) Similarly, a dgg-module over a dgg-algebra
is a dg-module over the underlying dg-algebra endowed with a compatible addi-
tional Z-grading. The first grading will be called “cohomological,” and the second
one “internal.” If A is a dgg-algebra, endowed with a compatible H-equivariant
structure, we denote by DGModH×Gm(A) the derived category of H-equivariant
A-dgg-modules. We denote by 〈n〉 the “internal shift” defined by the formula

(M〈n〉)ij = M i
j−n,

where subscripts indicate the internal grading, and superscripts indicate the coho-
mological grading.

For any algebraic group H, we denote by Z(H) the center of H.

1.6. Acknowledgements. The first author is grateful to the Université Clermont-
Ferrand II for its hospitality during a visit in June 2010, when much of the work in
this paper was carried out. This visit was supported by the CNRS and the ANR. In
addition, P.A. received support from NSA Grant No. H98230-09-1-0024 and NSF
Grant No. DMS-1001594, and S.R. is supported by ANR Grant No. ANR-09-JCJC-
0102-01.

2. Notation and statement of the main results

2.1. Reminder on the Satake equivalence. Let Ǧ be a complex connected
reductive algebraic group. Let O := C[[x]] be the ring of formal power series in an
indeterminate x, and let K := C((x)) be its quotient field. We will be interested in
the affine Grassmannian

GrǦ := Ǧ(K)/Ǧ(O).

This space has a natural structure of ind-variety, see [G2, MV, BD, Ga, NP], and
it is endowed with an action of the group-scheme Ǧ(O). We consider the reduced
ind-scheme structure on GrǦ. Consider the category

PǦ(O)-eq(GrǦ)

of Ǧ(O)-equivariant perverse sheaves on GrǦ, with coefficients in C. As usual, an
object of this category is understood to be an equivariant perverse sheaf on a closed
finite union of Ǧ(O)-orbits (which is a finite-dimensional algebraic variety).
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It is a well-known fundamental result (see [G2, MV]) that this category is en-
dowed with a natural convolution product ?, which makes it a (rigid) tensor cate-
gory, and that it is also equipped with a fiber functor

H•(−) := H•(GrǦ,−) : (PǦ(O)-eq(GrǦ), ?)→ (VectC,⊗).

(Here, VectC is the category of finite-dimensional C-vector spaces.)
Fix a maximal torus Ť ⊂ Ǧ, and a Borel subgroup B̌ ⊂ Ǧ containing Ť . The

constructions of [MV, Sections 11–12] provide a canonical complex connected re-
ductive algebraic group G which is dual to Ǧ in the sense of Langlands, and a
canonical equivalence SG of tensor categories which makes the following diagram
commutative:

(Rep(G),⊗)
SG //

For ''NNNNNNNNNNN
(PǦ(O)-eq(GrǦ), ?)

H•(−)vvmmmmmmmmmmmm

(VectC,⊗)

where Rep(G) is the category of finite-dimensional G-modules (endowed with the
natural tensor product), and For is the natural fiber functor (which forgets the
action of G).

Let Ǔ be the unipotent radical of B̌. Let X be the cocharacter lattice of Ť .
Then there is an inclusion

X = GrŤ ↪→ GrǦ.

We denote by Lλ the image of λ ∈ X. For λ ∈ X, we denote by Sλ the Ǔ(K)-orbit
of Lλ. Let also X̌ be the character lattice of Ť , and consider the (complex) torus
T := HomZ(X̌,C×), so that we have a canonical isomorphism X∗(T ) ∼= X. (In
other words, T is dual to Ť in the sense of Langlands.) We have a tautological
equivalence of tensor categories

ST : (Rep(T ),⊗)→ (PŤ (O)-eq(GrŤ ), ?).

Let Ř ⊂ X̌ be the root system of Ǧ. The choice of B̌ ⊂ Ǧ determines a system
of positive roots Ř+ in Ř (chosen as the roots of Lie(B̌)). Let ρ̌ be the half sum of
positive roots. By [MV, Proposition 6.4], the functor

RG
T :=

⊕
λ∈X

H〈λ,2ρ̌〉c (Sλ,−) : PǦ(O)-eq(GrǦ)→ PŤ (O)-eq(GrŤ )

is a tensor functor. And, by [MV, Theorem 3.6], there is a natural isomorphism of
tensor functors which makes the following diagram commutative:

(PǦ(O)-eq(GrǦ), ?)
RG
T //

H•(−) ((QQQQQQQQQQQQ
(PŤ (O)-eq(GrŤ ), ?)

H•(−)vvmmmmmmmmmmmm

(VectC,⊗)

By Tannakian formalism ([DM, Corollary 2.9]), one obtains a morphism of algebraic
groups T → G. By [MV, Section 7], this morphism is injective, and identifies T
with a maximal torus of G.

Let R ⊂ X the root system of G (which is canonically the dual of Ř), and let R+

be the system of positive roots in R corresponding to the choice of Ř+ in Ř. This
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choice determines a canonical Borel subgroup B ⊂ G containing T . Let ∆ be the
basis of R associated to the choice of R+, and let X+ ⊂ X be the set of dominant
weights of T .

Let Ǐ := (ev0)−1(B̌) be the Iwahori subgroup of Ǧ(O) determined by B̌, where
ev0 : Ǧ(O) → Ǧ is the evaluation at x = 0. Then {Lλ, λ ∈ X} is a set of
representatives of Ǐ-orbits on GrǦ. Similarly, {Lλ, λ ∈ X+} is a set a representatives
of Ǧ(O)-orbits. We denote by GrλǦ the orbit of λ ∈ X+, and by ICλ the associated
simple perverse sheaf, an object of PǦ(O)-eq(GrǦ). For λ ∈ X̌ we define

Vλ := (SG)−1(ICλ).

Then Vλ is a simple G-module with highest weight λ (see [MV, Proposition 13.1]).
For any λ ∈ X, we denote by iλ : {Lλ} ↪→ GrǦ the inclusion.

2.2. Equivalence. Recall that the forgetful functor

PǦ(O)-eq(GrǦ)→ PǦ(O)-mon(GrǦ)

from the category of Ǧ(O)-equivariant perverse sheaves on GrǦ to that of Ǧ(O)-
monodromic perverse sheaves is an equivalence of categories. (In our case this
follows easily from the semisimplicity of the category PǦ(O)-mon(GrǦ) proved e.g. in
[MV, Lemma 7.1].) Hence the abelian category PǦ(O)-eq(GrǦ) is naturally the
heart of a t-structure on the derived category Db

Ǧ(O)-mon
(GrǦ) of Ǧ(O)-monodromic

sheaves on GrǦ. Our first result is a description of this triangulated category.
Recall that there exists a right action of the tensor category PǦ(O)-eq(GrǦ) on

the category Db
Ǧ(O)-mon

(GrǦ), which extends the convolution product. We denote
it by {

Db
Ǧ(O)-mon

(GrǦ)× PǦ(O)-eq(GrǦ) → Db
Ǧ(O)-mon

(GrǦ)
(M,P ) 7→ M ? P

.

On the other hand, consider the nilpotent cone NG ⊂ g of the Lie algebra g of
G. It is endowed with an action of G×Gm, defined by the formula

(g, t) ·X := t−2Adg(X), for (g, t) ∈ G× C×, X ∈ NG.

Hence, the algebra C[NG] is a graded G-equivariant algebra, concentrated in even
degrees. We use this grading to consider it as a G-equivariant dg-algebra, en-
dowed with the trivial differential. We denote by DGCohGfree(NG) the triangu-
lated subcategory of the derived category of G-equivariant dg-modules over this
G-equivariant dg-algebra which is generated by the “free” objects, i.e. the objects
of the form V ⊗C C[NG], where V is a finite dimensional G-module. The differen-
tial on V ⊗C C[NG] is the trivial one, the module structure and the grading are the
natural ones, and the G-action is diagonal. The tensor product with G-modules in-
duces a right action of the tensor category Rep(G) on the category DGCohGfree(NG),
which we denote simply by{

DGCohGfree(NG)× Rep(G) → DGCohGfree(NG)
(M,V ) 7→ M ⊗ V .

Theorem 2.1. There exists an equivalence of triangulated categories

FG : Db
Ǧ(O)-mon

(GrǦ) ∼−→ DGCohGfree(NG)
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and a natural bifunctorial isomorphism

(2.1) FG(M ? SG(V )) ∼= FG(M)⊗ V
for M in Db

Ǧ(O)-mon
(GrǦ) and V in Rep(G).

This equivalence is proved at the level of morphisms between objects of the
form SG(V )[n] (in the case G is semisimple) in [G2, Proposition 1.10.4]. It is also
suggested in [ABG, Sections 7 and 10] (in the case G is semisimple and adjoint),
though it is not explicitly stated. In fact, under this assumption one can deduce
Theorem 2.1 from [ABG, Theorem 9.1.4], see [AR, §11.2].

In this paper we give two direct proofs of this result. In Section 3, we provide a
rather explicit construction of the functor FG, and prove that it is an equivalence
in §3.6. These arguments are a simplified version of those of [ABG, Part II]. In
Section 5 we prove that the equivalence constructed this way is isomorphic to the
one which can be deduced from [ABG, Theorem 9.1.4] (in case G is semisimple and
adjoint).

Then, in Section 4 we give a second (shorter) proof of this equivalence, inspired
by the arguments of the proof of the main result of [BF]. This second proof does
not provide an explicit description of FG. It is based on the notion of enhanced
triangulated category (see [BK, Dr, BLL]).

2.3. Equivalence: mixed version. As in [ABG], the equivalence of Theorem 2.1
comes together with a “mixed version.” To explain this, we first have to consider
some generalities.

On several occasions in this paper we will use the following easy lemma on
triangulated categories. (This lemma is stated e.g. in [ABG, Lemma 3.9.3].)

Lemma 2.2. Let D ,D ′ be triangulated categories, and let F : D → D ′ be a
triangulated functor. Assume given a set S of objects of D such that

(1) S, respectively F (S), generates D , respectively D ′, as a triangulated cate-
gory;

(2) for any M,N in S and i ∈ Z the functor F induces an isomorphism

HomD(M,N [i]) ∼−→ HomD′(F (M), F (N)[i]).

Then F is an equivalence of categories. �

Let XZ be a scheme over Z, endowed with a finite (algebraic) stratification SZ =
{XZ,s}s∈S by affine spaces. One can consider the version XC := X×Spec(Z) Spec(C)
of XZ over C, endowed with the stratification SC = {XC,s}s∈S , and the version
XF := X ×Spec(Z) Spec(F) of XZ over F := Fp, endowed with the stratification
SF = {XF,s}s∈S . We assume that SC is a Whitney stratification, and that the
stratification SF satisfies the usual condition [AR, Equation (6.1)].

Consider the subcategory

Db
SC

(XC), respectively Db
SF

(XF)

of the derived category of sheaves on XC (for the complex topology), respectively of
Q`-sheaves on XF (for the étale topology), consisting of objects whose cohomology
sheaves are constructible with respect to the stratification SC, respectively SF.
(Here, “constructible” amounts to requiring that the cohomology sheaves of our
complexes are constant on each stratum.) Consider also the abelian subcategory

PSC(XC), respectively PSF(XF)
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of perverse sheaves. The following result is well known, and is used e.g. in [ABG].
We include a proof for completeness.

Lemma 2.3. There exists an equivalence of triangulated, respectively abelian, cat-
egories

Db
SC

(XC) ∼= Db
SF

(XF) respectively PSC(XC) ∼= PSF(XF).

Proof. It is enough to construct the first equivalence in such a way that it is t-exact.
Then, restricting to the hearts gives the second equivalence.

First, by general arguments (see [BBD, §6.1] or [BF, Proposition 5]), one can
replace the category Db

SC
(XC) by the analogous category Db

SC
(XC,et) where the

complex topology is replaced by the étale topology, and the coefficients are Q`

instead of C. Then, choose a strictly henselian discrete valuation ring R ⊂ C whose
residue field is F, and consider the corresponding constructible category Db

SR
(XR).

Then there are natural functors

Db
SC

(XC,et) ← Db
SR

(XR) → Db
SF

(XF)

(see [BBD, §6.1.8]).
We claim that these functors are equivalences. Indeed, one can consider the stan-

dard and costandard objects ∆s := (js)!Q`Xs
[dimXs] and∇s := (js)∗Q`Xs

[dimXs]
in all three of these categories (where js is the inclusion of the stratum labelled by
s). These families of objects each generate the categories under consideration (as
triangulated categories). Moreover, it is easy to check that in all these categories
we have

Hom(∆s,∇t[n]) = Qδs,tδn,0
`

(see [Mi, VI.4.20]). The result follows by Lemma 2.2. �

The group Ǧ and its subgroups Ť , B̌ can be defined over Z. Hence the ind-
scheme GrǦ together with its stratification by Ǐ-orbits has a version over Z, and we
are in the situation of Lemma 2.3. We obtain an equivalence of abelian categories

(2.2) PǏ-mon(GrǦ) ∼= PǏ-mon(GrǦ,F).

(On the right-hand side, we have simplified the notation: “Ǐ-mon” means mon-
odromic for the action of the version of Ǐ over F.)

The category PǏ-mon(GrǦ,F) has a natural mixed version Pmix
Ǐ-mon

(GrǦ) in the sense
of [BGS] or [AR], constructed as follows. Consider the versions GrǦ,Fp , ǏFp of GrǦ,
Ǐ over the finite field Fp. With the notation of [AR, §6.1], one can consider the
Serre subcategory

PWeil
Ǐ-mon

(GrǦ,Fp)

of the category of Q`-perverse sheaves on GrǦ,Fp which is generated by the simple
objects IC(Y,Q`)〈j〉 where j ∈ Z and Y is an ǏFp -orbit on GrǦ,Fp . By [BBD,
Théorème 5.3.5], every object P of this category is equipped with a canonical
weight filtration, denoted W•P . Then we define

Pmix
Ǐ-mon

(GrǦ) := {P ∈ PWeil
Ǐ-mon

(GrǦ,Fp) | for all i ∈ Z, grWi P is semisimple}.
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This is an abelian subcategory of PWeil
Ǐ-mon

(GrǦ,Fp). By [BGS, Theorem 4.4.4], the
derived category DbPmix

Ǐ-mon
(GrǦ) is a mixed version1 of DbPǏ-mon(GrǦ,F) in the

sense of [AR, §2.3], for the shift functor 〈1〉. (In particular, the abelian category
Pmix
Ǐ-mon

(GrǦ) is a mixed version of PǏ-mon(GrǦ,F) in the sense of [AR, §2.3], but this
notion is weaker.) As the notation suggests, we will mainly forget about the field
F and, using equivalence (2.2), we will consider Pmix

Ǐ-mon
(GrǦ) as a mixed version of

PǏ-mon(GrǦ). In particular, we have a forgetful functor

For : Pmix
Ǐ-mon

(GrǦ)→ PǏ-mon(GrǦ).

By [BGS, Corollary 3.3.2], the realization functor

(2.3) DbPǏ-mon(GrǦ) → Db
Ǐ-mon

(GrǦ)

is an equivalence of categories. We define the category

Dmix
Ǐ-mon

(GrǦ) := DbPmix
Ǐ-mon

(GrǦ).

By the remarks above, this triangulated category is a mixed version of Db
Ǐ-mon

(GrǦ)
in the sense of [AR, §2.3]. (Note that this definition is indeed a particular case of
the general definition given in [AR, Equation (7.1)] by [AR, Corollary 7.10].)

In this paper we are mainly not interested in the stratification by Ǐ-orbits, but
rather in the stratification by Ǧ(O)-orbits. We denote by

Dmix
Ǧ(O)-mon

(GrǦ)

the triangulated subcategory of Dmix
Ǐ-mon

(GrǦ) generated by the simple objects associ-
ated with the Ǧ(Fp[[x]])-orbits GrλǦ,Fp , λ ∈ X+ (and their shifts). By construction,
this triangulated category is a mixed version of the category Db

Ǧ(O)-mon
(GrǦ). In

particular, there is a forgetful functor

(2.4) For : Dmix
Ǧ(O)-mon

(GrǦ)→ Db
Ǧ(O)-mon

(GrǦ).

Recall the dg-algebra C[NG] considered in §2.2. Now we consider this alge-
bra as a dgg-algebra. Here, the differential on C[NG] is again trivial, and the
bigrading is chosen so that the natural generators of this algebra are in bidegree
(2, 2). We denote by DGCohG×Gm

free (NG) the subcategory of the derived category
DGModG×Gm(C[NG]) generated by the objects of the form V ⊗C C[NG]〈i〉 for V a
finite dimensional G-module. This triangulated category is clearly a graded version
of the category DGCohGfree(NG) in the sense of [AR, §2.3].

As in [ABG, §9.6], one can play the “regrading trick”: the functor which sends
the Z2-graded vector space M = ⊕(i,j)∈Z2M i

j to the Z2-graded vector space N =
⊕(i,j)∈Z2N i

j defined by
N i
j := M i+j

j

induces an equivalence of triangulated categories

(2.5) DGCohG×Gm
free (NG) ∼−→ Db

freeCohG×Gm(NG),

where Db
freeCohG×Gm(NG) is the subcategory of the bounded derived category of

G × Gm-equivariant coherent sheaves on NG (with respect to the G × Gm-action
defined in §2.2) generated by the “free” objects of the form V ⊗C ONG for V a

1Equivalently, in the terminology of [BGS, Definition 4.3.1], Pmix
Ǐ-mon

(GrǦ) is a grading on

PǏ-mon(GrǦ,F).
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G×Gm-module. Hence, the category Db
freeCohG×Gm(NG) is also a graded version

of the category DGCohGfree(NG). In particular, there is a forgetful functor

(2.6) For : Db
freeCohG×Gm(NG)→ DGCohGfree(NG).

The “mixed version” of Theorem 2.1 is the following result.

Theorem 2.4. There exists an equivalence of triangulated categories

Fmix
G : Dmix

Ǧ(O)-mon
(GrǦ) ∼−→ Db

freeCohG×Gm(NG)

such that the following diagram commutes:

Dmix
Ǧ(O)-mon

(GrǦ)

For (2.4)

��

∼
Fmix
G // Db

freeCohG×Gm(NG)

For(2.6)

��
Db
Ǧ(O)-mon

(GrǦ) ∼
FG // DGCohGfree(NG).

This equivalence satisfies:

Fmix
G (M〈n〉) ∼= Fmix

G (M)〈n〉[n].

Again, in the case G is semisimple and adjoint, this result can be deduced from
[ABG, Theorem 9.4.3]. We give two proofs of this theorem in §3.8 and §4.3, which
are parallel to those of Theorem 2.1. In §4.5 we prove that the two equivalences
obtained by these methods are in fact isomorphic. One can also prove that, in the
case G is semisimple and adjoint, this equivalence is isomorphic to the one deduced
from [ABG, Theorem 9.4.3].

Note that, in contrast to Theorem 2.1, there is no “compatibility” statement
with respect to convolution of perverse sheaves in Theorem 2.4. We will address
this problem in §2.5 below.

2.4. Hyperbolic localization and restriction to a Levi subgroup. Next we
study functoriality properties of Theorems 2.1 and 2.4. Consider a standard para-
bolic subgroup P̌ ⊂ Ǧ, and its Levi factor Ľ ⊂ P̌ containing Ť . This data is entirely
determined by the choice of a subset of ∆, hence it determines a Levi subgroup
L ⊂ G containing T .

On the coherent side of the picture, one can consider the inclusion

iGL : NL ↪→ NG
and the associated (derived) pull-back functors

(iGL )∗ : DGCohGfree(NG)→ DGCohGfree(NL),

(iGL )∗mix : Db
freeCohG×Gm(NG)→ Db

freeCohG×Gm(NL).

Now, consider the constructible side of the picture. Let P̌− be the parabolic
subgroup of Ǧ opposite to P̌ (relative to Ť ). The inclusions P̌ ↪→ Ǧ, P̌− ↪→ Ǧ and
the projections P̌ � Ľ, P̌− � Ľ induce morphisms of ind-schemes

i : GrP̌ → GrǦ, j : GrP̌− → GrǦ,

p : GrP̌ → GrĽ, q : GrP̌− → GrĽ.
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Then, one has functors

p!i
∗ : Db

Ǧ(O)-mon
(GrǦ)→ Db

Ľ(O)-mon
(GrĽ),

q∗j
! : Db

Ǧ(O)-mon
(GrǦ)→ Db

Ľ(O)-mon
(GrĽ).

Let λL : C× → Ť be a generic dominant coweight of Ť with values in the center
of Ľ. (For example, one may take λL = 2ρG − 2ρL, where ρG, respectively ρL, is
the half sum of positive roots of G, respectively of L.) Then GrĽ is the set of fixed
points for the action of λL(C×) ⊂ Ǧ(O) on GrǦ. Moreover, i is a locally closed
embedding which identifies GrP̌ with the attracting set for this action. Similarly, j
identifies GrP̌− with the attracting set for the action of λ−1

L . Hence we are in the
situation of [Bra, Theorem 1], which provides an isomorphism of functors

p!i
∗ ∼= q∗j

! : Db
Ǧ(O)-mon

(GrǦ)→ Db
Ľ(O)-mon

(GrĽ).

This functor is called the hyperbolic localization functor, and is denoted h!∗
L .

The connected components of GrĽ are parametrized by the set X∗(Z(L)) of char-
acters of the center of L. We denote by GrĽ,χ the connected component associated
to χ ∈ X∗(Z(L)). Any object M of Db

Ľ(O)-mon
(GrĽ) is the direct sum of (finitely

many) objects Mχ supported on GrĽ,χ, χ ∈ X∗(Z(L)). Let ΘL be the functor
which sends such an M to ⊕

χ∈X∗(Z(L))

Mχ[〈χ, 2ρǦ − 2ρĽ〉].

Here, ρǦ and ρĽ are the half sums of positive coroots of G and L. Note that
2ρǦ − 2ρĽ is orthogonal to all roots of L, hence the pairing 〈χ, 2ρǦ − 2ρĽ〉 makes
sense. We consider the functor

RG
L := ΘL ◦ h!∗

L : Db
Ǧ(O)-mon

(GrǦ)→ Db
Ľ(O)-mon

(GrĽ).

(Note that this notation is consistent with that of §2.1.)
The importance of this functor is clear from the following result, which is proved

in [BD, Proposition 5.3.29 and Lemma 5.3.1]. (The case L = T is one of the
fundamental preliminary results of [MV].)

Theorem 2.5. The functor RG
L sends PǦ(O)-eq(GrǦ) ⊂ Db

Ǧ(O)-mon
(GrǦ) to the sub-

category PĽ(O)-eq(GrĽ) ⊂ Db
Ľ(O)-mon

(GrĽ). Moreover, the following diagram com-
mutes up to an isomorphism of functors:

Rep(G)
SG
∼

//

ResGL

��

PǦ(O)-eq(GrǦ)

RG
L

��
Rep(L)

SL
∼

// PĽ(O)-eq(GrĽ),

where ResGL is the restriction functor. �

Remark 2.6. One of the main steps in the proof of the commutativity of the diagram
of Theorem 2.5 is to show that the functor RG

L commutes with convolution. In
Section 8 we give a new proof of this result in greater generality, see §2.6 for details.
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Our second main result relates these two pictures. In fact, we were only able
to relate mixed versions of these functors. Using general constructions of [AR], we
first prove that the functor RG

L has a “mixed version”

RG,mix
L : Dmix

Ǧ(O)-mon
(GrǦ)→ Dmix

Ľ(O)-mon
(GrĽ)

(see Proposition 6.4 for details). Then, using the notion of Orlov category studied
in [AR] we obtain the following result, which is proved in §6.5.

Theorem 2.7. The following diagram commutes up to an isomorphism of functors:

Dmix
Ǧ(O)-mon

(GrǦ)
Fmix
G

∼
//

RG,mix
L

��

Db
freeCohG×Gm(NG)

(iGL )∗mix

��
Dmix
Ľ(O)-mon

(GrĽ)
Fmix
L

∼
// Db

freeCohL×Gm(NL).

Remark 2.8. We expect that the non-mixed version of the diagram of Theorem 2.7
also commutes. However, we were not able to prove this fact. The problem is the
following. One can check that there exist isomorphisms

(2.7) (iGL )∗ ◦ FG(SG(V )) ∼= FL ◦RG
L (SG(V ))

for all V in Rep(G), which are well-behaved with respect to morphisms (see Propo-
sition 6.7). The objects SG(V ) generate the triangulated category Db

Ǧ(O)-mon
(GrǦ).

However, we were not able to construct a morphism of functors which would in-
duce isomorphisms (2.7) on objects. In the mixed setting, we use the extra structure
given by the grading, and general constructions from homological algebra, to con-
struct such a morphism of functors.

In §§2.5–2.6, we present results that are not essential but which enlighten some
of the interesting properties of the functors FG and RG

L and their mixed versions.

2.5. Satake equivalence and mixed perverse sheaves. Consider the cate-
gories

PǦ(O)-eq(GrǦ,Fp), respectively PǦ(O)-mon(GrǦ,Fp)

of Ǧ(Fp[[x]])-equivariant, respectively Ǧ(Fp[[x]])-monodromic, Q`-perverse sheaves
on the Fp-version of GrǦ. The forgetful functor

PǦ(O)-eq(GrǦ,Fp)→ PǦ(O)-mon(GrǦ,Fp)

is fully faithful. Indeed, the corresponding fact over Fp is well known (see [MV,
Proposition A.1]). And it is also well known ([BBD, Proposition 5.1.2]) that the
categories of perverse sheaves over Fp can be described as categories of perverse
sheaves over Fp endowed with a Weil structure. This implies our claim. (For this,
see also [Ga, Proposition 1 and its proof].)

For any λ ∈ X+, we denote by ICmix
λ the simple perverse sheaf associated to the

constant local system on GrλǦ,Fp , normalized so that it has weight 0. We let

PWeil
Ǧ(O)-mon

(GrǦ,Fp)

be the Serre subcategory of PǦ(O)-eq(GrǦ,Fp), or equivalently PǦ(O)-mon(GrǦ,Fp),
generated by the simple objects ICmix

λ 〈j〉, where λ ∈ X+ and j ∈ Z.
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It is well known that the category PǦ(O)-eq(GrǦ,Fp) can be endowed with a con-
volution product (M,N) 7→ M ? N , which is associative and commutative (see
[Ga, §1.1.2]). The following result is well known, but we have not found any ex-
plicit proof in this setting in the literature. It can be easily deduced from [NP,
Propositions 9.4 and 9.6]. We give a different proof to illustrate the techniques of
[AR].

Proposition 2.9. For any λ, µ ∈ X+, the convolution ICmix
λ ? ICmix

µ is a direct
sum of simple perverse sheaves ICmix

ν , ν ∈ X+.

Proof. Let FlǦ := Ǧ(K)/Ǐ be the affine flag variety. It is naturally endowed with
the structure of an ind-scheme, and we have a natural smooth and proper morphism
p : FlǦ → GrǦ. One can define the category DWeil

Ǐ-mon
(FlǦ) as for GrǦ, see [AR, §6.1].

We already know that ICmix
λ ? ICmix

µ is a Ǧ(O)-equivariant perverse sheaf. Hence it
is enough to prove that p∗(ICmix

λ ? ICmix
µ ) is a semisimple object of DWeil

Ǐ-mon
(FlǦ).

Let us denote by (− ?Ǐ −) the convolution of Ǐ-equivariant complexes on FlǦ, or
the action of Ǐ-equivariant complexes on FlǦ on Ǐ-equivariant complexes on GrǦ.
Then we have

p∗(ICmix
λ ) ?Ǐ p∗(ICmix

µ ) ∼= p∗
(
p∗(ICmix

λ ) ?Ǐ ICmix
µ

)
∼= p∗

(
p∗(p∗(ICmix

λ )) ? ICmix
µ

)
∼= p∗

(
ICmix

λ ? ICmix
µ ⊗H•(ǦFp/B̌Fp)

)
.

The cohomology H•(ǦFp/B̌Fp) has a semisimple action of Frobenius. Hence to
prove the proposition it is enough to prove that p∗(ICmix

λ )?Ǐ p∗(ICmix
µ ) is a semisim-

ple object of DWeil
Ǐ-mon

(FlǦ). However, this follows from [BY, Proposition 3.2.5], see
also [AR, Remark 12.3]. �

It follows from Proposition 2.9 that the subcategory PWeil
Ǧ(O)-mon

(GrǦ,Fp) is sta-
ble under the convolution product. Let P0

Ǧ(O)-mon
(GrǦ) be the subcategory of

PWeil
Ǧ(O)-mon

(GrǦ,Fp) whose objects are direct sums of objects ICmix
λ , λ ∈ X+. Again

by Proposition 2.9, this subcategory is stable under the convolution product.
Equivalence (2.2) induces a similar equivalence where “Ǐ-mon” is replaced by

“Ǧ(O)-mon.” In particular, it follows that extension of scalars defines a functor

ΦG : P0
Ǧ(O)-mon

(GrǦ)→ PǦ(O)-mon(GrǦ),

which commutes with convolution products.

Lemma 2.10. The functor ΦG is an equivalence of tensor categories.

Proof. This functor induces a bijection on isomorphism classes of objects. Hence
it is enough to prove that it is fully faithful. As the category P0

Ǧ(O)-mon
(GrǦ) is

semisimple by definition, it is enough to prove that for any λ, µ ∈ X+ the functor
ΦG induces an isomorphism

HomP0
Ǧ(O)-mon

(GrǦ)(IC
mix
λ , ICmix

µ ) ∼−→ HomPǦ(O)-mon(GrǦ)(ICλ, ICµ).

However, this fact is obvious since both spaces are isomorphic to Cδλ,µ . �
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Using Lemma 2.10, we obtain an equivalence of tensor categories

(2.8) S0
G : Rep(G) ∼−→ P0

Ǧ(O)-mon
(GrǦ).

Using again the general constructions of [AR] we construct for any object M in
P0
Ǧ(O)-mon

(GrǦ) a functor

(−) ? M : Dmix
Ǧ(O)-mon

(GrǦ)→ Dmix
Ǧ(O)-mon

(GrǦ)

which is a mixed version of the functor (−) ? ΦG(M), see Proposition 7.1. Then
compatibility of the equivalence Fmix

G with convolution can be stated as follows.
The proof of this result is given in §7.2.

Proposition 2.11. For any V in Rep(G) and M in Dmix
Ǧ(O)-mon

(GrǦ), there exists
an isomorphism

Fmix
G (M ? S0

G(V )) ∼= Fmix
G (M)⊗ V,

which is functorial in M .

In the remainder of this subsection we describe a setting in which the abelian
category P0

Ǧ(O)-mon
(GrǦ) appears more naturally. These results will not be used in

the rest of the paper.
Let us define the category

Pmix
Ǧ(O)-mon

(GrǦ) := {P ∈ PWeil
Ǧ(O)-mon

(GrǦ,Fp) | for all i ∈ Z, grWi P is semisimple}.

By definition, this category is a full subcategory of the abelian category Pmix
Ǐ-mon

(GrǦ),
which is stable under extensions. Any object of Pmix

Ǧ(O)-mon
(GrǦ) is endowed with a

canonical weight filtration. By definition again, P0
Ǧ(O)-mon

(GrǦ) is the subcategory
of Pmix

Ǧ(O)-mon
(GrǦ) whose objects have weight 0.

Lemma 2.12. (1) The category Pmix
Ǧ(O)-mon

(GrǦ) is semisimple.
(2) The weight filtration of any M in Pmix

Ǧ(O)-mon
(GrǦ) splits canonically.

Proof. To prove (1), it is enough to prove that for any λ, µ in X+ and any j ∈ Z
we have

Ext1
Pmix
Ǧ(O)-mon

(GrǦ)(IC
mix
λ , ICmix

µ 〈j〉) = 0.

However, as Pmix
Ǧ(O)-mon

(GrǦ) is stable under extensions in Pmix
Ǐ-mon

(GrǦ), one can

compute the Ext1-group in the latter category. And, as DbPmix
Ǐ-mon

(GrǦ) is a mixed
version of DbPǏ-mon(GrǦ), this Ext1-group is a direct factor of

Ext1
PǏ-mon(GrǦ)(ICλ, ICµ).

It is well known that the latter group is trivial, see e.g. [MV, Proof of Lemma 7.1].
Let us consider assertion (2). The fact that the filtration splits follows from (1).

This splitting is canonical because there are no non-zero morphisms between pure
objects of distinct weights. �

By Lemma 2.12 and Proposition 2.9, the subcategory Pmix
Ǧ(O)-mon

(GrǦ) of the

category PWeil
Ǧ(O)-mon

(GrǦ) is stable under convolution. Hence (Pmix
Ǧ(O)-mon

(GrǦ), ?) is
a semisimple tensor category. Using Tannakian formalism ([DM]), it is not difficult
to identify this category. The proof of the following proposition is left to the reader.
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Proposition 2.13. There exists an equivalence of tensor categories

Smix
G : (Rep(G×Gm),⊗) ∼−→ (Pmix

Ǧ(O)-mon
(GrǦ), ?)

such that the diagram:

Rep(G×Gm) ∼
Smix
G //

ResG×Gm
G

��

Pmix
Ǧ(O)-mon

(GrǦ)

For

��
Rep(G) ∼

SG // PǦ(O)-mon(GrǦ)

commutes. �

2.6. Hyperbolic localization and convolution. Consider, as in §2.4, a stan-
dard Levi subgroup Ľ ⊂ Ǧ, and the corresponding standard Levi L ⊂ G. It
follows in particular from Theorems 2.4 and 2.7 and Proposition 2.11 that for
any M ∈ Db

Ǧ(O)-mon
(GrǦ) which is in the image of the forgetful functor For :

Dmix
Ǧ(O)-mon

(GrǦ) → Db
Ǧ(O)-mon

(GrǦ) and N ∈ PǦ(O)-eq(GrǦ), there exists an iso-
morphism

RG
L (M ?N) ∼= RG

L (M) ?RG
L (N).

Indeed, let M ′ be an object of Dmix
Ǧ(O)-mon

(GrǦ) such that M ∼= For(M ′). Let
N ′ := (ΦG)−1(N). Then we have a chain of isomorphisms

RG
L (M ? N)

Th. 2.7∼= For ◦ (F mix
L )−1 ◦ (iGL )∗mix ◦ F mix

G (M ′ ? N ′)
Prop. 2.11∼= For ◦ (F mix

L )−1 ◦ (iGL )∗mix

(
F mix

G (M ′)⊗ (S0
G)−1(N ′)

)
(†)∼= For ◦ (F mix

L )−1
((

(iGL )∗mixF mix
G (M ′)

)
⊗
(
(S0

L)−1RG,mix
L (N ′)

))
Prop. 2.11∼= For

(
(F mix

L )−1((iGL )∗mix ◦ F mix
G (M ′)

)
? RG,mix

L (N ′)
)

Th. 2.7∼= For
(
RG,mix

L (M ′) ? RG,mix
L (N ′)

)
∼= RG

L (M) ? RG
L (N).

Isomorphism (†) uses an isomorphism of functors RG,mix
L ◦ S0

G
∼= S0

L ◦ResGL which
follows from Theorem 2.5 and the construction of RG,mix

L ; see Remark 6.5 for details.
In Section 8 we give a (topological) proof of the following much more gen-

eral claim. Recall that the right action of the tensor category PǦ(O)-eq(GrǦ) on
Db
Ǧ(O)-mon

(GrǦ) extends to a convolution bifunctor

(− ?−) : Db
c (GrǦ)×Db

Ǧ(O)-eq
(GrǦ)→ Db

c (GrǦ),

where Db
c (GrǦ) is the bounded derived category of constructible sheaves on GrǦ.

As in §2.4, let λL : C× → Ť be a generic dominant cocharacter with values in the
center of Ľ. We let Aut denote the pro-algebraic group of automorphisms of O, see
[Ga, §2.1.2]. Then we have the following result, whose proof is given in §8.3.

Proposition 2.14. For any M in Db
λL(C×)-mon

(GrǦ) and N in Db
Ǧ(O) o Aut-eq

(GrǦ),
there is a bifunctorial isomorphism

RG
L (M ?N) ∼= RG

L (M) ?RG
L (N).
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Note that the forgetful functor PǦ(O) o Aut-eq(GrǦ)→ PǦ(O)-eq(GrǦ) is an equiv-
alence of categories, see [Ga, Proposition 1] or more generally [MV, Proposition
A.1]. Hence Proposition 2.14 applies in particular if N is in PǦ(O)-eq(GrǦ). In case
we assume in addition that M is a Ǧ(O)-monodromic perverse sheaf, this result is
well known, see Remark 2.6. The general case may be known to experts; however
we have not found any proof in this generality in the literature. Note also that our
proof of Proposition 2.14 works similarly in the case of sheaves with coefficients in
any commutative ring of finite global dimension2. This proof is independent of the
rest of the paper.

3. Constructible sheaves on GrǦ and coherent sheaves on NG:
first approach

In this section we give a first proof of Theorems 2.1 and 2.4. Our arguments are
a simplified version of the proofs of [ABG, Theorems 9.1.4 and 9.4.3].

3.1. Reminder on cohomology of affine Grassmannians. Let us recall, fol-
lowing [G2] and [YZ], how one can give information on the cohomology H•(GrǦ) :=
H•(GrǦ,C). As GrǦ is homeomorphic to the group of polynomial loops in a Lie
group (see [G2, §1.2]), this cohomology is a graded-commutative and cocommuta-
tive Hopf algebra. Denote by prim its subspace of primitive elements, i.e. elements
x whose image under the comultiplication is x ⊗ 1 + 1 ⊗ x. This space is graded,
by restriction of the grading on H•(GrǦ): prim = ⊕nprimn. For any c ∈ primn, the
cup product with c induces, for any M in PǦ(O)-eq(GrǦ), a functorial morphism

c ∪ − : H•(M)→ H•+n(M).

Hence, via SG, we obtain an endomorphism φ(c) of the functor For : Rep(G) →
VectC. By [YZ, Proposition 2.7], this endomorphism satisfies φ(c)V1⊗V2 = φ(c)V1 ⊗
idV2 +idV1⊗φ(c)V2 . Hence one obtains an automorphism φ̃(c) of the tensor functor
Rep(G)→ Mod(C[ε]/ε2) which sends V to V ⊗C C[ε]/ε2 = V ⊕ V · ε by setting

φ̃(c)V :=
(

idV 0
φ(c)V idV

)
: V ⊕ V · ε→ V ⊕ V · ε.

By Tannakian formalism ([DM, Proposition 2.8]), this gives us a point inG(C[ε]/ε2).
Moreover, the image of this point under the morphism G(C[ε]/ε2)→ G induced by
the evaluation at ε = 0 is 1 (because the induced automorphism of the fiber functor
For is trivial). Hence one obtains a point ψ(c) ∈ g. This way we have constructed
a Lie algebra morphism

ψ : prim→ g.

Note that this morphism is C×-equivariant, where the action on prim corresponds
to the grading defined above, and the action on g is via the adjoint action of the
cocharacter 2ρ̌ : C× → T .

2In this case we need a more general case of Braden’s theorem, which holds by [Bra, Remark
(3) on p. 211].
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Let Ldet be a very ample line bundle3 on GrǦ. Consider the first Chern class
c1(Ldet) ∈ H2(GrǦ). We let

eG := ψ(c1(Ldet)) ∈ g.

This element has weight 2 for the adjoint action of the cocharacter 2ρ̌. Hence
eG ∈

⊕
α∈∆ gα. Moreover, eG is a regular nilpotent element of g (see [G2] or [YZ,

Proposition 5.6]), or equivalently its component on any gα is nonzero. (Note that
[YZ, Proposition 5.6] gives a much more explicit description of eG if Ldet is the
determinant line bundle; we will not need this in this paper.) As prim is an abelian
Lie algebra, the morphism ψ factors through a C×-equivariant morphism (denoted
similarly for simplicity) ψ : prim→ geG , where geG is the centralizer of eG in g.

Now, assume for a moment that Ǧ is semisimple and simply connected, so that
GrǦ is irreducible. By general theory of cocommutative Hopf algebras (see [Sw,
Theorem 13.0.1]), H•(GrǦ) is isomorphic to the symmetric algebra of the space prim.
By [G2, Proposition 1.7.2] or [YZ, Corollary 6.4], the morphism ψ : prim → geG is
an isomorphism. Hence we obtain an isomorphism of graded Hopf algebras

(3.1) ψ : H•(GrǦ) ∼−→ S(geG).

Note that, by construction, if M is in PǦ(O)-eq(GrǦ) and c ∈ H•(GrǦ), the endo-
morphism of H•(M) induced by the cup product with c coincides with the action
of ψ(c) on (SG)−1(M).

For a general reductive Ǧ, the connected component Gr0Ǧ of GrǦ containing
the base point Ǧ(O)/Ǧ(O) identifies with the affine Grassmannian of the simply-
connected cover of the derived subgroup of Ǧ. Hence (3.1) gives a description of
H•(Gr0Ǧ) := H•(Gr0Ǧ,C).

3.2. An Ext-algebra. Let us define the objects

1G := SG(C) and RG := SG(C[G]),

where C is the trivial G-module, and C[G] is the (left) regular representation of
G. Then 1G is an object of PǦ(O)-mon(GrǦ) (more precisely the skyscraper sheaf at
L0 = Ǧ(O)/Ǧ(O) ∈ GrǦ) and RG is an ind-object in PǦ(O)-mon(GrǦ). This object
is a ring-object, i.e. there is a natural associative (and commutative) product

(3.2) m : RG ?RG → RG
induced by the multiplication in C[G]. Moreover, RG is endowed with an action of
G (induced by the right multiplication of G on itself).

More concretely, one can choose an isomorphism

RG ∼= lim−→
k≥0

RG,k,

where RG,k is an object of PǦ(O)-mon(GrǦ) endowed with an action of G for any k,
and such that the multiplication m of (3.2) is induced by G-equivariant morphisms

mk,l : RG,k ?RG,l → RG,k+l.

3The choice of Ldet is not unique; however, it is easily seen that our constructions essentially do

not depend on this choice, mainly because we work with sheaves with coefficients in characteristic
0. If Ǧ is simple then there is a natural candidate for Ldet, namely the determinant line bundle,

which explains our notation.
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Consider the G-equivariant graded algebra

Ext•Ǧ(O)-mon(1G,RG)

whose i-th component is

lim−→
k≥0

HomDb
Ǧ(O)-mon

(GrǦ)(1G,RG,k[i]).

(Note that this definition is consistent with the usual formula for morphisms with
values in an ind-object, see [KS2, Equation (2.6.1)]. In particular, it does not
depend on the choice of the RG,k’s.) The action of G on this vector space is
induced by the action on RG. The (graded) algebra structure can be described
as follows. Take ξ ∈ ExtiǦ(O)-mon(1G,RG), ζ ∈ Extj

Ǧ(O)-mon
(1G,RG); then the

product ξ · ζ is the composition

1G
ζ−→ RG[j] ∼= 1G ?RG[j]

ξ?RG[j]−−−−−→ RG ?RG[i+ j]
m[i+j]−−−−→ RG[i+ j].

(This structure is also considered in [ABG, §7.2].)
On the other hand, consider the algebra

C[NG]

of functions on the nilpotent cone NG of G. It is G-equivariant, and graded by the
C×-action defined in §2.2.

Proposition 3.1. There exists an isomorphism of G-equivariant graded algebras

Ext•Ǧ(O)-mon(1G,RG) ∼= C[NG].

Proof. This result is proved in [ABG, Theorem 7.3.1] in the case whereG is semisim-
ple and adjoint. (Part of the arguments for this proof are reproduced in the proof
of Proposition 3.8 below.) The general case follows, as both of these algebras are
unchanged under the replacement of G by G/Z(G). �

3.3. A projective resolution of 1G. Recall the definition of the category of
pro-object in an abelian category (see [KS1, Definition 1.11.4] or [KS2, Definition
6.1.1]); recall also that this category is abelian (see [KS2, Theorem 8.6.5(i)]). In
this subsection we construct a projective resolution of the object 1G in the category
of pro-objects in PǏ-mon(GrǦ). A similar construction is also performed (without
much details) in [ABG, §9.5].

Let us fix a collection of closed finite unions of Ǐ-orbits

{L0} = X0 ⊂ X1 ⊂ X2 ⊂ · · ·

such that GrǦ = ∪n≥0Xn. For any n ≥ 0, we denote by in : Xn ↪→ GrǦ the
inclusion.

For any n ≥ 0, it follows from [BGS, Theorem 3.3.1] that the category PǏ-mon(Xn)
is equivalent to the category of finite dimensional modules over a finite-dimensional
C-algebra. Hence one can choose a projective resolution

· · · → P−2
n

d−2
n−−→ P−1

n

d−1
n−−→ P 0

n → 1G

which is minimal, i.e. such that for any i ≤ 0, P in is a projective cover of ker(di+1
n ).

(Here, by an abuse of notation, we consider 1G as an object of PǏ-mon(Xn), without
mentioning which “n” is considered.)
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Consider now the inclusion ιn : Xn ↪→ Xn+1. For any projective object P in
PǏ-mon(Xn+1), (ιn)∗P is a perverse sheaf (because P has a filtration with standard
objects as subquotients, see [BGS, Theorem 3.3.1]), and it is even a projective
object in PǏ-mon(Xn) (because the functor (ιn)∗ is exact). More precisely, we have
the following.

Lemma 3.2. For any j ≤ 0 there is an isomorphism

(ιn)∗P jn+1
∼= P jn.

Proof. Fix j ≤ 0. The projective object P jn, respectively P jn+1, is the direct sum
of the projective covers in PǏ-mon(Xn), respectively PǏ-mon(Xn+1), of the simple
objects L in PǏ-mon(Xn), respectively L′ in PǏ-mon(Xn+1), such that Hom(P jn, L) 6=
0, respectively Hom(P jn+1, L

′) 6= 0, counted with multiplicity. By minimality we
have isomorphisms

Hom(P jn, L) ∼= Ext−jPǏ-mon(Xn)(1G, L), Hom(P jn+1, L
′) ∼= Ext−jPǏ-mon(Xn+1)(1G, L

′).

In fact, denoting by P (n,L), respectively P (n + 1, L′) the projective cover of a
simple object L in PǏ-mon(Xn), respectively L′ in PǏ-mon(Xn+1), there are (non-
canonical) isomorphisms

P jn
∼=

⊕
L simple in

P
Ǐ-mon(Xn)

(
Ext−jPǏ-mon(Xn)(1G, L)

)∗ ⊗C P (n,L),

P jn+1
∼=

⊕
L′ simple in

P
Ǐ-mon(Xn+1)

(
Ext−jPǏ-mon(Xn+1)(1G, L

′)
)∗ ⊗C P (n+ 1, L′).

If L is in PǏ-mon(Xn), then

Ext−jPǏ-mon(Xn)(1G, L) ∼= Ext−jPǏ-mon(Xn+1)(1G, (ιn)∗L).

Indeed, by [BGS, Corollary 3.3.2] the left-hand side, respectively right-hand side,
is isomorphic to

HomDb
Ǐ-mon

(Xn)(1G, L[−j]), respectively HomDb
Ǐ-mon

(Xn+1)(1G, (ιn)∗L[−j]).

Now these spaces coincide since (ιn)∗1G ∼= 1G. Moreover, by construction the
projective cover of L in PǏ-mon(Xn) is isomorphic to the restriction to Xn of the
projective cover of (ιn)∗L in PǏ-mon(Xn+1) (see [BGS, proof of Theorem 3.2.1]).

On the other hand, if L′ is a simple object associated to an Ǐ-orbit included in
Xn+1 rXn, then the projective cover of L′ in PǏ-mon(Xn+1) is supported in Xn+1 r
Xn (see again [BGS, proof of Theorem 3.2.1], or use reciprocity, see the arguments
in [AR, step 2 of the proof of Theorem 9.5]). This concludes the proof. �

More precisely, the resolution P •n being fixed, one can choose the minimal pro-
jective resolution P •n+1 in such a way that we have an isomorphism of complexes

(ιn)∗P •n+1
∼= P •n .

In particular, by adjunction this provides a morphism of complexes

(in+1)∗P •n+1 → (in)∗P •n .

For any j ≤ 0, we set
P j := lim←−

n≥0

(in)∗P jn,
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a pro-object in Pmix
Ǐ-mon

(GrǦ). For j < 0, the differentials djn : P jn → P j+1
n induce

morphisms dj : P j → P j−1 such that dj+1 ◦ dj = 0. Hence one can consider the
complex of pro-objects

P • :=
(
· · · → P−2 → P−1 → P 0 → 0→ · · ·

)
,

where P i is in degree i. There is a natural morphism of complexes P • → 1G.

Lemma 3.3. (1) For any k, the object P k is projective in the category of pro-
objects in PǏ-mon(GrǦ).

(2) The morphism P • → 1G is a quasi-isomorphism.

Proof. (1) First, let us prove that the functor

Hom(P k,−) : PǏ-mon(GrǦ)→ {C-vector spaces}

is exact, and takes values in VectC. (Here, we consider morphisms in the category
of pro-objects.) By definition of pro-objects, for any M in PǏ-mon(GrǦ) we have

Hom(P k,M) ∼= lim−→
m≥0

Hom((im)∗P km,M)

(see [KS2, Equation (2.6.2)]). By definition of the category PǏ-mon(GrǦ), there ex-
ists n ≥ 0 and an object M ′ of PǏ-mon(Xn) such that M ∼= (in)∗M ′. By adjunction,
for any m ≥ 0 we have

Hom((im)∗P km,M) ∼= Hom((in)∗(im)∗P km,M
′).

Using Lemma 3.2, we deduce that for m ≥ n,

Hom((im)∗P km,M) ∼= Hom(P kn ,M
′).

The claim follows, using the fact that P kn is projective in the category PǏ-mon(Xn).
Now we conclude the proof of (1). Consider a short exact sequence M ↪→ N �

Q in the abelian category of pro-objects in PǏ-mon(GrǦ). By [KS2, Proposition
8.6.6(a)], this exact sequence is the projective limit of a projective system (Mi ↪→
Ni � Qi)i∈I of short exact sequences in PǏ-mon(GrǦ) indexed by a small filtrant
category I. By our intermediate result, for any i the sequence

0→ Hom(P k,Mi)→ Hom(P k, Ni)→ Hom(P k, Qi)→ 0

is an exact sequence of finite-dimensional vector spaces. It is well known that small
filtrant inductive limits of short exact sequences of vector spaces are exact. Using
the fact that the duality V 7→ V ∗ is exact, restricts to an involution on finite-
dimensional vector spaces, and transforms inductive limits into projective limits,
we deduce that the same property holds for small filtrant projective limits of short
exact sequences of finite-dimensional vector spaces. In particular, we get a short
exact sequence

0→ lim←−
i

Hom(P k,Mi)→ lim←−
i

Hom(P k, Ni)→ lim←−
i

Hom(P k, Qi)→ 0.

In other words, the sequence

0→ Hom(P k,M)→ Hom(P k, N)→ Hom(P k, Q)→ 0

is exact, which proves the projectivity of P k.
The claim (2) is obvious from the description of kernels and images in a category

of pro-objects given in [KS2, Lemma 8.6.4(ii)]. �
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Remark 3.4. Let Gr0Ǧ be the connected component of GrǦ containing Ǧ(O)/Ǧ(O),
and let Gadj = G/Z(G). By the main results of [ABG], the category PǏ-mon(Gr0Ǧ)
is equivalent to a certain category of finite-dimensional representations of Lusztig’s
quantum group at a root of unity associated with the group Gadj, see [ABG, Theo-
rem 9.10.2]. By [APW, Theorem 9.12], the latter category has enough projectives.
Hence the category PǏ-mon(Gr0Ǧ) has enough projectives.

It follows from this remark that in fact, for any j ≤ 0, the sequence of objects
((in)∗P jn)n≥0 stabilizes for n� 0. As this proof is very indirect, and as this fact is
not strictly necessary for our arguments, we will not use it.

3.4. Formality. Consider the G-equivariant4 dg-algebra E•(1G,RG) such that

Ei(1G,RG) := lim−→
k

Homi(P •, P • ?RG,k).

Here, we have set as usual

Homi(P •, P • ?RG,k) =
∏
j∈Z

Hom(P j , P i+j ?RG,k),

where the morphisms are taken in the category of pro-objects in the category
PǏ-mon(GrǦ), and

P i+j ?RG,k := lim←−
n

(
(in)∗P i+jn

)
?RG,k.

The action of G is induced by the action on RG, the differential on this dg-algebra
is the natural one (induced by the differential of the complex P •), and the product
is defined as follows. Consider ξ ∈ Homi(P •, P • ?RG,k), ζ ∈ Homj(P •, P • ?RG,l);
their product ξ · ζ ∈ Homi+j(P •, P • ?RG,k+l) is defined as the composition

P •
ζ−→ P • ?RG,l[j]

ξ?RG,l[j]−−−−−−→ P • ?RG,k ?RG,l[i+ j]
P•?mk,l[i+j]−−−−−−−−→ P • ?RG,k+l[i+ j].

On the other hand, recall the dg-algebra Ext•Ǧ(O)-mon(1G,RG) defined in §3.2.

Proposition 3.5. There exists a natural quasi-isomorphism of G-equivariant dg-
algebras

φ : E•(1G,RG)→ Ext•Ǧ(O)-mon(1G,RG).

Proof. The morphism of complexes P • → 1G induces a morphism of complexes

E•(1G,RG)→ Hom•(P •,RG),

where we use the same notation as above, i.e. by definition we have

Homi(P •,RG) = lim−→
k

Hom(P−i,RG,k).

Any morphism P−i → RG,k factors through the composition

P−i → P−in → P−in / rad(P−in )

for some n. (This follows from the definition of morphisms in the category of pro-
objects, and from the fact that RG,k is a semisimple perverse sheaf.) Hence, as

4Here, the term “G-equivariant” is not really appropriate since for i ∈ Z, Ei(1G,RG) is not
a rational G-module, but rather a projective limit of rational G-modules. We use this term by
an abuse of language. Similarly, by a G-equivariant dg-module over this dg-algebra we mean a

dg-module M• such that for any i ∈ Z, M i is a pro-object in the category of rational G-modules,
compatibly with the G-action on the dg-algebra. Similar comments apply to the dg-algebra Alf

defined in §3.7 below.
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the resolutions we have chosen are minimal, Hom(P−i,RG,k) is isomorphic to the
space of morphisms of chain complexes P • → RG,k[i]. Similar arguments show that
any such morphism of complexes which is homotopic to zero is in fact zero. Hence
Hom(P−i,RG,k) is also isomorphic to the space of morphisms P • → RG,k[i] in the
homotopy category of pro-objects in PǏ-mon(GrǦ). By Lemma 3.3, we deduce that
Hom(P−i,RG,k) is the space of morphisms 1G → RG,k[i] in the derived category
of the abelian category of pro-objects in PǏ-mon(GrǦ). By [KS2, Theorem 15.3.1(i)]
and equivalence (2.3), this space is also isomorphic to ExtiǦ(O)-mon(1G,RG). These
considerations imply that there is a natural isomorphism of complexes

Hom•(P •,RG) ∼= Ext•Ǧ(O)-mon(1G,RG),

where the right-hand side has trivial differential.
Hence we have constructed a morphism of complexes

φ : E•(1G,RG)→ Ext•Ǧ(O)-mon(1G,RG).

It follows directly from the definitions that this morphism is compatible with prod-
ucts, hence is a morphism of dg-algebras. The fact that it is a quasi-isomorphism
follows from Lemma 3.3(1) and from the fact that the morphism P • ?RG,k → RG,k
is a quasi-isomorphism for any k ≥ 0 by Lemma 3.3(2). �

3.5. Construction of the functor. Now we can construct a functor

FG : Db
Ǧ(O)-mon

(GrǦ)→ DGCohGfree(NG).

First, consider the category CbPǏ-mon(GrǦ) of bounded chain complexes of objects
of PǏ-mon(GrǦ). One can define a functor from this category to the category of
G-equivariant right dg-modules over the dg-algebra E•(1G,RG), which sends the
complex M• to the dg-module E•(1G,M• ?RG) such that

Ei(1G,M• ?RG) := lim−→
k

Homi(P •,M• ?RG,k),

where the differential is the natural one (induced by the differentials of M• and
P •), the action of G is induced by the action on RG, and the action of the dg-
algebra is defined as follows. Consider some ξ ∈ Homi(P •,M• ? RG,k) and ζ ∈
Homj(P •, P • ?RG,l); their product ξ · ζ ∈ Homi+j(P •,M• ?RG,k+l) is defined as
the composition

P •
ζ−→ P • ?RG,l[j]

ξ?RG,l[j]−−−−−−→M• ?RG,k ?RG,l[i+j]
M•?mk,l[i+j]−−−−−−−−−→M• ?RG,k+l[i+j].

This functor is exact by Lemma 3.3(1), hence it induces a functor

(3.3) E•(1G, (−) ?RG) : DbPǏ-mon(GrǦ)→ DGModG(E•(1G,RG)op).

Then, the quasi-isomorphism φ induces an equivalence of categories

(3.4) Ext•Ǧ(O)-mon(1G,RG)
L

⊗E•(1G,RG)op− : DGModG(E•(1G,RG)op)
∼−→ DGModG(Ext•Ǧ(O)-mon(1G,RG)),

see [BL, Theorem 10.12.5.1] (or rather a G-equivariant analogue, which is easy since
G is a complex reductive group). Note that the dg-algebra Ext•Ǧ(O)-mon(1G,RG)
is graded-commutative and concentrated in even degrees; hence it is equal to its
opposite dg-algebra.
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Finally, the isomorphism of Proposition 3.1 induces an equivalence of categories

DGModG(Ext•Ǧ(O)-mon(1G,RG)) ∼−→ DGModG(C[NG]).(3.5)

Composing the functors (3.3), (3.4) and (3.5) with the inclusion

Db
Ǧ(O)-mon

(GrǦ) ↪→ Db
Ǐ-mon

(GrǦ)
(2.3)∼= DbPǏ-mon(GrǦ),

one obtains a functor

F̃G : Db
Ǧ(O)-mon

(GrǦ)→ DGModG(C[NG]).

Lemma 3.6. (1) There is a natural isomorphism F̃G(1G) ∼= C[NG].
(2) For any V in Rep(G) and M in Db

Ǧ(O)-mon
(GrǦ) there is a functorial iso-

morphism

F̃G(M ? SG(V )) ∼= F̃G(M)⊗ V

in DGModG(C[NG]).

Proof. Claim (1) is obvious from definitions and the proof of Proposition 3.5.
(2) There exist isomorphisms of G-modules

V ⊗C C[G] ∼= V ⊗C IndG{1}(C) ∼= IndG{1}(V ) ∼= C[G]⊕ dim(V ).

Hence, applying the Satake equivalence SG, one obtains an isomorphism of ind-
perverse sheaves

SG(V ) ?RG ∼= RG ⊗C V.

The natural G-action on the left-hand side induced by the action onRG corresponds
to the diagonal G-action on the right-hand side. The isomorphism follows. �

It follows in particular from Lemma 3.6 that the functor F̃G factors through a
functor

FG : Db
Ǧ(O)-mon

(GrǦ)→ DGCohGfree(NG),

as promised.

3.6. FG is an equivalence. The following lemma is well known, see e.g. [G2,
Equation (2.4.1)].

Lemma 3.7. Let V in Rep(G). The functors

(−) ? SG(V ) : Db
c (GrǦ)→ Db

c (GrǦ) and (−) ? SG(V ∗) : Db
c (GrǦ)→ Db

c (GrǦ)

are adjoint. �

The next important step in the proof of Theorem 2.1 is the following.

Proposition 3.8. For any V1, V2 in Rep(G), the functor FG induces an isomor-
phism of graded vector spaces

Hom•Db
Ǧ(O)-mon

(GrǦ)(SG(V1),SG(V2))

∼−→ Hom•DGCohGfree(NG)(C[NG]⊗C V1,C[NG]⊗C V2).
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Proof. This result is proved is the case when G is semisimple in [G2, Proposition
1.10.4]. As the details will be needed later, we reproduce the proof. (See also [ABG,
§§7.4–7.5] for similar arguments.)

First, Lemma 3.7 reduces the proof to the case V1 = C. For simplicity, we write
V for V2. Consider the projection V � V Z(G) orthogonal to other weight spaces of
the diagonalizable group Z(G). The perverse sheaf SG(V Z(G)) is the restriction of
SG(V ) to Gr0Ǧ. Hence the projection above induces an isomorphism

(3.6) Hom•Db
Ǧ(O)-mon

(GrǦ)(1G,SG(V )) ∼−→ Hom•Db
Ǧ(O)-mon

(Gr0
Ǧ

)(1G,SG(V Z(G))).

Now, by the main result of [G1], the hypercohomology functor H•(−) induces
an isomorphism

Hom•Db
Ǧ(O)-mon

(Gr0
Ǧ

)(1G,SG(V Z(G))) ∼−→ Hom•H•(Gr0
Ǧ

)(C, (V
•)Z(G)),

where on the right-hand side we mean morphisms of graded modules, and V • =
H•(SG(V )) is V , graded by the action of the cocharacter 2ρ̌. Using also isomor-
phism (3.1) (for the group Gadj := G/Z(G), whose Langlangs dual group is Ǧsc, the
simply connected cover of the derived subgroup of Ǧ, so that we have GrǦsc

∼−→ Gr0Ǧ),
we obtain an isomorphism

Hom•Db
Ǧ(O)-mon

(Gr0
Ǧ

)(1G,SG(V Z(G))) ∼−→ (V •)Z(G),geG .

By [Sp1, Theorem 4.11], we have GeG ∼= Z(G) × UeG , and UeG is a connected
unipotent group. Hence we have V Z(G),geG = V G

eG , and we finally obtain an
isomorphism of graded vector spaces

(3.7) Hom•Db
Ǧ(O)-mon

(Gr0
Ǧ

)(1G,SG(V Z(G))) ∼−→ (V •)G
eG
.

It is well known that the variety NG is normal, and that G/GeG ∼= G · eG has
complement of codimension 2 in NG. Hence restriction induces an isomorphism of
graded algebras C[NG] ∼−→ C[G/GeG ], where the grading on C[NG] is the one defined
in §2.2, and the grading on C[G/GeG ] is induced by the action of the cocharacter
2ρ̌ via the right regular representation of G on C[G]. It follows that restriction to
eG ∈ NG induces an isomorphism of graded vector spaces

(3.8) (C[NG]⊗ V )G ∼−→ (V •)G
eG
.

Finally, there is a natural isomorphism of graded vector spaces

(3.9) Hom•DGCohGfree(NG)(C[NG],C[NG]⊗C V ) ∼= (C[NG]⊗ V )G.

Indeed, by [BL, Lemma 10.12.2.2] (adapted to the G-equivariant setting), the mor-
phisms in the left-hand side of (3.9) can be computed in the homotopy category of
G-equivariant C[NG]-dg-modules. Then the isomorphism (3.9) is clear.

Combining isomorphisms (3.6), (3.7), (3.8) and (3.9) gives the proposition. �

Finally we can prove Theorem 2.1.

Proof of Theorem 2.1. Using Lemma 3.6 and Proposition 3.8, the fact that FG is
an equivalence follows from Lemma 2.2.

Isomorphism (2.1) is proved in Lemma 3.6(2). �
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3.7. A locally-finite subalgebra. Now we come to the proof of the mixed version
of Theorem 2.1, namely Theorem 2.4. For any n ≥ 0 one can consider the category
Pmix
Ǐ-mon

(Xn) defined as in §2.3 (replacing GrǦ by Xn), and the forgetful functor

For : Pmix
Ǐ-mon

(Xn)→ PǏ-mon(Xn).

By [BGS, Lemma 4.4.8], every projective object of PǏ-mon(Xn) can be lifted to
Pmix
Ǐ-mon

(Xn). The object 1G can also obviously be lifted to an object 1mix
G of

Pmix
Ǐ-mon

(GrǦ), of weight 0. Hence one can choose the projective resolutions P •n
of §3.3 in such a way that there exists a projective resolution

· · · → P−2
mix → P−1

mix → P 0
mix → 1mix

G

in the category of pro-objects in Pmix
Ǐ-mon

(GrǦ) such that For(P jmix) ∼= P j for any
j ≤ 0, and similarly for the differentials. The pro-object P jmix is obtained by taking
a formal projective limit of objects P jn,mix, where P jn,mix is a projective object in
Pmix
Ǐ-mon

(Xn) such that P jn ∼= For(P jn,mix).
Recall the equivalence S0

G of (2.8). We set

Rmix
G := S0

G(C[G]),

an ind-object in the category P0
Ǐ-mon

(GrǦ). This object is endowed with an asso-
ciative and commutative multiplication map

mmix : Rmix
G ?Rmix

G → Rmix
G .

One can choose the subobjects RG,k ⊂ RG of §3.2 in such a way that there exists
Rmix
G,k ⊂ Rmix

G such that the isomorphism For(Rmix
G ) ∼= RG induces an isomorphism

For(Rmix
G,k) ∼= RG,k for any k, and mk,l can be lifted to a morphism mmix

k,l : Rmix
G,k ?

Rmix
G,l → Rmix

G,k+l.
Then one can also consider, for any j, the object P jmix ? Rmix

G,k. This object is
a pro-object in the category of perverse sheaves on GrǦ,Fp , but a priori not in the
category Pmix

Ǐ-mon
(GrǦ). Still, the pro-object

P j ?RG,k ∼= For
(
P jmix ?R

mix
G,k

)
is endowed with an automorphism induced by the Frobenius.

With these choices, by definition the dg-algebra E•(1G,RG) of §3.4 is equipped
with an automorphism

Fr : E•(1G,RG) ∼−→ E•(1G,RG)

induced by the Frobenius. We would like to decompose the dg-algebra E•(1G,RG)
according to the generalized eigenspaces of this automorphism. However, as this
dg-algebra has infinite-dimensional graded pieces, we need to be more careful.

First, observe that the Frobenius also induces an automorphism of the dg-algebra
Ext•Ǧ(O)-mon(1G,RG), again denoted Fr.

Lemma 3.9. (1) The morphism φ of Proposition 3.5 commutes with the au-
tomorphisms Fr.

(2) For any n ≥ 0, Fr acts on ExtnǦ(O)-mon(1G,RG) as multiplication by pn/2.



26 PRAMOD N. ACHAR AND SIMON RICHE

Proof. Statement (1) is clear from definitions. Let us consider (2). By adjunction
we have, for any n ≥ 0,

HomDb
Ǧ(O)-mon

(GrǦ)(1G,RG,k[n]) ∼= Hn(i!0RG,k).

Hence the result follows from condition (∗) of [BGS, §4.4]. �

Statement (2) of this lemma, together with Proposition 3.1, imply that there
exists an isomorphism of G-equivariant bigraded algebras

(3.10) Ext•Ǧ(O)-mon(1G,RG) ∼= C[NG],

where the additional Z-grading on the left-hand side is induced by the action of
Fr, while the additional grading on the right-hand side is defined in §2.3. We will
consider this isomorphism as an isomorphism of dgg-algebras, where both sides
have trivial differential.

To simplify notation, let us set

A• := E•(1G,RG).

By definition, we have A• = lim−→k
A•k, where

Ank =
∏
j∈Z

Hom(P j , P j+n ?RG,k).

Let Anj,k := Hom(P j , P j+n ?RG,k). Then we have

Anj,k = lim←−
m≥0

Hom(P j , P j+nm ?RG,k).

We set Anj,k,m := Hom(P j , P j+nm ? RG,k). By construction, the automorphism Fr

considered above is induced by automorphisms denoted similarly Fr : Anj,k,m
∼−→

Anj,k,m.

Lemma 3.10. The action of Fr on Anj,k,m is locally finite, and all its eigenvalues
are integral powers of p1/2.

Proof. By definition we have

Anj,k,m = lim−→
l≥0

Hom(P jl , P
j+n
m ?RG,k).

Each space Hom(P jl , P
j+n
m ?RG,k) is finite-dimensional, and stable under the action

of Fr. Hence it is enough to prove that the eigenvalues of the restriction of Fr to
this space are integral powers of p1/2.

By [AR, Lemma 7.8 and its proof], the eigenvalues of the Frobenius on the Hom-
space between any two objects which are images under For of objects of Pmix

Ǐ-mon
(GrǦ)

are integral powers of p1/2. Here, as explained above, P j+nmix,m ?Rmix
G,k is a priori not

necessarily an object of Pmix
Ǐ-mon

(GrǦ), but at least it is an extension of objects of
Pmix
Ǐ-mon

(GrǦ). Hence the same property holds. �

Thanks to Lemma 3.10, one can write

Anj,k,m =
⊕
r∈Z

Anj,k,m,r,
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where Anj,k,m,r is the generalized eigenspace of Fr for the eigenvalue pr/2. Note that
for any m ≥ 1, the morphism Anj,k,m → Anj,k,m−1 is surjective (by projectivity of
P j , see Lemma 3.3), and compatible with the direct sum decomposition.

Now we can define our “locally-finite” subalgebra of A• as follows. First we set

Alf,n
k =

⊕
r∈Z

∏
j∈Z

lim←−
m≥0

Anj,k,m,r,

and then
Alf,n = lim−→

k≥0

Alf,n
k .

One easily checks that Alf,• is a sub-dg-algebra of A•, stable under the action of G.

Lemma 3.11. The inclusion Alf,• ↪→ A• is a quasi-isomorphism.

Proof. Clearly, it suffices to prove that the inclusion Alf,•
k ↪→ A•k is a quasi-isomor-

phism for any k ≥ 0.
First, we check that the morphism H•(Alf,•

k )→ H•(A•k) is surjective. Take some
f ∈ Ank , annihilated by the differential. By definition, f is a family (fj)j∈Z, where
fj is in Anj,k. Then, each fj is a family (fj,m)m≥0, where fj,m ∈ Anj,k,m, and each
fj,m can be written as fj,m =

∑
r fj,m,r with fj,m,r ∈ Anj,k,m,r. To say that d(f) = 0

amounts to saying that for any j ∈ Z, fj+1 ◦ djP = (−1)ndj+nP?RG,k ◦ fj . Then this

equation can be rewritten as fj+1,m◦djP = (−1)ndj+nPm?RG,k ◦fj,m for any m, and the

latter equation can finally be rewritten as fj+1,m,r ◦ djP = (−1)ndj+nPm?RG,k ◦ fj,m,r
for any r.

By Lemma 3.9, the action of Fr on the image of f in cohomology is multiplication
by pn/2. We set f ′ = (f ′j)j∈Z ∈ Alf,n, where f ′j is the family (f ′j,m)m≥0, where for
any m we have set f ′j,m = fj,m,n. By the remarks above, f ′ is annihilated by the
differential. We claim that f and f ′ define the same class in cohomology, which
proves surjectivity. Indeed, for any r 6= n, the family (fj,m,r)j,m is an element of
A• annihilated by the differential, and has trivial image in cohomology for reasons
of degree. Hence it is in the image of the differential. The claim follows.

Injectivity can be proved similarly, which concludes the proof. �

By definition, the dg-algebra Alf is endowed with an additional Z-grading, which
makes it a G-equivariant dgg-algebra. By Lemma 3.11 and isomorphism (3.10), the
morphism φ of Proposition 3.5 induces a quasi-isomorphism of dgg-algebras

(3.11) Alf qis−−→ C[NG],

where the right-hand side is endowed with the dgg-algebra structure defined in §2.3.

3.8. Mixed version of FG. Now we can construct the functor

Fmix
G : Dmix

Ǧ(O)-mon
(GrǦ)→ Db

freeCohG×Gm(NG).

Using equivalence (2.5), it is enough to construct a functor

Fmix
G : Dmix

Ǧ(O)-mon
(GrǦ)→ DGCohG×Gm

free (NG).

As in §3.5, this functor will be the restriction of a functor

F
mix

G : DbPmix
Ǐ-mon

(GrǦ)→ DGCohG×Gm(NG).

The functor F
mix

G is constructed as follows. We use the same notation as in §3.7.



28 PRAMOD N. ACHAR AND SIMON RICHE

For any bounded complex M• of objects of Pmix
Ǐ-mon

(GrǦ), the E•(1G,RG)-dg-
module E•(1G,For(M•) ? RG) of §3.5 is endowed with an automorphism induced
by the Frobenius. Moreover, by the same arguments as in the proof of Lemma
3.10, this action is locally finite, and the eigenvalues are all integral powers of p1/2.
Hence this action gives rise to an additional Z-grading on E•(1G,For(M•) ?RG).
Restricting the action to Alf , this grading makes E•(1G,For(M•)?RG) an Alf -dgg-
module, denoted E•,•(1G,M• ? RG). Deriving this (exact) functor, we obtain a
functor

E•,•(1G, (−) ?RG) : DbPmix
Ǐ-mon

(GrǦ)→ DGModG×Gm(Alf).

Then, quasi-isomorphism (3.11) induces an equivalence of categories

C[NG]
L

⊗Alf (−) : DGModG×Gm(Alf) ∼−→ DGModG×Gm(C[NG]).

Composing this equivalence with the functor E•,•(1G, (−) ? RG) gives our func-
tor F

mix

G . We denote by F̃mix
G the composition of this functor with the inclusion

Dmix
Ǧ(O)-mon

(GrǦ) ↪→ DbPmix
Ǐ-mon

(GrǦ).

Lemma 3.12. The following diagram commutes up to an isomorphism of functors:

Dmix
Ǧ(O)-mon

(GrǦ)

For

��

F̃mix
G // DGModG×Gm(C[NG])

For

��
Db
Ǧ(O)-mon

(GrǦ) F̃G // DGModG(C[NG]).

Proof. By construction of the equivalences, it is enough to prove that the compo-
sition of the restriction of scalars functor

Rest1 : DGModG(E•(1G,RG))→ DGModG(Alf)

with the equivalence

C[NG]
L

⊗Alf (−) : DGModG(Alf)→ DGModG(C[NG])

is isomorphic to the equivalence

C[NG]
L

⊗E•(1G,RG) (−) : DGModG(E•(1G,RG))→ DGModG(C[NG]).

However, the latter equivalences have inverses the restriction of scalars functors

Rest2 : DGModG(C[NG])→ DGModG(Alf)

and
Rest3 : DGModG(C[NG])→ DGModG(E•(1G,RG)).

By construction, the morphism Alf → C[NG] is the composition of the morphisms
Alf → E•(1G,RG) and E•(1G,RG)→ C[NG]. Hence we have Rest2 = Rest1◦Rest3,
and the result follows. �

The same proof as that of Lemma 3.6 gives the following result.

Lemma 3.13. For V in Rep(G), there is an isomorphism in DGModG×Gm(C[NG])

F̃mix
G (S0

G(V )) ∼= V ⊗C C[NG],

where, on the right-hand side, the Gm-action on V is trivial. �
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It follows from this lemma that F̃mix
G factors through a functor

Fmix
G : Dmix

Ǧ(O)-mon
(GrǦ)→ DGCohG×Gm

free (NG).

Proposition 3.14. The functor Fmix
G is fully faithful.

Proof. The category Dmix
Ǧ(O)-mon

(GrǦ), respectively DGCohG×Gm
free (NG), is a graded

version of the category Db
Ǧ(O)-mon

(GrǦ), respectively DGCohGfree(NG) in the sense of
[AR, §2.3]. Hence for two objects M,N in Dmix

Ǧ(O)-mon
(GrǦ) we have isomorphisms

HomDb
Ǧ(O)-mon

(GrǦ)(For(M),For(N)) ∼=
⊕
i∈Z

HomDmix
Ǧ(O)-mon

(GrǦ)(M,N〈i〉),

and

HomDGCohGfree(NG)(For ◦ Fmix
G (M),For ◦ Fmix

G (N)) ∼=⊕
i∈Z

HomDGCohG×Gm
free (NG)(F

mix
G (M), Fmix

G (N)〈i〉).

By Theorem 2.1 and Lemma 3.12, we know that the functor Fmix
G induces an iso-

morphism between the left-hand sides of these equations. Moreover, it respects the
direct sum decompositions of the right-hand sides. Hence it also induces an isomor-
phism between the right-hand sides, and also between the summands associated to
i = 0. The result follows. �

Finally we can finish the proof of Theorem 2.4.

Proof of Theorem 2.4. By Proposition 3.14 and Lemma 3.13, one can apply Lemma
2.2 to the functor Fmix

G , proving that it is an equivalence of categories. Composing
with the equivalence (2.5), we obtain the equivalence Fmix

G .
The commutativity of the diagram of the theorem follows from Lemma 3.12. By

construction, the functor Fmix
G commutes with internal shifts 〈i〉. The last assertion

of the theorem follows. �

4. Constructible sheaves on GrǦ and coherent sheaves on NG:
second approach

In this section we give a second proof of Theorems 2.1 and 2.4, which was inspired
by the methods of [BF, §6.5].

4.1. Reminder on pretriangulated categories. The notion of pretriangulated
category was introduced in [BK]. We will rather use [Dr, BLL] as references. Recall
the basic notions of dg-categories, see e.g. [BLL, §4.1]5 or [Dr, §2.1].

Let A be a dg-category over a field. Then one can define the dg-category A pretr

as follows. First, one defines the dg-category A with

• objects: formal expressions A[n] where A is an object of A and n ∈ Z;

5In [BLL], the authors assume that dg-categories are additive, but this is not really used in
the results we quote. We only assume our dg-categories to be preadditive.
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• morphisms:

Hom•
A

(A[n], B[m]) = Hom•A (A,B)[m− n]

as graded vector spaces, and the differential of an element f ∈ Hom•A (A,B)
viewed as an element of Hom•

A
(A[n], B[m]) is given by

dA (f) = (−1)m · dA (f).

Composition is defined in the natural way.
Note that this definition is chosen so as to mimic the relations for complexes of
morphisms between complexes in an additive category, with the usual sign conven-
tions.

Then, one defines the dg-category A pretr with
• objects: formal expressions(

n⊕
i=1

Ci[di], q

)
where n ≥ 0, Ci is an object of A , di ∈ Z, q = (qij)i,j=1···n with qij ∈
Hom1

A
(Ci[di], Cj [dj ]) such that dq + q2 = 0 and qij = 0 for i ≥ j;

• morphisms: for objects C = (⊕ni=1Ci[di], q) and C ′ = (⊕mi=1C
′
i[d
′
i], q
′), the

graded vector space Hom•A pretr(C,C ′) is the space of matrices (fij)
j=1···n
i=1···m

such that fij ∈ Hom•(Cj [dj ], C ′i[d
′
i]). The differential is defined by the rule

dA pretr(f) = (dA (fij))i,j + q′f − (−1)kfq

if f is homogeneous of degree k. Composition is defined by matrix multi-
plication.

Note that the assignment A 7→ A pretr defines an endofunctor of the category of
dg-categories and dg-functors between them.

Recall that for any dg-category A , the category Ho(A pretr) is always triangu-
lated. (Here, for a dg-category B, we denote by Ho(B) its homotopy category.)
For example, the cone of a closed morphism f ∈ Hom0

A pretr(C,C ′) is defined as the
object

cone(f) =

⊕
i

C ′i[d
′
i]⊕

⊕
j

Cj [dj + 1],
(
q′ f
0 −q

) .

One has a natural fully faithful inclusion A → A pretr of dg-categories. One says
that A is pretriangulated if the induced functor

Ho(A )→ Ho(A pretr)

is an equivalence of categories. If A is pretriangulated, then by the remarks above
Ho(A ) has a canonical structure of triangulated category.

An enhanced triangulated category is a triple (D ,E , φ) where D is a triangulated
category, E is a pretriangulated category, and φ is an equivalence of triangulated
categories D ∼= Ho(E ).

Let (D ,E , φ) be an enhanced triangulated category. Consider a set of objects
S = {Ej , j ∈ J} of E (or equivalently of D). Let us denote by 〈S〉D the full trian-
gulated subcategory of D generated by S, i.e. the smallest strictly full triangulated
subcategory of D containing S. Our aim is to explain how one can concretely
construct the category 〈S〉D starting from the datum of S and E .
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Let A denote the dg-subcategory of E whose objects are the set S. This category
is determined by the morphism complexes Hom•E (Ei, Ej) and the composition maps.
Consider the functor

Ψ : Ho(A pretr) → Ho(E pretr) ∼= Ho(E )
φ∼= D

induced by the inclusion A ↪→ E . The following result is [BK, §4, Theorem 1]. We
include the (very easy) proof for the reader’s convenience.

Proposition 4.1. The functor Ψ induces an equivalence of triangulated categories

Ho(A pretr) ∼−→ 〈S〉D .

Proof. By construction, Ψ is a fully faithful triangulated functor. By [BLL, Propo-
sition 4.10(b)], the category Ho(A pretr) is generated, as a triangulated category, by
the set of objects S. Hence Ψ factors though 〈S〉D , which is its essential image. �

Finally, we will need the following result, see [Dr, Proposition 2.5]. Recall that
a dg-functor F : A → B is a quasi-equivalence if it induces an isomorphism

H•(Hom•A (A,B))→ H•(Hom•B(F (A), F (B)))

for any A,B in A and if moreover Ho(F ) : Ho(A )→ Ho(B) is essentially surjective.

Proposition 4.2. If F : A → B is a quasi-equivalence, then the induced functor
F pretr : A pretr → Bpretr is also a quasi-equivalence. �

4.2. Alternative definition of FG. Now we can give the alternative definition
of the equivalence

FG : Db
Ǧ(O)-mon

(GrǦ) ∼−→ DGCohGfree(NG).

More precisely, we will construct an equivalence in the opposite direction.
Consider the triangulated category DGModG(C[NG]). This category has a nat-

ural enhancement. Indeed, let KprojG(C[NG]) be the sub-dg-category of the dg-
category of C[NG]-dg-modules whose objects are the K-projective objects (in the
sense of [BL, Definition 10.12.2.1], adapted to our setting). Then this category is
pretriangulated, and there is a natural equivalence of categories

Ho(KprojG(C[NG])) ∼−→ DGModG(C[NG]).

Hence we are in the setting of Proposition 4.1. We let AG be the sub-dg-category of
KprojG(C[NG]) whose objects are the V ⊗ C[NG] for V ∈ Rep(G). By Proposition
4.1, there is a natural equivalence

(4.1) Ho(A pretr
G ) ∼= DGCohGfree(NG).

Note that all morphism spaces in the dg-category AG have trivial differential.
Now, consider the constructible side. The category Db

Ǧ(O)-mon
(GrǦ) is the sub-

category of the triangulated category Db
Ǐ-mon

(GrǦ) generated by the objects SG(V )
for V in Rep(G). Moreover, the realization functor

DbPǏ-mon(GrǦ) → Db
Ǐ-mon

(GrǦ)

is an equivalence of categories, see (2.3). As above, the category DbPǏ-mon(GrǦ) has
a natural enhancement. Indeed, let Proj(GrǦ) be the dg-category of bounded above
complexes of projective pro-objects in PǏ-mon(GrǦ) whose cohomology is bounded,
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and is in PǏ-mon(GrǦ). Then this is a pretriangulated category, and the natural
functor

Ho(Proj(GrǦ))→ DbPǏ-mon(GrǦ)
is an equivalence of triangulated categories. Hence we are again in the setting of
Proposition 4.1. Recall the resolution P • constructed in §3.3. We denote by BG

the dg-sub-category of Proj(GrǦ) whose objects are the complexes P • ? SG(V ), V
in Rep(G). Then, by Proposition 4.1, there is a natural equivalence of triangulated
categories

(4.2) Ho(Bpretr
G ) ∼= Db

Ǧ(O)-mon
(GrǦ).

Now, we observe that the dg-categories AG and BG are quasi-equivalent. Indeed,
first there is a natural bijection between objects of these categories. Then, consider
V, V ′ in Rep(G). Using Lemma 3.7 and the same arguments as in the proof of
Proposition 3.5, there are natural quasi-isomorphisms of complexes

Hom•BG
(P • ? SG(V ), P • ? SG(V ′))

qis−−→ Ext•Db
Ǧ(O)-mon

(GrǦ)(SG(V ),SG(V ′))

which are compatible with composition, where the differential on the right-hand
side is trivial. Then, by Proposition 3.8, we have a natural isomorphism

Ext•Db
Ǧ(O)-mon

(GrǦ)(SG(V ),SG(V ′)) ∼= Ext•DGCohGfree(NG)(V ⊗ C[NG], V ′ ⊗ C[NG]).

Finally, we observe that the graded vector space on the right-hand side, endowed
with the trivial differential, is the complex of morphisms in AG between V ⊗C[NG]
and V ′ ⊗ C[NG]. Combining these morphisms provides the quasi-equivalence of
dg-categories

BG
qis−−→ AG.

Using Proposition 4.2, we deduce an equivalence of triangulated categories

(4.3) Ho(Bpretr
G ) ∼−→ Ho(A pretr

G ).

Combining equivalences (4.1), (4.2) and (4.3), we obtain a second construction
of the equivalence of Theorem 2.1. Property (2.1) is obvious: the category Rep(G)
acts on all the categories we have considered, in particular on the dg-categories AG

and BG, and all our equivalences commute with the action of Rep(G).

Remark 4.3. It would be natural to expect that the equivalence constructed in this
subsection is isomorphic to the one constructed in §3.5. However, we were not able
to prove this fact.

4.3. Mixed version. One can give a completely parallel proof of Theorem 2.4.
Namely, for any V in Rep(G) one can construct a projective resolution in the
category of pro-objects in Pmix

Ǐ-mon
(GrǦ):

· · · → Pmix,−2
V → Pmix,−1

V → P 0
V � S0

G(V )

by choosing for any n� 0 a minimal projective resolution in the abelian category
Pmix
Ǐ-mon

(Xn) and then taking a projective limit over n. (See §3.3 for details.)
Then one considers the dg-category BG,mix whose objects are the resolutions

P •V 〈j〉 for V in Rep(G) and j ∈ Z. Similarly, one defines the dg-category AG,mix

whose objects are the G-equivariant dgg-modules V ⊗ C[NG]〈j〉 for V in Rep(G)
and j ∈ Z. Then, one can construct a quasi-equivalence of dg-categories

BG,mix → AG,mix,



CONSTRUCTIBLE SHEAVES ON AFFINE GRASSMANNIANS 33

hence obtain an equivalence of triangulated categories Ho(Bpretr
G,mix) ∼= Ho(A pretr

G,mix).
Combining with mixed analogs of equivalences (4.1) and (4.2), and equivalence
(2.5), one obtains an equivalence as in Theorem 2.4. One can also show that it
is possible to construct this equivalence and that of §4.2 in such a way that the
diagram of Theorem 2.4 commutes. Details are left to the reader.

In the remainder of this section, we prove that the equivalence constructed in this
subsection, denoted by ′Fmix

G , is isomorphic to the equivalence FGmix constructed in
§3.8. This result will not be used in this paper; we only include it for completeness.
However, the constructions of §4.4 will be used in Sections 6 and 7 below.

4.4. An Orlov category. Consider the full subcategory CohG×Gm
free (NG) of the

category CohG×Gm(NG) which is generated under extensions by the objects V ⊗C
ONG〈i〉, for V a simple G-module. Note that these objects, called free objects, are
projective: since G×Gm is a reductive group, the functor of taking G×Gm-fixed
points is exact. Hence the objects of CohG×Gm

free (NG) are in fact direct sums of free
objects. In particular, the indecomposable objects of the category CohG×Gm

free (NG)
are exactly the objects V ⊗C ONG〈i〉, for V a simple G-module. Recall the notion
of Orlov category introduced in [AR, Definition 4.1].

Lemma 4.4. The category CohG×Gm
free (NG), endowed with the function deg defined

by
deg(V ⊗C ONG〈i〉) = i,

is an Orlov category. Moreover, there is a natural equivalence of triangulated cate-
gories

(4.4) Kb
(
CohG×Gm

free (NG)
) ∼= Db

freeCohG×Gm(NG).

Proof. First, it is clear that morphism spaces between objects of CohG×Gm
free (NG) are

finite-dimensional. Then, for V, V ′ simple G-modules and i, j ∈ Z we have

HomCohG×Gm
free (NG)

(
V ⊗C ONG〈i〉, V ′ ⊗C ONG〈j〉

) ∼= (V ′ ⊗ V ∗ ⊗ C[NG]〈j − i〉)G×Gm .

If V ∼= V ′ and i = j, this space has dimension 1. And, in the general case, this
space is zero unless j − i ∈ 2Z<0, or j = i and V ∼= V ′. This proves the properties
of an Orlov category.

Now we prove equivalence (4.4). The abelian category CohG×Gm(NG) has enough
projectives. Hence there is an equivalence of categories

K−
(
Proj(NG)

) ∼= D−CohG×Gm(NG),

where Proj(NG) is the additive category of projective objects in CohG×Gm(NG).
We have remarked above that the objects V ⊗C ONG〈i〉, V a simple G-module,
are projective. Hence the category Db

freeCohG×Gm(NG) is equivalent to the full
triangulated subcategory of K−

(
Proj(NG)

)
generated by these objects. It is clear

that this subcategory is the essential image of the fully faithful functor

Kb
(
CohG×Gm

free (NG)
)
→ K−

(
Proj(NG)

)
induced by the inclusion CohG×Gm

free (NG) ↪→ Proj(NG). This proves the equivalence.
�

To simplify the task of working with the category CohG×Gm
free (NG), let us make

the following remark. We have explained above that any object of CohG×Gm
free (NG) is
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isomorphic to a direct sum of objects of the form V ⊗ONG〈i〉. Hence this category
is equivalent to the additive (Orlov) category AG with:

• objects: finite-dimensional graded G-modules V =
⊕

n∈Z Vn;
• morphisms:

HomAG(V, V ′) = HomCohG×Gm (NG)(
⊕
n∈Z

Vn ⊗ C[NG]〈n〉,
⊕
n∈Z

V ′n ⊗ C[NG]〈n〉).

4.5. Isomorphism of Fmix
G and ′Fmix

G . Consider the functor
′Fmix
G ◦ (Fmix

G )−1 : Db
freeCohG×Gm(NG)→ Db

freeCohG×Gm(NG).

By Lemma 4.4, one can consider this functor as a functor from Kb
(
CohG×Gm

free (NG)
)

to itself. As such, this functor stabilizes the subcategory CohG×Gm
free (NG), and there

is a natural isomorphism of functors(′Fmix
G ◦ (Fmix

G )−1
)
|CohG×Gm

free (NG)
∼= idCohG×Gm

free (NG).

(Use Lemma 3.13 and the category AG introduced in §4.4.) By [AR, Theorem 4.7],
we deduce that there exists an isomorphism of functors

′Fmix
G ◦ (Fmix

G )−1 ∼= idDb
freeCohG×Gm (NG),

hence an isomorphism of functors
′Fmix
G

∼= Fmix
G .

5. Relation to [ABG]

In this section we explain the relationship between Theorems 2.1 and 2.4 and
[ABG, Theorems 9.1.4 and 9.4.3]. For simplicity, we only treat the non-mixed case.
The mixed equivalences can be related similarly. (In this case, this result can also
be proved “abstractly” using Orlov categories.) The equivalence “FG” we consider
in this section is the one constructed in Section 3. The results of this section are
not used in the rest of the paper.

5.1. Sheaves on Ñ and multihomogeneous coordinate algebra. Let BG :=
G/B be the flag variety of G, and let ÑG := T ∗BG be its cotangent bundle. Recall
that for every weight λ ∈ X there is a natural line bundle OBG(λ) on BG, which is
globally generated iff λ is dominant. We denote by OÑG(λ) the pullback of OBG(λ)
to ÑG. Set

Γ(ÑG) :=
⊕
λ∈X+

Γ(ÑG, OÑG(λ)).

This is a G-equivariant X-graded algebra, called the multihomogeneous coordi-
nate algebra of ÑG. We denote by ModGX(Γ(ÑG)) the abelian category of G-
equivariant X-graded Γ(ÑG)-modules, and by QCohG(ÑG) the abelian category
of G-equivariant quasi-coherent sheaves on ÑG. There is a natural functor

Γ :

{
QCohG(ÑG) → ModGX(Γ(ÑG))

M 7→
⊕

λ∈X+ Γ(ÑG,M⊗OÑG OÑG(λ))
.

Now consider the G-equivariant X-graded sheaf of algebras

OÑG :=
⊕
λ∈X

OÑG(λ).
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We denote by QCohGX(ÑG,OÑG) the abelian category of G-equivariant X-graded
sheaves of modules over the algebra OÑG , which are quasi-coherent over OÑG .
There are natural adjoint functors

L :

{
ModGX(Γ(ÑG)) → QCohGX(ÑG,OÑG)

M 7→ OÑG ⊗Γ(ÑG) M

and

G :

{
QCohGX(ÑG,OÑG) → ModGX(Γ(ÑG))

M 7→ Γ(ÑG,M)
.

Here, G and L stand for “global” and “local.” Note that the inclusion Γ(ÑG) ⊂
Γ(ÑG,OÑG) is strict.

There are also natural functors

IndÑG :

{
QCohG(ÑG) → QCohGX(ÑG,OÑG)

M 7→ OÑG ⊗OÑG M

and

ResÑG :
{

QCohGX(ÑG,OÑG) → QCohG(ÑG)
M 7→ [M]0

,

where [M]λ is the component of M of degree λ ∈ X.
Finally, we let TorGX(Γ(ÑG)) ⊂ ModGX(Γ(ÑG)) be the subcategory whose objects

are inductive limits of objects M such that there exists λ ∈ X (depending on M)
such that [M ]µ = 0 for µ ∈ λ+ X+. We denote by

Q : ModGX(Γ(ÑG))→ ModGX(Γ(ÑG))/TorGX(Γ(ÑG))

the quotient functor.
The following result is a version of Serre’s theorem on quasi-coherent sheaves on

projective varieties. See [AV] for a similar result, whose proof can easily be adapted
to our setting.

Proposition 5.1. (1) The functor L is exact and vanishes on the subcategory
TorGX(Γ(ÑG)). The induced functor

L′ : ModGX(Γ(ÑG))/TorGX(Γ(ÑG))→ QCohGX(ÑG,OÑG)

is an equivalence of abelian categories, with quasi-inverse Q ◦ G.
(2) The functors IndÑG and ResÑG are quasi-inverse equivalences of categories.
(3) There exists an isomorphism of functors Q ◦ Γ ∼= Q ◦ G ◦ IndÑ . �

Remark 5.2. The functor ResÑG ◦ L is a non-C×-equivariant version of the functor
denoted by F in [ABG, §8.8].

In fact, we will not use Proposition 5.1 in the sequel. This proposition only
serves as a motivation for the definition of the functor Loc below.

Consider the Springer resolution π : ÑG → NG, and the associated inverse image
functor π∗ : QCohG(NG) → QCohG(ÑG). As NG is an affine variety, the global
sections functor induces an equivalence

Γ(NG,−) : QCohG(NG)→ ModG(C[NG])

(where ModG(C[NG]) is the category of G-equivariant C[NG]-modules).
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Proposition 5.3. The following diagram commutes up to an isomorphism of func-
tors:

QCohG(NG)
Γ(NG,−) //

π∗

��

ModG(C[NG])
Γ(ÑG)⊗C[NG]− // ModGX(Γ(ÑG))

L

��

QCohG(ÑG)
IndÑG // QCohGX(ÑG,OÑG).

Proof. This follows immediately from the fact that there exists a natural isomor-
phism of functors

π∗ ∼= OÑG ⊗C[NG] Γ(NG,−)

and transitivity of the tensor product. �

Now we consider dg-analogues of these constructions. Let DGCohG(ÑG) be the
subcategory of the the derived category of G-equivariant quasi-coherent sheaves
of dg-modules over the sheaf of dg-algebras SOBG (TBG) on BG (where the tangent
sheaf TBG is in degree 2, and the differential is trivial) whose objects have their
cohomology locally finitely generated over SOBG (TBG).

Consider also the X-graded G-equivariant quasi-coherent sheaf of dg-algebras on
BG

ÕÑG :=
⊕
λ∈X

SOBG (TBG)⊗OBG OBG(λ).

Here the multiplication is the natural one, TBG is in degree 2 is each direct sum-
mand, and the differential is trivial. (This definition is chosen so that, if we
forget about the grading, ÕÑG is the direct image to BG of OÑG .) We denote
by DGCohGX(ÑG, ÕÑG) the subcategory of the derived category of X-graded G-
equivariant quasi-coherent sheaves of dg-modules over ÕÑG whose objects have
their cohomology locally finitely generated over ÕÑG . By the same arguments as
for Proposition 5.1(2), there is a natural equivalence of triangulated categories

(5.1) DGCohG(ÑG) ∼= DGCohGX(ÑG, ÕÑG).

Finally, we consider Γ(ÑG) as an X-graded G-equivariant dg-algebra with trivial
differential and the X×Z-grading chosen so that the inclusion Γ(ÑG) ⊂ Γ(BG, ÕÑG)
is graded. We denote by DGModGfg,X(Γ(ÑG)) the subcategory of the derived cate-
gory of X-graded G-equivariant dg-modules over this dg-algebra whose objects have
their cohomology finitely generated over Γ(ÑG). There is also a natural functor{

DGModGfg,X(Γ(ÑG)) → DGCohGX(ÑG, ÕÑG)

M 7→ ÕÑG
L

⊗Γ(ÑG)M
.

We denote by

(5.2) Loc : DGModGfg,X(Γ(ÑG))→ DGCohG(ÑG)

the composition of this functor with the equivalence (5.1).
The morphism π defined above induces a (derived) inverse image functor

π∗ : DGCohGfree(NG)→ DGCohG(ÑG).
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There is also a functor

Γ(ÑG)
L

⊗C[NG] (−) : DGCohGfree(NG)→ DGModGfg,X(Γ(ÑG))

The same proof as that of Proposition 5.3 gives the following result.

Proposition 5.4. The diagram

DGCohGfree(NG)

Γ(ÑG)
L
⊗C[NG] (−)

llll

uullll
π∗

((QQQQQQQQQQQQ

DGModGfg,X(Γ(ÑG)) Loc // DGCohG(ÑG).

commutes up to an isomorphism of functors. �

5.2. Reminder on [ABG]. For the remainder of Section 5 we assume that G is
semisimple of adjoint type. By [ABG, Theorem 9.1.4], there exists an equivalence
of categories

(5.3) FG : Db
Ǐ-mon

(GrǦ) ∼−→ DGCohG(ÑG).

Let us recall how this equivalence is constructed.
First, we denote by Dproj(GrǦ) the subcategory of the homotopy category of

bounded above complexes of projective pro-objects in PǏ-mon(GrǦ) whose objects
C• satisfy the following conditions:

• Hi(C) ∈ PǏ-mon(GrǦ) for any i ∈ Z;
• Hi(C) = 0 for i� 0.

There exists a natural functor fromDproj(GrǦ) to the derived category of the abelian
category of pro-objects in PǏ-mon(GrǦ). The essential image of this functor is the
subcategory whose objects have their total cohomology in PǏ-mon(GrǦ). By [KS2,
Theorem 15.3.1(i)], the latter subcategory is equivalent to DbPǏ-mon(GrǦ). Hence
one obtains an equivalence of triangulated categories

(5.4) Υ : Dproj(GrǦ) ∼−→ DbPǏ-mon(GrǦ) ∼= Db
Ǐ-mon

(GrǦ).

As in §2.5, let FlǦ := Ǧ(K)/Ǐ be the affine flag variety. For every λ ∈ X one
can define a Wakimoto sheaf Wλ ∈ PǏ-eq(FlǦ), see [ABG, §8.3]. Recall that there
is a natural convolution product on Db

Ǐ-eq
(FlǦ), which we denote by ?Ǐ . For any

λ, µ ∈ X there exists a canonical isomorphism

(5.5) Wλ ?
Ǐ Wµ

∼= Wλ+µ

(see [ABG, Corollary 8.3.2] or [AB, Corollary 1]).
There exists also a (convolution) action of the category Db

Ǐ-eq
(FlǦ) on the cat-

egory Db
Ǐ-eq

(GrǦ). In [ABG, §8.9], the authors explain how to “extend” the con-
volution with Wλ to a functor on Db

Ǐ-mon
(GrǦ). More precisely, they construct for

every λ ∈ X+ an equivalence of categories Cλ : Db
Ǐ-mon

(GrǦ) → Db
Ǐ-mon

(GrǦ) such
that the following diagram commutes up to isomorphism:

Db
Ǐ-eq

(GrǦ)

For

��

Wλ?(−) // Db
Ǐ-eq

(GrǦ)

For

��
Db
Ǐ-mon

(GrǦ)
Cλ // Db

Ǐ-mon
(GrǦ).
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Moreover, for any λ, µ ∈ X+ there exists a canonical isomorphism of functors

Cλ ◦ Cµ ∼= Cλ+µ

compatible (in the obvious sense) with isomorphism (5.5). For these reasons, for
any M in Db

Ǐ-mon
(GrǦ) one can set Wλ ? M := Cλ(M). (Note that this notation

may be misleading, as this construction is not functorial in the left factor, but only
in the right one.)

Consider the X× Z-graded vector space

Ext•Ǐ-mon(1G,WX+ ?RG),

whose (λ, i)-component is zero if λ /∈ X+, and otherwise is

lim−→
k≥0

HomDb
Ǐ-mon

(GrǦ)(1G,Wλ ?RG,k[i]).

This graded vector space can be endowed with an algebra structure, where for
ξ ∈ ExtiǏ-mon(1G,Wλ ?RG) and ζ ∈ Extj

Ǐ-mon
(1G,Wµ ?RG), the product ξ · ζ is by

definition the morphism

1G
ζ−→Wµ ?RG[j] ∼=Wµ ? 1G ?RG[j]

Wλ?ξ?RG[j]−−−−−−−−→Wµ ?Wλ ?RG ?RG[i+ j]

∼=Wλ+µ ?RG ?RG[i+ j]
Wλ+µ?m[i+j]−−−−−−−−−→Wλ+µ ?RG[i+ j].

The action of G on RG also induces an action on this algebra, which is compat-
ible with the product. Note that the algebra Ext•Ǧ(O)-mon(1G,RG) of §3.2 is the
component of the algebra Ext•Ǐ-mon(1G,WX+ ?RG) of weight 0 ∈ X.

By [ABG, Theorem 8.5.2], there exists an isomorphism of G-equivariant X×Z-
graded algebras

(5.6) Ext•Ǐ-mon(1G,WX+ ?RG) ∼= Γ(ÑG),

where the Z-grading on the right-hand side is as in §5.1.
The next step is a formality result for some dg-algebra. Consider the resolution

P • as in §3.3, and form the X-graded dg-algebra

E•X(1G,RG) :=
⊕
λ∈X+
i∈Z

lim−→
k≥0

Homi(P •,Wλ ? P
• ?RG,k).

Here the differential is the natural one, and the product is defined as follows. If
ξ ∈ Homi(P •,Wλ ?P

• ?RG,k) and ζ ∈ Homj(P •,Wµ ?P
• ?RG,l), then the product

ξ · ζ is the composition

P •
ζ−→Wµ ? P

• ?RG,l[j]
Wµ?ξ?RG,l[j]−−−−−−−−−→Wµ ?Wλ ? P

• ?RG,k ?RG,l[i+ j] ∼=

Wλ+µ ? P
• ?RG,k ?RG,l[i+ j]

Wλ+µ?P
•?mk,l[i+j]−−−−−−−−−−−−−→Wλ+µ ? P

• ?RG,k+l[i+ j].

Note that the dg-algebra E•(1G,RG) of §3.4 is the component of E•X(1G,RG) of
weight 0 ∈ X.

By the same arguments as in §3.7, one can construct a sub-dg-algebra6

(5.7) E•X(1G,RG)lf ⊂ E•X(1G,RG)

6This construction is not performed in [ABG]. It is necessary for the arguments there to work,
however, even in the non-mixed case.
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which is “the locally finite part for the action of the Frobenius”, such that the inclu-
sion E•X(1G,RG)lf ↪→ E•X(1G,RG) is a quasi-isomorphism. Then, using pointwise
purity of simple Ǧ(O)-equivariant perverse sheaves on GrǦ (see [KL, G1]), one can
construct an injection and a surjection of X-graded, G-equivariant dg-algebras

(5.8) E•X(1G,RG)lf E•X(1G,RG)lf
<

? _oo // // Ext•Ǐ-mon(1G,WX+ ?RG)

which are both quasi-isomorphisms7 (see [ABG, §9.5]).
Finally we can review the construction of the equivalence FG. It is defined as

the composition

Db
Ǐ-mon

(GrǦ) Υ−1

−−−→ Dproj(GrǦ)
(1)−−→ DGModGfg,X(E•X(1G,RG)op)

(2)−−→ DGModGfg,X(E•X(1G,RG)lf,op)
(3)−−→ DGModGfg,X(E•X(1G,RG)lf,op

< )
(4)−−→ DGModGfg,X(Ext•Ǐ-mon(1G,WX+ ?RG))

(5)−−→ DGModGfg,X(Γ(ÑG))
Loc−−→ DGCohG(ÑG).

Here, the categories DGModGfg,X(−) are defined as for Γ(ÑG) in §5.1. The functor
(1) is defined by a formula very similar to that for the functor E•(1G, (−) ? RG)
defined in §3.5, adding Wakimoto sheaves to the picture. (This functor is defined at
the level of homotopy categories; the functor (1) is the composition with the natural
functor from the homotopy category to the derived category.) The functor (2) is
the equivalence induced by quasi-isomorphism (5.7). The functors (3) and (4) are
similarly induced by quasi-isomorphisms (5.8). The functor (5) is the equivalence
induced by isomorphism (5.6). Finally, the equivalence Υ is defined in (5.4), and
the functor Loc in (5.2).

5.3. Compatibility. The main result of this section is the following.

Proposition 5.5. The following diagram is commutative up to an isomorphism of
functors:

Db
Ǧ(O)-mon

(GrǦ) FG

Thm. 2.1
//

� _

i

��

DGCohGfree(NG)

π∗

��
Db
Ǐ-mon

(GrǦ)
FG

(5.3)
// DGCohG(ÑG).

Proof. First, using Proposition 5.4 and arguments similar to those of the proof of
Lemma 3.12, one checks that the following diagram commutes up to an isomorphism
of functors:

DGModGfree(E•(1G,RG))

E•X(1G,RG)
L
⊗E•(1G,RG) (−)

��

// DGCohGfree(NG)

π∗

��
DGModGfg,X(E•X(1G,RG)) // DGCohG(ÑG).

7Note that these arguments prove in particular the formality of the dg-algebra E•(1G,RG) of
§3.4. We believe our argument in the proof of Proposition 3.5 is more elementary.
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Here, DGModGfree(E•(1G,RG)) is the subcategory of DGModG(E•(1G,RG)) gener-
ated by objects of the form E•(1G,RG)⊗C V for V in Rep(G), the functor on the
top line is the one appearing in the definition of FG, and the functor on the bottom
line is the one appearing in the definition of FG.

We define HDGModG(E•(1G,RG)) and HDGModGX(E•X(1G,RG)) as the homo-
topy categories whose associated derived categories are DGModG(E•(1G,RG)) and
DGModGX(E•X(1G,RG)). As E•X(1G,RG) is K-flat as an E•(1G,RG)-dg-module, the
following diagram commutes:

HDGModG(E•(1G,RG)) //

E•X(1G,RG)⊗E•(1G,RG)(−)

��

DGModG(E•(1G,RG))

E•X(1G,RG)
L
⊗E•(1G,RG) (−)

��
HDGModGX(E•X(1G,RG)) // DGModGX(E•X(1G,RG)).

Recall that the functor FG is constructed using an exact functor from the cat-
egory CbPǏ-mon(GrǦ) to the category of G-equivariant dg-modules over the dg-
algebra E•(1G,RG). Hence this functor factors through the composition

Db
Ǧ(O)-mon

(GrǦ) i−→ Db
Ǐ-mon

(GrǦ) Υ−1

−−−→ Dproj(GrǦ) HG−−→ HDGModG(E•(1G,RG))

which we denote by IG. Here, the functor HG sends a complex Q• to the dg-module

Hom•(P •, Q• ?RG)

(with obvious notation).
Now, consider the following diagram:

Db
Ǧ(O)-mon

(GrǦ)
� _

Υ−1◦i

��

IG // HDGModG(E•(1G,RG))

E•X(1G,RG)⊗E•(1G,RG)(−)

��
Dproj(GrǦ)

HX
G // HDGModGX(E•X(1G,RG)),

where the functor HX
G is the analogue of HG which appears in the definition of FG.

More precisely, HX
G sends a complex Q• to the X-graded dg-module⊕

λ∈X+

Hom•(P •,Wλ ? Q
• ?RG).

There exists a natural morphism of functors

E•X(1G,RG)⊗E•(1G,RG) HG(−)→ HX
G (−)

defined by the natural map

Homi(P •,Wλ ? P
• ?RG)⊗C Homj(P •, Q• ?RG)→ Homi+j(P •,Wλ ? Q

• ?RG).

Composing with Υ−1 ◦ i on the right, one obtains a morphism of functors

E•X(1G,RG)⊗E•(1G,RG) IG(−)→ HX
G ◦Υ−1 ◦ i(−).

Using the diagram considered earlier in this proof, we obtain a morphism a
functors

ν : π∗ ◦ FG → FG ◦ i.
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To prove that ν is an isomorphism, it is enough to check that for any V in Rep(G),
ν(SG(V )) is an isomorphism. However, there are natural isomorphisms

FG(SG(V )) ∼= V ⊗C C[NG], FG(SG(V )) ∼= V ⊗C OÑG
(see Lemma 3.6 and [ABG, Proposition 9.8.1]), and this claim is obvious. �

6. Hyperbolic localization and restriction

6.1. Reminder on the Brylinski–Kostant filtration. Recall the regular nilpo-
tent element eG ∈ g introduced in §3.1. For any G-module V , and any subspace
U ⊂ V , the Brylinski–Kostant filtration FBK

• U on U associated to eG (introduced
and studied in particular in [Bry]) is by definition given by

FBK
i (U) = U ∩ ker(ei+1

G : V → V ),

where eG acts on V via the differential of the G-action. In particular, this way
we get a filtration on every T -weight space V (λ) of V (λ ∈ X). Let us recall a
geometric construction of this filtration, due to Ginzburg. For any µ in X, we let
Tµ be the Ǔ−(K)-orbit through Lµ, where Ǔ− is the unipotent radical of the Borel
subgroup opposite to B̌ with respect to Ť .

Fix a G-module V , and a weight λ ∈ X. Then, by construction of the torus T
and [MV, Theorem 3.5] we have natural isomorphisms

V (λ) ∼= H•c (Sλ,SG(V )) ∼= H•Tλ(SG(V )),

and both cohomology groups are concentrated in degree 〈λ, 2ρ̌〉. Let tλ : Tλ ↪→ GrǦ
be the inclusion. Then by definition we have

H•Tλ(SG(V )) = H•(Tλ, t!λSG(V )).

Now, consider the Ť -action on GrǦ by left multiplication. Recall that we have a
natural isomorphism of graded algebras

H•
Ť

(pt) ∼= S(̌t∗) ∼= S(t),

where ť∗ is in degree 2. In particular, any point h ∈ ť defines a character of the
algebra H•

Ť
(pt). We denote by Ch the corresponding one-dimensional module. The

only Ť -fixed point in Tλ is {Lλ}. Hence, by the localization theorem in equivariant
cohomology, the morphism

(6.1) H•
Ť

(i!λSG(V )) → H•
Ť

(Tλ, t!λSG(V ))

induced by the adjunction for the inclusion {Lλ} ↪→ Tλ becomes an isomorphism
after inverting all α̌ ∈ Ř ⊂ ť∗, or equivalently induces an isomorphism

(6.2) H•
Ť

(i!λSG(V ))⊗H•
Ť

(pt) Ch
∼−→ H•C×(Tλ, t!λSG(V ))⊗H•

Ť
(pt) Ch.

for any h ∈ ť r ∪α̌∈Ř ker(α̌). (See Remark 6.2 below for comments.)
By [G2, Equation (8.3.3)], there is a (Leray) spectral sequence which computes

H•
Ť

(Tλ, t!λSG(V )) and with E2-term

Ep,q2 = Hp

Ť
(pt)⊗C H

q(Tλ, t!λSG(V )).

As recalled above, the cohomology H•(Tλ, t!λSG(V )) is concentrated in one degree
(in particular in degrees of constant parity). Hence this spectral sequence degener-
ates, and H•

Ť
(Tλ, t!λSG(V )) is a free H•

Ť
(pt)-module, with a canonical isomorphism
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of graded vector spaces

H•
Ť

(Tλ, t!λSG(V ))⊗H•
Ť

(pt) C0
∼= H•(Tλ, t!λSG(V ))

In particular, as the right-hand side is concentrated in degree 〈λ, 2ρ̌〉, it follows
that the lowest non-zero degree in H•

Ť
(Tλ, t!λSG(V )) is 〈λ, 2ρ̌〉, and that we have a

natural isomorphism (induced by forgetting the equivariance)

H
〈λ,2ρ̌〉
Ť

(Tλ, t!λSG(V )) ∼= H〈λ,2ρ̌〉(Tλ, t!λSG(V )).

Hence there is a canonical morphism

(6.3)
(
H〈λ,2ρ̌〉(Tλ, t!λSG(V ))⊗C H

•
Ť

(pt)
)
[−〈λ, 2ρ̌〉] → H•

Ť
(Tλ, t!λSG(V )),

which is necessarily an isomorphism. (See also [YZ, proof of Lemma 2.2] for similar
arguments.) In particular, this way we get for any h ∈ ť a canonical isomorphism

(6.4) H〈λ,2ρ̌〉(Tλ, t!λSG(V )) ∼−→ H•
Ť

(Tλ, t!λSG(V ))⊗H•
Ť

(pt) Ch.

Now we come back to the morphism (6.2). It is well known that H•(i!λSG(V ))
is concentrated in degrees of constant parity (see [Sp2, Corollaire 2.10] or [KL,
Theorem 5.5]). Hence, by the same spectral sequence arguments as above, the
equivariant cohomology H•

Ť
(i!λSG(V )) is also a free H•

Ť
(pt)-module, and there is a

canonical isomorphism

H•
Ť

(i!λSG(V ))⊗H•
Ť

(pt) C0
∼= H•(i!λSG(V )).

It follows that for any h ∈ ť the canonical filtration on the vector space

H•
Ť

(i!λSG(V ))⊗H•
Ť

(pt) Ch

induced by the grading on H•
Ť

(i!λSG(V )) has associated graded H•(i!λSG(V )).
Finally, using isomorphisms (6.2) and (6.4), we have constructed for any h ∈

ťr∪α̌ ker(α̌) a canonical filtration on the vector space V (λ) ∼= H〈λ,2ρ̌〉(Tλ, t!λSG(V )),
denoted Fgeom

• , with associated graded H•(i!λSG(V )). (Note that this filtration
depends on h, although we do not indicate this in the notation, for simplicity.)

The following result is due to Ginzburg (see [G2, Proposition 5.5.2]). As our
point of view is different from that of Ginzburg, we include a proof in §6.8. This
proof is completely different from the one given by Ginzburg, and more in the spirit
of [MV] and [YZ]. It is independent of the rest of the paper.

Theorem 6.1. There exists an explicit choice of h ∈ ť such that the filtration
Fgeom
• on V (λ) coincides with the filtration FBK

• up to a shift. More precisely, for
this choice of h, for any i we have

FBK
i V (λ) = Fgeom

2i+〈λ,2ρ̌〉 V (λ) = Fgeom
2i+1+〈λ,2ρ̌〉 V (λ).

Remark 6.2. Here the particular case of the localization theorem we use in (6.1) is
very easy to prove directly. Indeed, consider the object N := t!λSG(V ), an object of
the Ť -equivariant derived category Db

Ť -eq
(Tλ). The variety Tλ has a natural action

of Ǔ−(C[t−1]) (which is compatible with the Ť -action in the natural way), and
there exists a subgroup K ⊂ Ǔ−(C[t−1]), normalized by Ť , such that the quotient
K\Tλ is a finite dimensional affine space, with a linear Ť -action (whose weights
are in −Ř+), and such that the natural quotient map Tλ → K\Tλ restricts to a
closed embedding on the support of N . Then we can consider N as an object of
Db
Ť -eq

(K\Tλ).
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Consider the inclusions

{Lλ} �
� aλ // K\Tλ (K\Tλ) r {Lλ}? _

jλoo

and the distinguished triangle

(aλ)!(aλ)!N → N → (jλ)∗(jλ)∗N +1−−→ .

It is easy to check that H•
Ť

((jλ)∗N) is anihilated by
∏
α̌∈−Ř+ α̌ (see e.g. [FW,

Lemma 3.3]). Hence morphism (6.1) becomes an isomorphism after inverting all
α̌ ∈ Ř. Moreover, as H•

Ť
(i!λSG(V )) is free over S(t), this morphism is injective.

6.2. Hyperbolic localization and semisimplicity of Frobenius. Fix a stan-
dard Levi Ľ ⊂ Ǧ, and recall the notation of §2.4. We will denote by the same
symbol the morphisms similar to i, j, p, q but defined over Fp. We define the func-
tor Θmix

L so that it is a mixed version of ΘL and that it sends pure objects of weight
0 to pure objects of weight 0. More precisely, using again the notation of §2.4, this
functor sends an object M to

Θmix
L (M) :=

⊕
χ∈X∗(Z(L))

Mχ[〈χ, 2ρǦ − 2ρĽ〉]
〈
−〈χ, 2ρǦ − 2ρĽ〉

〉
.

Then for any λ ∈ X+ one can consider the object

Θmix
L ◦ p!i

∗ ICmix
λ
∼= Θmix

L ◦ q∗j!ICmix
λ ,

an Ľ(Fp[[x]])-equivariant perverse sheaf on GrĽ,Fp . (Note that the isomorphism
provided by [Bra, Theorem 1] also holds over Fp, see [Bra, Section 5].)

Proposition 6.3. The perverse sheaf Θmix
L ◦ p!i

∗ ICmix
λ is an object of the category

P0
Ľ(O)-mon

(GrĽ).

Proof. By [Bra, Theorem 8], this perverse sheaf is pure of weight 0. Hence we only
have to show that it is semisimple. The case L = T is contained in [NP, Théorème
3.1]. Now we deduce the general case. To avoid confusion, we add a subscript
“L⊂G” to the morphisms i and p and to Θmix relative to the inclusion L ⊂ G, and
similarly for the other inclusions.

First, by base change there is an isomorphism of functors

(6.5)
(
Θmix
T⊂L ◦ (pT⊂L)!(iT⊂L)∗

)
◦
(
Θmix
L⊂G ◦ (pL⊂G)!(iL⊂G)∗

)
∼= Θmix

T⊂G ◦ (pT⊂G)!(iT⊂G)∗.

Consider the perverse sheaf Θmix
L⊂G◦(pL⊂G)!(iL⊂G)∗ ICmix

λ . Choose a decomposition
into a sum of indecomposable pure perverse sheaves on GrĽ,Fp :

Θmix
L⊂G ◦ (pL⊂G)!(iL⊂G)∗ ICmix

λ
∼=
⊕
i

Mi.

By [BBD, Proposition 5.3.9], each Mi can be written as Si ⊗Q` Vi, where Si is a
simple perverse sheaf, and Vi is a Q`-vector space endowed with an indecomposable
unipotent action of the Frobenius. Assume that Vi0 6= Q` for some i0. Then,
using isomorphism (6.5), we obtain that Θmix

T⊂G ◦ (pT⊂G)!(iT⊂G)∗ ICmix
λ has a direct

summand which is indecomposable but not simple. This is absurd since we know
already the result for T . This concludes the proof. �
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6.3. Mixed version of RG
L . Consider the subcategory DWeil

Ǐ-mon
(GrǦ,Fp) of the de-

rived category of constructible sheaves on GrǦ,Fp generated by the simple objects
IC(Y )〈j〉, for Y an ǏFp -orbit on GrǦ,Fp and j ∈ Z. We use the same notation
for Ǧ(O)-monodromic complexes. As in §2.3, we also denote by PWeil

Ǐ-mon
(GrǦ,Fp)

the abelian subcategory of perverse sheaves. As in [AR, §7.2], we denote by ι the
composition

DbPmix
Ǐ-mon

(GrǦ) → DbPWeil
Ǐ-mon

(GrǦ,Fp) real−−→ DWeil
Ǐ-mon

(GrǦ,Fp),

where the first arrow is the derived functor of the embedding Pmix
Ǐ-mon

(GrǦ,Fp) ↪→
PWeil
Ǐ-mon

(GrǦ,Fp), and the second arrow is the realization functor. We also use the
same notation for the functor

Dmix
Ǧ(O)-mon

(GrǦ) → DWeil
Ǧ(O)-mon

(GrǦ,Fp)

obtained by restriction. We denote by

κ : DWeil
Ǧ(O)-mon

(GrǦ,Fp) → Db
Ǧ(O)-mon

(GrǦ)

the composition of the extension of scalars from Fp to Fp, followed by the equiv-
alence obtained by restriction of the first equivalence of Lemma 2.3. With this
notation, by construction we have For = κ ◦ ι.

It follows in particular from Proposition 6.3 that the functor Θmix
L ◦p!i

∗ restricts
to a functor

DWeil
Ǧ(O)-mon

(GrǦ,Fp)→ DWeil
Ľ(O)-mon

(GrĽ,Fp).

Hence it defines a geometric functor in the sense of [AR, Definition 6.6]. Recall
the notation Pure(−) introduced in [AR, §6.4]. Then our functor restricts to a
homogeneous functor

PureǦ(O)-mon(GrǦ) → PureĽ(O)-mon(GrĽ)

in the sense of [AR, Definition 4.1]. Hence by [AR, Proposition 9.1] we have the
following existence result.

Proposition 6.4. There exists a functor RG,mix
L which makes the diagram

Dmix
Ǧ(O)-mon

(GrǦ) ι //

For ))TTTTTTTTT

RG,mix
L

��

DWeil
Ǧ(O)-mon

(GrǦ,Fp)

κttjjjjjjjjjj

Θmix
L ◦p!i

∗

��

Db
Ǧ(O)-mon

(GrǦ)

RG
L

��

Dmix
Ľ(O)-mon

(GrĽ) ι //

For ))TTTTTTTTT
DWeil
Ľ(O)-mon

(GrĽ,Fp)

κttjjjjjjjjjj

Db
Ľ(O)-mon

(GrĽ)

commutative up to isomorphisms of functors. �
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Remark 6.5. It follows in particular from Proposition 6.4 that the following diagram
commutes:

P0
Ǧ(O)-mon

(GrǦ) ΦG
∼

//

RG,mix
L

��

PǦ(O)-mon(GrǦ)

RG
L

��
P0
Ľ(O)-mon

(GrĽ) ΦL
∼

// PĽ(O)-mon(GrĽ).

Hence we deduce from Theorem 2.5 an isomorphism of functors

RG,mix
L ◦ S0

G
∼= S0

L ◦ ResGL .

6.4. Action of the functors on morphisms. Consider the triangulated functors

(6.6) (iGL )mix, F
mix
L ◦RG,mix

L ◦ (Fmix
G )−1 : Db

freeCohG×Gm(NG)

→ Db
freeCohL×Gm(NL).

By Lemma 4.4, there are equivalences of categories

Kb
(
CohG×Gm

free (NG)
) ∼= Db

freeCohG×Gm(NG),

Kb
(
CohL×Gm

free (NL)
) ∼= Db

freeCohL×Gm(NL).

We claim that both functors in (6.6) send the subcategory CohG×Gm
free (NG) to the

subcategory CohL×Gm
free (NL). This is obvious for the first functor. For the second

one, we have natural isomorphisms, for any V in Rep(G) and n ∈ Z,

Fmix
L ◦RG,mix

L ◦ (Fmix
G )−1(V ⊗ONG〈n〉) ∼= Fmix

L ◦RG,mix
L (S0

G(V )〈n〉[−n])
∼= Fmix

L

(
S0
L(ResGL (V ))〈n〉[−n]

)
∼= ResGL (V )⊗ONL〈n〉,

where we have used Lemma 3.13 and Remark 6.5. The claim follows.

Proposition 6.6. There exists an isomorphism of additive functors from the cat-
egory CohG×Gm

free (NG) to CohL×Gm
free (NL):

(iGL )mix|CohG×Gm
free (NG)

∼=
(
Fmix
L ◦RG,mix

L ◦ (Fmix
G )−1

)
|CohG×Gm

free (NG).

Proof. Recall the category AG and the equivalence AG ∼= CohG×Gm
free (NG) , see §4.4.

We have already constructed isomorphisms

(iGL )mix(V ⊗ONG〈n〉) ∼= ResG
L (V )⊗ONL〈n〉
∼=
(
Fmix
L ◦RG,mix

L ◦ (Fmix
G )−1

)
(V ⊗ONG〈n〉)

for any V in Rep(G) and any n ∈ Z. Hence to prove the proposition is enough to
prove that for any V, V ′ in Rep(G) and n ∈ Z, the morphisms⊕

n∈Z
HomCohG×Gm (NG)

(
V ⊗ONG , V ′ ⊗ONG〈n〉

)
→⊕

n∈Z
HomCohL×Gm (NL)

(
ResG

L (V )⊗ONL ,ResG
L (V ′)⊗ONL〈n〉

)
induced by our two functors coincide. Moreover, the direct sums of morphisms
spaces considered here can be expressed in terms of morphisms in the category
DGCohGfree(NG). Hence Proposition 6.6 follows from Proposition 6.7 below. �
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Proposition 6.7. For any V, V ′ in Rep(G), the morphisms⊕
n∈Z

Homn
DGCohGfree(NG)

(
V ⊗ C[NG], V ′ ⊗ C[NG]) →⊕

n∈Z
Homn

DGCohLfree(NL)

(
ResG

L (V )⊗ C[NL],ResG
L (V ′)⊗ C[NL]

)
induced by the functors (iGL )∗ and FL ◦RG

L ◦ (FG)−1 coincide.

Proof. As in the proof of Proposition 3.8, using adjunction (see Lemma 3.7), one
can assume that V = C. Then for simplicity we replace V ′ by V in the notation.
What we have to prove is the commutativity of the following diagram:

(6.7)

Hom•Db
Ǧ(O)-mon

(GrǦ)(1G,SG(V ))

RG
L

��

∼ // V G
eG HomG(NG, V )∼oo

(−)◦iGL
��

Hom•Db
Ľ(O)-mon

(GrĽ)(1L,SL(ResGLV )) ∼ // V L
eL HomL(NL,ResGLV ),

∼oo

where the first horizontal isomorphisms are given by (3.6) and (3.7), and the second
horizontal isomorphisms are given by restriction to eG ∈ NG, respectively eL ∈ NL.
(Here, HomG(NG, V ) denotes the space of morphisms of G-varieties from NG to V ,
and similarly for L.)

By adjunction for the pair ((i0)!, i
!
0) we have

Hom•Db
Ǧ(O)-mon

(GrǦ)(1G,SG(V )) ∼= H•(i!0SG(V )).

Hence, by Theorem 6.1, this graded vector space is (up to regrading) the associ-
ated graded of the Brylinski–Kostant filtration on V T , for the group G and the
nilpotent eG, denoted by FBK,G

• . Similarly, Hom•Db
Ľ(O)-mon

(GrĽ)(1L,SL(ResGLV )) is

the associated graded of the Brylinski–Kostant filtration on V T for the group L

and the nilpotent eL, denoted by FBK,L
• . Moreover, by base change we have an

isomorphism RG
L ◦RL

T = RG
T of functors on Db

Ǧ(O)-mon
(GrǦ). Hence the morphism

V T → V T induced by RG
L is the identity.

By the description of eG in §3.1 and the fact that
∏
α∈∆ α : T → (C×)#∆ is

surjective, there exists a cocharacter χ : C× → T such that

(6.8) eL = lim
t→0

χ(t) · eG.

It follows that we have inclusions

V T ∩ ker(enG) ⊂ V T ∩ ker(enL),

which induce a morphism

ϑ : grBK,G
• (V T )→ grBK,L

• (V T ).

Via the isomorphisms

grBK,G
• (V T ) ∼= V G

eG
, grBK,L

• (V T ) ∼= V L
eG
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which send v ∈ grBK,G
i (V T ) to eiG · v (and a similar formula for L), see [Bry,

Corollary 2.7], one can complete diagram (6.7) to the diagram

Hom•Db
Ǧ(O)-mon

(GrǦ)(1G,SG(V ))

RG
L

��

∼ // V G
eG

ϑ

��

HomG(NG, V )
∼oo

(−)◦iGL
��

Hom•Db
Ľ(O)-mon

(GrĽ)(1L,SL(ResGLV )) ∼ // V L
eL HomL(NL,ResGLV ),

∼oo

in which the left square commutes. The commutativity of the right square follows
again from (6.8). This finishes the proof. �

6.5. Proof of Theorem 2.7. Now we can finish the proof of Theorem 2.7. Na-
mely, we are in the situation of [AR, Theorem 4.7]: we have two triangulated func-
tors (see Equation (6.6)) between bounded homotopy categories of Orlov categories
(see Lemma 4.4), which induce homogeneous functors between these Orlov cate-
gories (see §6.4), and an isomorphism of additive functors between their restrictions
(see Proposition 6.6). Hence, by [AR, Theorem 4.7], we get an isomorphism

(iGL )mix
∼= Fmix

L ◦RG,mix
L ◦ (Fmix

G )−1.

Composing with Fmix
G gives the commutativity of the diagram of Theorem 2.7.

6.6. Digression: t-structures. We have explained in [AR, §5.1] that for any
Orlov category A , there exists a natural bounded t-structure on Kb(A ) whose
heart is a finite length abelian category endowed with a mixed structure. The
simple objects in this heart are the S[degS], where S runs over indecomposable
objects of A .

By Lemma 4.4, the category CohG×Gm
free (NG) has the structure of an Orlov cate-

gory, and its bounded homotopy category is

Db
freeCohG×Gm(NG) ∼= Dmix

Ǧ(O)-mon
(GrǦ).

Hence one gets an abelian category CG as the heart of a certain t-structure on these
triangulated categories. With the definition of Lemma 4.4, the simple objects of
this heart are the objects

Vλ ⊗ONG〈i〉[i] in Db
freeCohG×Gm(NG), or ICmix

λ 〈i〉 in Dmix
Ǧ(O)-mon

(GrǦ),

where λ runs over X+, and i over Z. The abelian category CG is semisimple and
equivalent to the category Pmix

Ǧ(O)-mon
(GrǦ) of §2.5, so nothing new arises in this

situation.
But the structure of CohG×Gm

free (NG) as an Orlov category is not unique. In fact,
one can take as a degree function

deg(Vλ ⊗ONG〈i〉) = bki2 c
for any k ∈ Z>0. If k is even, then the situation is the same as above, and the heart
is semisimple. But if k is odd, then the simple objects are the

Vλ ⊗ONG〈i〉[bki2 c] in Db
freeCohG×Gm(NG),

or the
ICmix

λ 〈i〉[bki2 c − i] in Dmix
Ǧ(O)-mon

(GrǦ).

In particular, this heart is not semisimple.



48 PRAMOD N. ACHAR AND SIMON RICHE

As Koszul duality is ubiquitous in this geometric context, we expect that our
Orlov category is Koszulescent (in the sense of [AR, §5.2]) in this case, but we were
not able to prove it.

6.7. Reminder on equivariant cohomology of GrǦ. In the rest of this section
we give a proof of Theorem 6.1.

Consider the Ť -equivariant cohomology H•
Ť

(GrǦ). It is naturally a Hopf algebra.
By the same arguments as in §3.1, any primitive element c in H•

Ť
(GrǦ) defines an

element ψŤ (c) ∈ g ⊗C H
•
Ť

(pt) (see [YZ, §5.3] for details). In particular, we can
assume that the line bundle Ldet has a Ť -equivariant structure, replacing it by a
sufficiently large power if necessary (see [YZ, Lemma 4.2]). Hence one can consider
the equivariant first Chern class cŤ1 := cŤ1 (Ldet) ∈ H2

Ť
(GrǦ). By [YZ, Lemma 5.1]

this element is primitive. Hence one can define

eŤG := ψŤ (cŤ1 ) ∈ g⊗C H
•
Ť

(pt).

The element eŤG is described very explicitly in [YZ, Propositions 5.6 and 5.7]
(in the case Ldet is the determinant line bundle). Let us recall the parts of this
description that we will need. First, it is easy to show (see [YZ, Lemma 5.5]) that
eŤG ∈ g⊕ (t⊗C H

2
Ť

(pt)). By construction, the component on g is the element eG of
§3.1. Hence one can write

eŤG = eG + fG

where fG ∈ t ⊗C H
2
Ť

(pt) ∼= t ⊗C t. One can view fG as a bilinear form on ť ∼= t∗.
Decomposing the basis ∆ into connected components, one obtains a direct sum
decomposition ǧ = z(ǧ)⊕

(
⊕i ǧi

)
where each ǧi is a simple Lie algebra, and z(ǧ) is

the center of ǧ. Accordingly we have a decomposition ť = z(ǧ)⊕
(
⊕i ťi

)
. On each ťi

one can consider the restriction κi of the Killing form of ǧi, and use the direct sum
decomposition to extend it to ť. By [YZ, Proposition 5.7] we have the following:

fG is a linear combination with non-zero coefficients of the κi’s.

This bilinear form defines a morphism ť→ ť∗ ∼= t. Let us fix an element h ∈ ť such
that

(6.9) fG(−, h) = 2ρ̌ ∈ t.

Such a choice is possible, and is unique up to adding an element of z(ǧ). This will
be our choice of h in Theorem 6.1.

6.8. Proof of Theorem 6.1. Fix V in Rep(G), and let M = SG(V ). Recall that
we have

Tλ =
⊔
µ≥λ

Tµ

(see [MV, Proposition 3.1]). Here, “≥” is the partial order on X determined by our
choice of R+. Recall also that we denote by tλ : Tλ ↪→ GrǦ the inclusion. Similarly,
we denote the inclusion of the closure by tλ : Tλ ↪→ GrǦ. As Tλ is closed in GrǦ
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and Tλ is open in Tλ, there are natural morphisms

(6.10)

H•
Ť

(i!λM)
η //

ξ &&NNNNNNNNNNN
H•
Ť

(Tλ, tλ
!
M)

ψ //

φ

��

H•
Ť

(M)

H•
Ť

(Tλ, t!λM).

Here, ξ is the morphism (6.1).
The arguments for the proof of the following lemma are adapted from [YZ, Proof

of Lemma 2.2].

Lemma 6.8. (1) The morphism φ has a canonical splitting.
(2) There is a canonical isomorphism

H•
Ť

(Tλ, tλ
!
M) ∼=

⊕
µ≥λ

(
H〈µ,2ρ̌〉(Tµ, t!µM)⊗C H

•
Ť

(pt)
)
[−〈µ, 2ρ̌〉].

(3) There is a canonical isomorphism

H•
Ť

(M) ∼=
⊕
µ∈X

(
H〈µ,2ρ̌〉(Tµ, t!µM)⊗C H

•
Ť

(pt)
)
[−〈µ, 2ρ̌〉].

(4) Under the isomorphisms of (2) and (3), and (6.3), the morphism ψ, respec-
tively φ, is the inclusion of, respectively projection on, the corresponding
direct summands.

Proof. (1) It is easy to show using degree arguments that there is a canonical
isomorphism

H•(Tλ, tλ
!
M) ∼=

⊕
µ≥λ

H〈µ,2ρ̌〉(Tµ, t!µM)[−〈µ, 2ρ̌〉].

For any µ ≥ λ, the parity of 〈µ, 2ρ̌〉 is the same as that of 〈λ, 2ρ̌〉. Hence, by the
same argument using the Leray spectral sequence as in §6.1, there exists an a priori
non-canonical isomorphism as in (2). In particular, the lowest non-zero degree in
H•
Ť

(Tλ, tλ
!
M) is 〈λ, 2ρ̌〉, and we have

H
〈λ,2ρ̌〉
Ť

(Tλ, tλ
!
M) ∼= H〈λ,2ρ̌〉(Tλ, t!λM).

In particular, there is a canonical morphism(
H〈λ,2ρ̌〉(Tλ, t!λM)⊗H•

Ť
(pt)

)
[−〈λ, 2ρ〉]→ H•

Ť
(Tλ, tλ

!
M).

Using isomorphism (6.3), one sees that this morphism is a splitting for φ.
(2) By (1), φ is a canonically split surjection. Its kernel is

H•
Ť

(Tλ r Tλ, r
!
λM),

where rλ : Tλ r Tλ ↪→ GrǦ is the (closed) inclusion. By the same arguments, the
restriction morphism to ⊕

α∈∆

H•
Ť

(Tλ+α, t
!
λ+αM)

is also a canonically split surjection. Repeating this argument again and again, one
obtains the isomorphism.
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(3) Using the splitting in (1) for any µ ∈ X, one obtains a canonical morphism
from the right-hand side to the left-hand side. By the same Leray spectral sequence
argument as above, one proves that this morphism is an isomorphism.

Property (4) is clear by construction. �

Proposition 6.9. Assume h ∈ ť is such that (6.9) holds. Then for any i ∈ Z we
have

Fgeom
2i+〈λ,2ρ̌〉 V (λ) = Fgeom

2i+1+〈λ,2ρ̌〉 V (λ) ⊂ FBK
i V (λ).

Proof. The equality follows directly from the fact that H•(i!λM) is concentrated in
degrees of the same parity as 〈λ, 2ρ̌〉, see e.g. [Sp2, Corollaire 2.10].

Consider some c ∈ H2i+〈λ,2ρ̌〉
Ť

(i!λM). Its image under the morphism η of (6.10)
decomposes according to Lemma 6.8 as:

η(c) = xλ +
( ∑

0<j≤i

∑
γ∈j∆

xλ+γ

)
where for any relevant µ

xµ ∈ H〈µ,2ρ̌〉(Tµ, t!µM)⊗C H
2i+〈λ−µ,2ρ̌〉
Ť

(pt).

Here, j∆ ⊂ X is the set of sums of j (not necessarily distinct) elements of ∆. We
have ξ(c) = xλ. Hence what we have to show is that ei+1

G · (xλ)h = 0, where (xλ)h
is the image of xλ in V (λ), under the isomorphism (6.4).

The morphism η is compatible with cup products, and the element cŤ1 of §6.7
acts on H•

Ť
(i!λM) via its restriction to {Lλ}, which is fG(λ,−) ∈ t (see [YZ, Proof

of Proposition 5.7]). (Here we view λ in t∗ ∼= ť.) Hence

cŤ1 ∪
(
xλ +

∑
0<j≤i

∑
γ∈j∆

xλ+γ

)
h

= 〈λ, 2ρ̌〉 ·
(
xλ +

∑
0<j≤i

∑
γ∈j∆

xλ+γ

)
h
,

by our choice of h. On the other hand,

cŤ1 ∪
(
xλ +

∑
0<j≤i

∑
γ∈j∆

xλ+γ

)
h

= (eG + fG(−, h)) ·
(
xλ +

∑
0<j≤i

∑
γ∈j∆

xλ+γ

)
h
,

where on the right-hand side we consider the action in V . We deduce that

eG · (xλ)h = −2(
∑
γ∈∆

xλ+γ)h, eG ·
(∑
γ∈∆

xλ+γ

)
h

= −4(
∑
δ∈2∆

xλ+δ)h,

and so on until
eG ·

(∑
γ∈i∆

xλ+γ

)
h

= 0.

Taking all these equations into account, we obtain finally that ei+1
G · (xλ)h = 0. �

Now we can finish our proof of Theorem 6.1.

Proof of Theorem 6.1. By Proposition 6.9, it is enough to prove that the Laurent
polynomials in q

(6.11)
∑
i∈Z

dim
(
grgeom
〈λ,2ρ̌〉+2iV (λ)

)
· qi and

∑
i∈Z

dim
(
grBK
i V (λ)

)
· qi

coincide. However, both of these polynomials are known explicitly, as follows. One
can assume that V is a simple module: V = Vν for some ν ∈ X+. Moreover, V
restricts to a simple module of the derived subgroup of G; hence one can assume
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that G is semisimple. For simplicity, we write P geom
ν,λ (q) for the left-hand side of

(6.11), and PBK
ν,λ (q) for the right-hand side.

First, consider the left-hand side. The associated graded of the geometric filtra-
tion is known by construction, hence we have

P geom
ν,λ (q) =

∑
j∈Z

dim
(
H〈λ,2ρ̌〉+2j(i!λICν)

)
· qj .

Let w ∈W be such that w(λ) is dominant. Then we have by Ǧ(O)-equivariance of
ICν

P geom
ν,λ (q) = q〈w(λ)−λ,ρ̌〉 · P geom

ν,w(λ)(q).

Now, this polynomial can be expressed in terms of Kazhdan–Lusztig polynomials
(see [KL, Sp2, Lu]). Using also the formula provided by [Ka, Theorem 1.8]8, one
obtains that P geom

ν,w(λ)(q) is equal to a polynomial mw(λ)
ν (q) defined combinatorially

and nowadays known as Lusztig’s q-analog of the weight multiplicity (see e.g. [JLZ,
§2.3] or [Bry, Equation (3.3)] for a definition).

Now, consider the right-hand side of (6.11). By [JLZ, Theorem 7.6], we have

(6.12) PBK
ν,λ (q) = q〈w(λ)−λ,ρ̌〉 ·mw(λ)

ν (q).

The result follows. �

Remark 6.10. In this paper we use Theorem 6.1 only in the case λ = 0. In this
case (and more generally in the case where λ is dominant), (6.12) is proved in [Bry,
Theorem 3.4] (under a cohomology vanishing assumption later proved in [Bro]).

7. Mixed equivalence and convolution

In this section we prove Proposition 2.11.

7.1. Convolution with mixed perverse sheaves. Recall the notation of §6.3.
By definition, any object of P0

Ǧ(O)-mon
(GrǦ) has a natural Ǧ(Fp[[x]])-equivariant

structure. Let M be in P0
Ǧ(O)-mon

(GrǦ). It follows from Proposition 2.9 that the
convolution with M defines a functor

(−) ? M : DWeil
Ǧ(O)-mon

(GrǦ)→ DWeil
Ǧ(O)-mon

(GrǦ).

Moreover, this functor preserves the additive subcategory PureǦ(O)-mon(GrǦ), and
induces a homogeneous functor PureǦ(O)-mon(GrǦ) → PureǦ(O)-mon(GrǦ) in the
sense of [AR, Definition 4.1]. Hence by [AR, Proposition 9.1] we have the following
existence result.

Proposition 7.1. For any M in P0
Ǧ(O)-mon

(GrǦ), there exists a functor

(−) ? M : Dmix
Ǧ(O)-mon

(GrǦ)→ Dmix
Ǧ(O)-mon

(GrǦ)

8This formula was conjectured by Lusztig in [Lu, Equation (9.4)].
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which makes the diagram

Dmix
Ǧ(O)-mon

(GrǦ) ι //

For ))TTTTTTTTT

(−)?M

��

DWeil
Ǧ(O)-mon

(GrǦ)

κuujjjjjjjjj

(−)?M

��

Db
Ǧ(O)-mon

(GrǦ)

(−)?ΦG(M)

��

Dmix
Ľ(O)-mon

(GrĽ) ι //

For ))TTTTTTTTT
DWeil
Ľ(O)-mon

(GrĽ)

κuujjjjjjjjj

Db
Ľ(O)-mon

(GrĽ)

commutative up to isomorphisms of functors. �

7.2. Compatibility of Fmix
G with convolution. Fix some V in Rep(G). Con-

sider the functors

A1, A2 : Db
freeCohG×Gm(NG)→ Db

freeCohG×Gm(NG)

defined as follows:

A1(M) = M ⊗ V and A2(M) = Fmix
G

(
(Fmix
G )−1(M) ? S0

G(V )
)
,

where the object (Fmix
G )−1(M) ? S0

G(V ) is defined in Proposition 7.1.
Under the equivalence

Kb
(
CohG×Gm

free (NG)
) ∼= Db

freeCohG×Gm(NG)

of Lemma 4.4, both functors A1 and A2 stabilize the subcategory CohG×Gm
free (NG).

Moreover, it is easy to construct an isomorphism of additive functors

(A1)|CohG×Gm
free (NG)

∼= (A2)|CohG×Gm
free (NG)

using Lemma 3.6(2). By [AR, Theorem 4.7], we deduce that there exists an iso-
morphism of functors

A1
∼= A2,

which proves Proposition 2.11.

8. Convolution and hyperbolic localization

In this section we prove Proposition 2.14. Our arguments are independent of the
rest of the paper.

8.1. Reminder on nearby cycles. Recall the definition of the nearby cycles
functor (see [Re, p. 98] for more details and references). Let X be a variety, and
let f : X → C be a morphism. Let X0 := f−1(0), XU := f−1(C×), and X̃U :=
XU×C× C̃×, where C̃× is the universal cover of C×. We have the following diagram,
where the morphisms are the natural ones, and all squares are cartesian:

X0

��

� � i // X

f

��

XU
? _

joo

��

X̃U
voo

��
{0} �

� // C C×? _oo C̃×.oo
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Then the nearby cycles functor is defined by

Ψf := i∗j∗v∗v
∗[−1] : Db

c (XU )→ Db
c (X0).

(Here, Db
c (−) is the bounded derived category of constructible sheaves.)

We will need some functoriality properties of this construction. Let g : Y → C
be another variety over C, and consider a commutative diagram

Y

g

��

π // X

f

��
C C.

We let π0 : Y0 → X0 and πU : YU → XU be the restrictions of π, and π̃U : ỸU → X̃U

be the morphism obtained from πU by base change. Then there are morphisms of
functors

(π0)∗ ◦Ψf → Ψg ◦ (πU )∗,(8.1)

(π0)! ◦Ψg → Ψf ◦ (πU )!,(8.2)

Ψf ◦ (πU )∗ → (π0)∗ ◦Ψg,(8.3)

Ψg ◦ (πU )! → (π0)! ◦Ψf .(8.4)

For example, let us construct morphism (8.1). The other morphisms are constructed
similarly. We use the notation above, adding indices “X” and “Y ” to distinguish
the morphisms associated to f and g. Hence we have the following diagram, where
all squares are cartesian:

Y0
� � iY //

π0

��

Y

π

��

YU? _
jYoo

πU

��

ỸU

π̃U

��

vYoo

X0
� � iX // X XU

? _
jXoo X̃U .

vXoo

By definition, we have

(π0)∗ ◦Ψf = (π0)∗(iX)∗(jX)∗(vX)∗(vX)∗ ∼= (iY )∗π∗(jX)∗(vX)∗(vX)∗.

Here, the isomorphism follows from the identity iX ◦ π0 = iY ◦ π. Next, there are
natural morphisms of functors

π∗(jX)∗ → (jY )∗(πU )∗ and (πU )∗(vX)∗ → (vY )∗(π̃U )∗,

induced by the adjunctions
(
(πU )∗, (πU )∗

)
and

(
(π̃U )∗, (π̃U )∗

)
. Hence we obtain a

morphism
(π0)∗ ◦Ψf → (iY )∗(jY )∗(vY )∗(π̃U )∗(vX)∗.

Finally, using the equality vX ◦ π̃U = πU ◦ vY and the definition of Ψg, one obtains
morphism (8.1).

8.2. Convolution via nearby cycles. Consider the convolution bifunctor

(− ?−) : Db
c (GrǦ)×Db

Ǧ(O)-eq
(GrǦ)→ Db

c (GrǦ).

It induces, via the forgetful functor, a bifunctor denoted similarly

(− ?−) : Db
c (GrǦ)×Db

Ǧ(O) o Aut-eq
(GrǦ)→ Db

c (GrǦ).
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In this subsection we recall a construction of Gaitsgory ([Ga]) which allows to give
an equivalent definition of this bifunctor in terms of nearby cycles.

In what follows, we set X := C and x = 0 ∈ X. For an algebraic group9 H, the
ind-scheme Gr′H,X is defined in [Ga, §3.1.1] as the ind-scheme which represents the
functor sending an affine scheme S to the set of triples (y,FH , β′), where y is an
S-point of X, FH is an H-bundle over X × S, and β′ is a trivialization of FH off
the divisor Γy ∪ (x× S). Here, Γy is the graph of y. Let Gr′H,Xrx, resp. Gr′H,x, be
the restriction of Gr′H,X to X r {x}, resp. x.

Following [Ga, Lemma 3], we also define the ind-scheme GrH,X , which represents
the functor sending an affine scheme S to the set of triples (y,FH , β), where y is
an S-point of X, FH is an H-bundle over X ×S, and β is a trivialization of FH off
the divisor Γy. As above, let GrH,Xrx, resp. GrH,x, be the restriction of GrH,X to
X r {x}, resp. x. By [Ga, Lemma 3], there is an isomorphism of ind-schemes

GrH,X ∼= X×Aut GrH ,

where X is the canonical Aut-torsor over X, see [Ga, §2.1.2]. (Here, as in the
preceding sections, GrH is the affine Grassmannian of H, see [BD, §4.5], endowed
with the natural action of Aut.)

By [Ga, Proposition 5], there are natural isomorphisms

(8.5) Gr′H,Xrx
∼= GrH,Xrx × GrH , Gr′H,x

∼= GrH .

There is a functor
Db

Aut-eq(GrH)→ Db
c (GrH,X),

denoted M 7→ MX , where MX is the twisted external product CX [1] �̃ M , an
object of the derived category of sheaves on X ×Aut GrH ∼= GrH,X . We denote by
MXrx the restriction of MX to GrH,Xrx.

Finally we can explain the construction of the bifunctor CH(−,−) of [Ga, §3.2].
Starting from M in Db

c (GrH) and N in Db
Aut-eq(GrH), one can consider the external

product
NXrx �M

in Db
const(Gr′H,Xrx). (Here we have used the first isomorphism in (8.5).) Let

ΨH : Db
c (Gr′H,Xrx)→ Db

c (GrH),

be the nearby cycle functor associated to the natural map Gr′H,X → X = C (see
§8.1). (Here we have used the second isomorphism in (8.5).) Composing these two
operations, one obtains a bifunctor

CH(−,−) : Db
c (GrH)×Db

Aut-eq(GrH)→ Db
c (GrH),

such that
CH(M,N) = ΨH(NXrx �M).

The following result is part of [Ga, Proposition 6(b)].

Proposition 8.1. Assume H is reductive.
For M in Db

c (GrH) and N in Db
H(O) o Aut-eq(GrH), there exists a bifunctorial

isomorphism
CH(M,N) ∼= M ?N.

9In [Ga], the author works with reductive groups. However, some of his constructions generalize
to an arbitrary algebraic group, see e.g. [BD, §4.5.1–4.5.2] and [Ga, §A.5]. We freely use these

extensions.
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We will also need the following technical result.

Lemma 8.2. The functor M 7→ MX commutes with Verdier duality. In other
words, for M in Db

Aut-eq(GrH) there is a functorial isomorphism

DGrH,X (MX) ∼= (DGrH (M))X .

Proof. For simplicity, in the proof we omit the subscript “H.” By definition, M is
supported on a finite-dimensional Aut-stable closed subvariety Y ⊂ Gr. (For sim-
plicity again, we omit direct image functors under closed embeddings.) Moreover,
the action of Aut on Y factors through a finite dimensional quotient Aut0 = Aut/K
of Aut such that M is an Aut0-equivariant complex on Y . Consider the morphisms

X×Aut Y = (X/K)×Aut0 Y (X/K)× Yaoo b // X × Y.

By definition, DGr(M) = DY (M). And (DGr(M))X is the unique object of the
category Db

c (X×Aut Y ) such that

a∗
(
(DGr(M))X

) ∼= b∗
(
CX [1] � DY (M)

)
.

Hence, to prove the lemma, we only have to prove that DGrX (MX) = DX×AutY (MX)
satisfies this condition. However, as a is a smooth map of relative dimension r :=
dim(Aut0) we have

a∗(DX×AutY (MX)) ∼= D(X/K)×Y (a!(MX)) ∼= D(X/K)×Y (a∗(MX)[r]).

By definition of MX we have a∗(MX) ∼= b∗(CX [1] � M). As b is also smooth of
relative dimension r we obtain

a∗(DX×AutY (MX)) ∼= D(X/K)×Y (b∗(CX [1]�M)[r]) ∼= D(X/K)×Y (b!(CX [1]�M))
∼= b∗DX×Y (CX [1] �M) ∼= b∗(CX [1] � DY (M)).

This concludes the proof. �

8.3. Convolution and hyperbolic localization. Finally we can prove Propo-
sition 2.14.

Recall the notation of §2.4. The morphisms P̌ ↪→ Ǧ, P̌− ↪→ Ǧ, P̌ � Ľ, P̌− � Ľ
induce morphisms of ind-schemes

i′ : Gr′P̌ ,X → Gr′Ǧ,X , j′ : Gr′P̌−,X → Gr′Ǧ,X ,

p′ : Gr′P̌ ,X → Gr′Ľ,X , q′ : Gr′P̌−,X → Gr′Ľ,X

(via induction of P̌ -bundles or P̌−-bundles to Ǧ-bundles, and quotient of P̌ -bundles
or P̌−-bundles to Ľ-bundles). By definition, and using the identifications given by
the second isomorphism in (8.5), the hyperbolic localization functor is

h!∗
L := (p′0)!(i′0)∗ : Db

c (GrǦ)→ Db
c (GrĽ).

By [Bra, Theorem 1], on the category Db
λL(C×)-mon

(GrǦ) there is an isomorphism
of functors

(8.6) (p′0)!(i′0)∗ ∼= (q′0)∗(j′0)! : Db
λL(C×)-mon

(GrǦ)→ Db
c (GrĽ).

By (8.2) and (8.1), respectively by (8.4) and (8.3), there are natural morphisms
of functors

(8.7) (p′0)!(i′0)∗ ◦ΨG → ΨL ◦ (p′U )!(i′U )∗, ΨL ◦ (q′U )∗(j′U )! → (q′0)∗(j′0)! ◦ΨG.
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Now, there are also natural morphisms

i′′ : GrP̌ ,X → GrǦ,X , j′′ : GrP̌−,X → GrǦ,X ,

p′′ : GrP̌ ,X → GrĽ,X , q′′ : GrP̌−,X → GrĽ,X .

Note that, via the identifications (8.5), we have

i′0 = i′′0 , j′0 = j′′0 , p′0 = p′′0 , q′0 = q′′0 ,

i′U = (i′′U × i′0), j′U = (j′′U × j′0), p′U = (p′′U × p′0), q′U = (q′′U × q′0).

In particular, we get isomorphisms of bifunctors, for M1 in Db
c (GrǦ,Xrx) and M2

in Db
c (GrǦ),

(p′U )!(i′U )∗(M1 �M2) ∼=
(
(p′′U )!(i′′U )∗M1

)
� ((p′0)!(i′0)∗M2),(8.8)

(q′U )∗(j′U )!(M1 �M2) ∼=
(
(q′′U )∗(j′′U )!M1

)
� ((q′0)∗(j′0)!M2).(8.9)

We claim that for M in Db
Aut-eq(GrǦ), there is a functorial isomorphism

(8.10) (p′′U )!(i′′U )∗(MXrx) ∼= ((p′0)!(i′0)∗M)Xrx.

Using base change for the diagram

GrP̌ ,Xrx
� � //

p′′U
��

GrP̌ ,X

p′′

��
GrĽ,Xrx

� � // GrĽ,X ,

the left-hand side is isomorphic to
(
(p′′)!(i′′)∗(MX)

)
|GrĽ,Xrx

. Hence isomorphism

(8.10) would follow from an isomorphism

(8.11) (p′′)!(i′′)∗(MX) ∼= ((p′0)!(i′0)∗M)X .

However, it follows directly from the definition that

(8.12) (i′′)∗MX
∼= ((i′0)∗M)X .

Now, consider the cartesian diagram

X× GrP̌
id×p′0 //

πP̌

��

X× GrĽ

πĽ

��
X×Aut GrP̌

p′′ // X×Aut GrĽ.

The base change theorem gives an isomorphism

(πĽ)∗(p′′)!
∼= (id× p′0)!(πP̌ )∗.

By definition, for N in Db
Aut-eq(GrĽ), NX is the only object of Db

c (GrĽ,X) such that
(πĽ)∗NX ∼= CX[1] �N , and the same is true for GrP̌ . Hence we have a functorial
isomorphism

(8.13)
(
(p′0)!N

)
X
∼= (p′′)!NX

for N in Db
Aut-eq(GrP̌ ). Combining (8.12) and (8.13), one gets (8.11), hence also

(8.10).
Now, if M is in Db

Aut-eq(GrǦ), we claim that there is a functorial isomorphism

(8.14) (q′′U )∗(j′′U )!(MXrx) ∼= ((q′0)∗(j′0)!M)Xrx.
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Indeed, applying (8.11) to P̌− instead of P̌ , and using the fact that M 7→ MX

commutes with Verdier duality (see Lemma 8.2), we obtain a functorial isomorphism

(q′′)∗(j′′)!(MX) ∼= ((q′0)∗(j′0)!M)X .

Restricting to GrĽ,Xrx gives (8.14).
Combining the first morphism of functors in (8.7) and isomorphisms (8.8) and

(8.10), one obtains for M in Db
λL(C×)-mon

(GrǦ) and N in Db
Ǧ(O) o Aut-eq

(GrǦ) a
bifunctorial morphism

h!∗
L ◦ CǦ(M,N) → CĽ(h!∗

L (M), h!∗
L (N)),

hence, using Proposition 8.1 and the definition of RG
L , a bifunctorial morphism

RG
L (M ?N) → RG

L (M) ?RG
L (N).

Similarly, using isomorphisms (8.6), (8.9) and (8.14), the second morphism of func-
tors in (8.7) provides a bifunctorial morphism

RG
L (M) ?RG

L (N) → RG
L (M ?N).

One can check that these two morphisms are inverse to each other, which concludes
the proof of Proposition 2.14.

9. Example: Ǧ = SL(2)

In this section we concentrate on the case Ǧ = SL(2). We choose as Ť the
subgroup of diagonal matrices, and as B̌ the subgroup of upper triangular matrices.
Then we have G = PSL(2). There is a natural isomorphism X ∼= 2Z, which matches
2ρ with 2. We denote by Xn the Ǐ-orbit of Ln, so that we have inclusions

X0 = {L0} ⊂ X−2 ⊂ X2 ⊂ X−4 ⊂ · · ·
and we have

dim(Xn) =
{

n if n ≥ 0;
−n− 1 if n < 0.

For any n ∈ 2Z, we denote by jn : Xn ↪→ GrǦ the inclusion, and by ICn the
simple perverse sheaf IC(Xn).

9.1. Simple objects. It is well known that in this case all closures of Ǐ-orbits are
rationally smooth. For the reader’s convenience, we include a simple proof of this
fact.

Proposition 9.1. For any n ∈ 2Z we have

ICn ∼= CXn [dimXn].

Proof. We proceed by induction on the dimension of orbits. The case n = 0 is
obvious. To fix notation, we assume that n ≥ 0 and that the result is known for
Xn, and we prove it for X−n−2.

Let Q̌ be the (parahoric) subgroup of Ǧ(K) generated by Ǐ and by the matrix(
0 x−1

−x 0

)
.

Then we have Q̌/Ǐ ∼= P1. Consider the morphism

π : Q̌×Ǐ Xn → GrǦ
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induced by the Ǧ(K)-action on GrǦ by left multiplication. It is well known that its
image is X−n−2. By induction, the shifted constant sheaf CQ̌×ǏXn [n+1] is a simple
perverse sheaf. The decomposition theorem, and the fact that π is a semismall map,
imply that the direct image

K := π∗
(
CQ̌×ǏXn [n+ 1]

)
is a semisimple perverse sheaf.

The morphism π is an isomorphism over X−n−2 ∪Xn, and its fibers over X−n
are isomorphic to P1. Hence the cohomology of the stalks of K are as follows:

dim orbit −n− 1 −n −n+ 1
n+ 1 X−n−2 C 0 0
n Xn C 0 0

n− 1 X−n C 0 C
...

...
...

0 X0 C 0 C

From this table and the fact that the Ǐ-orbits are simply connected, we deduce

(looking at the diagonal) that

K ∼= IC−n−2 ⊕ IC−n.

By induction, we know that IC−n ∼= CX−n [n− 1]. We deduce again from the table
that IC−n−2

∼= CX−n−2
[n+ 1] (see [BM, Proposition 1.4]). �

9.2. Standard and projective objects.

Proposition 9.2. For n ∈ 2Z, the composition factors of the standard objects
∆n := (jn)!C[dimXn] are given as follows:

• ∆0 = IC0;
• for n > 0,

∆n =
ICn

IC−n
;

• for n < 0,

∆n =
ICn

IC−n−2
.

Proof. For n > 0, the natural exact sequence of sheaves

(jn)!CXn ↪→ CXn � CX−n
induces an exact sequence of perverse sheaves

IC−n ↪→ ∆n � ICn.

(Here we use Proposition 9.1.) The case n < 0 is similar. �

By duality, we obtain the following.

Proposition 9.3. For n ∈ 2Z, the composition factors of the costandard objects
∇n := (jn)∗C[dimXn] are given as follows:

• ∇0 = IC0;
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• for n > 0,

∇n =
IC−n
ICn

;

• for n < 0,

∇n =
IC−n−2

ICn
.

Corollary 9.4. Let n ∈ 2Z.
• For n ≥ 0, the projective cover of ICn in the category PǏ-mon(X−n−2) is

still projective in the category PǏ-mon(X) for any Ǐ-orbit X whose closure
contains X−n−2, hence also in the category PǏ-mon(GrǦ). Its standard flag
and Jordan–Hölder series are given as follows:

Pn =
∆n

∆−n−2
=

ICn
IC−n ⊕ IC−n−2

ICn

if n > 0, and

P0 =
∆0

∆−2
=

IC0

IC−2

IC0

.

• For n < 0, the projective cover of ICn in the category PǏ-mon(X−n) is
still projective in the category PǏ-mon(X) for any Ǐ-orbit X whose closure
contains X−n, hence also in the category PǏ-mon(GrǦ). Its standard flag
and Jordan–Hölder series are given as follows:

Pn =
∆n

∆−n
=

ICn
IC−n−2 ⊕ IC−n

ICn
.

Proof. This follows from Proposition 9.3 and the reciprocity formula, see [BGS,
Remark (1) after Theorem 3.2.1]. �

In particular, it follows from this corollary that the category PǏ-mon(GrǦ) has
enough projectives, in accordance with Remark 3.4.

9.3. Projective resolution of 1G. In this case, the projective resolution of the
object 1G constructed in §3.3 looks as follows:

· · · → P4 → P−4 → P2 → P−2 → P0 � IC0 = 1G.

9.4. Convolution of simple perverse sheaves.

Proposition 9.5. Let n, k ∈ 2Z≥0.
• If n ≥ k we have

ICn ? ICk ∼= ICk ? ICn ∼= ICn+k ⊕ ICn+k−2 ⊕ · · · ⊕ ICn−k.

• If n > k we have

IC−n ? ICk ∼= IC−n−k ⊕ IC−n−k+2 ⊕ · · · ⊕ IC−n+k.

• If 0 < n ≤ k we have

IC−n ? ICk ∼= IC−n−k ⊕ IC−n−k+2 ⊕ · · · ⊕ ICn−k−2.



60 PRAMOD N. ACHAR AND SIMON RICHE

Proof. The first formula follows from representation theory of PGL(2), via the
Satake equivalence. The second and third formulas in the case n = 2 were proved
in the course of the proof of Proposition 9.1 (in a different language). The general
case can be proved by induction on n using the following two expressions:

IC−2 ? ICn ? ICk ∼= IC−2 ?
(
ICn+k ⊕ · · · ⊕ IC|n−k|

)
∼=
(
IC−n−2 ⊕ IC−n

)
? ICk,

where in the first isomorphism we use the first formula, and in the second one we
use the case “n = 2” of the third formula. �

9.5. Dg-algebra. Using Corollary 9.4 and Proposition 9.5, one can describe the
dg-algebra Hom•(P •, P • ?RG) concretely.

For example, the dg-algebra

Hom•(P •, P •)

is isomorphic to the product of an infinite number of exact complexes

C ↪→ C⊕ C � C

(in degrees −1, 0 and 1) parametrized by Z<0 and one copy of the complex

C ↪→ C⊕ C→ {0}
(again in degrees −1, 0 and 1) with cohomology C in degree 0.

Similarly, the complex
Hom•(P •, P • ? IC2)

is isomorphic to the product of an infinite number of exact complexes

C ↪→ C2 → C2 → C2 → C2 → C2 � C

(in degrees between −3 and 3) parametrized by Z<−2, one copy of the complex

C ↪→ C2 → C2 → C2 → C2 → C2 → 0

(again in degrees between −3 and 3) with cohomology C in degree 2, one copy of
the exact complex

C ↪→ C2 → C2 → C2 � C
(in degrees between −3 and 1) and one copy of the exact complex

C ↪→ C2 � C

(in degrees between −3 and −1).
The description of

Hom•(P •, P • ? ICn)
for a general n ∈ 2Z≥0 is similar.
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