Constructible sheaves on affine Grassmannians and geometry of the dual nilpotent cone - Archive ouverte HAL Access content directly
Journal Articles Israel Journal of Mathematics Year : 2015

Constructible sheaves on affine Grassmannians and geometry of the dual nilpotent cone

Abstract

In this paper we study the derived category of sheaves on the affine Grassmannian of a complex reductive group G, contructible with respect to the stratification by G[[x]]-orbits. Following ideas of Ginzburg and Arkhipov-Bezrukavnikov-Ginzburg, we describe this category (and a mixed version) in terms of coherent sheaves on the nilpotent cone of the Langlands dual reductive group. We also show, in the mixed case, that restriction to the nilpotent cone of a Levi subgroup corresponds to hyperbolic localization on affine Grassmannians.
Fichier principal
Vignette du fichier
grassmannian5.pdf (556.48 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-00565748 , version 1 (14-02-2011)
hal-00565748 , version 2 (15-02-2011)

Identifiers

  • HAL Id : hal-00565748 , version 2

Cite

Pramod N. Achar, Simon Riche. Constructible sheaves on affine Grassmannians and geometry of the dual nilpotent cone. Israel Journal of Mathematics, 2015, 205 (1), pp 247-315. ⟨hal-00565748v2⟩
185 View
166 Download

Share

Gmail Facebook X LinkedIn More