Cécile Mercadier 
  
Philippe Soulier 
  
Optimal rates of convergence in the Weibull model based on kernel-type estimators

Keywords: Weibul tail index, Rates of convergence, Kernel-type estimators, Optimal sample fraction, Sequential procedure. MSC2010 Subject Classification: primary 62G32, 62G20, secondary 62G05, 62F35

Let F be a distribution function in the maximal domain of attraction of the Gumbel distribution and such that -log(1 -F (x)) = x 1/θ L(x) for a positive real number θ, called the Weibul tail index, and a slowly varying function L. It is well known that the estimators of θ have a very slow rate of convergence. We establish here a sharp optimality result in the minimax sense, that is when L is treated as an infinite dimensional nuisance parameter belonging to some functional class. We also establish the rate optimal asymptotic property of a data-driven choice of the sample fraction that is used for estimation.

Introduction

Let F be a probability distribution function on [0, ∞) such that 1 -F (x) = exp (-H(x)) for x ≥ 0 and H ← is regularly varying at infinity with positive index θ, i.e.

H ← (t) = t θ (t)

where f ← denotes the left-continuous inverse of a nondecreasing function f , and the function is slowly varying at infinity, i.e. for all x > 0, lim t→∞ (xt)/ (t) = 1. The quantile function Q = F ← can then be expressed as Q(t) = H ← (-log(1 -t)). Such probability distributions F are usually called Weibull type distributions and the parameter θ is called the Weibull tail index or coefficient. These distributions belong to the maximum domain of attraction of the Gumbel distribution. Note that θ = 1/2 for the positive part of the Gaussian distribution and θ = 1 for the Γ(a, λ) distribution. The estimation of the parameter θ has been considered by [START_REF] Beirlant | Practical analysis of extreme values[END_REF], [START_REF] Embrechts | Modelling extremal events[END_REF] and [START_REF] Girard | A Hill type estimator of the Weibull tail-coefficient[END_REF] among other references. Their estimators are based on linear combinations of log-spacings between upper order statistics. They have been proved to be consistent with a logarithmic rate of convergence, under semiparametric assumptions, i.e. when the slowly varying function is considered as an infinite dimensional nuisance parameter. Nevertheless, this logarithmic rate of convergence has never been proved to be optimal in the minimax sense.

To obtain the minimax rate of convergence of an estimator of θ in a semiparametric setting is the first goal of this note. A lower bound is obtained in Section 2 and an upper bound for a kernel estimator is derived in Section 3. As often when the rate of convergence is logarithmic, the two bounds are matching. This was observed by [START_REF] Drees | Optimal rates of convergence for estimates of the extreme value index[END_REF] in the context of estimation of the tail index of a regularly varying distribution. In Section 4, we discuss the choice of the number of upper order statistics used to compute the estimator. Several approaches have been considered, based on the asymptotic mean squared error. Pitfalls of these methods have recently been highlighted by [START_REF] Asimit | Pitfalls in using Weibull tailed distributions[END_REF]. We suggest a different approach, elaborating on an idea of [START_REF] Drees | Selecting the optimal sample fraction in univariate extreme value estimation[END_REF], which was itself inspired by the so-called Lepsky method which is familiar in nonparametric estimation. This method is shown to have optimal asymptotic properties. Unfortunately but unsurprisingly, this data-driven estimator has a very poor finite sample behaviour. Improving practical aspects of this method is the subject of future research.

Lower bound

Let b be a nonincreasing function defined on [1, ∞] such that lim x→∞ b(x) = 0. Let L(b) be the class of locally bounded slowly varying functions on [0, ∞) that can be expressed as

(x) = exp x 1 η(s) s ds , (1) 
with |η(s)| ≤ b(s) for s ≥ 1, and such that x → x θ (x) is nondecreasing on [0, ∞) for any θ > 0.

Theorem 2.1. Let θ 2 > θ 1 > 0 be positive real numbers and let b be a decreasing function defined on

[1, ∞] such that lim x→∞ b(x) = 0. Then lim inf n→∞ inf θn sup θ∈(θ1,θ2) sup ∈L(b) b -1 (log(n)) E (n) θ, [| θn -θ|] ≥ 1, where E (n)
θ, denotes expectation with respect to the law of an n-sample from a distribution with quantile function Q(t) = (-log(1 -t)) θ (-log(1 -t)), and the infimum is taken over all sequences of estimators of θ.

Example 1. If b(x) = x ρ with ρ < 0, then the lower bound for the rate of convergence of estimators of θ is log -ρ (n).

Example 2. If b(x) = log -1 (x), then the lower bound is log log(n).

Example 3. Consider a distribution function with tail F (x) = c 1 x δ e -c2x β with c i > 0, β > 0 and δ = 0. Then the quantile function can be expressed as

Q(t) = z 1/β (z) with z = -c -1 2 log{(1 -t)/c 1 } and (z) ∼ 1 -β -2 c -1 2 δz -1 log(z) as z → ∞.
Thus is in the class L(b) with b(z) = Cz -1 log(z) for large enough C and z ≥ e. The uniform rate of convergence over this class is C -1 log(n)/ log log(n). See [START_REF] Kluppelberg | Estimation of distribution tails -a semiparametric approach[END_REF] and [START_REF] Asimit | Pitfalls in using Weibull tailed distributions[END_REF].

3 Kernel estimates of the Weibull tail index Let X 1 , X 2 , . . . , X n be a sequence of independent and identically distributed random variables with cumulative distribution function F . We denote by X 1,n , . . . , X n,n their associated order statistics. Following [START_REF] Csörgő | Kernel estimates of the tail index of a distribution[END_REF], the empirical quantile process, Q n is then defined by

Q n (t) = X k,n if k-1 n < t ≤ k n for 1 ≤ k ≤ n.
Let K denote a bounded nonnegative nonincreasing kernel with compact support in [0, ∞) and such that vK (v) is bounded. Without loss of generality, we can assume that K has compact support in [0,1]. Let also λ = λ n > 0 be a tuning parameter such that lim n→∞ λ n = 0. The kernel estimate of the Weibull tail index θ is defined by

θn = 1 0 log Q n (1 -vλ) d{vK(v)} 1 0 K(v) (-log(vλ)) dv . ( 2 
)
If K is moreover right continuous, the numerator is

[nλ]
j=1 (j/nλ)K(j/nλ) log(X n-j+1,n /X n-j,n ) where we set X 0,n = 1. Example 4. For λ = k/n and K(v) = 1 0≤v<1 we find that θn = θ(1) n which has been introduced by [START_REF] Gardes | Comparison of Weibull tail-coefficient estimators[END_REF].

Theorem 3.1. If λ is chosen such that lim n→∞ b(-log λ) b(log n) = 1 , lim n→∞ b(log n) √ nλ = ∞ , (3) 
then

lim n→∞ P (n) θ, (| θn -θ| ≤ b(log n)) = 1 , (4) 
uniformly with respect to ∈ L(b).

Remark 1. It is possible to choose λ as in (3). See [START_REF] Drees | Optimal rates of convergence for estimates of the extreme value index[END_REF] 

P (n) θ, | θn -θ| ≤ b(log n) = 1 . ( 5 
)
Remark 2. The bound (5) is a minimax bound. This means that it is a uniform bound over a certain class of distributions. The function b describes the a priori information on the class of distribution from which the observed data is assumed to be sampled.

Example 5. If b(x) = x ρ with ρ < 0, then the assumptions are satisfied for λ

(n) = k(n)/n where k(n) = log(n) q with q + 2ρ > 0. Example 6. If b(x) = log -1 (x), then the result holds for λ(n) = k(n)/n where k(n) = log(n) α n β with α ∈ R if β ∈ (0, 1) and α > 0 if β = 0.
4 Data driven choice of the threshold

Recently, [START_REF] Asimit | Pitfalls in using Weibull tailed distributions[END_REF] discussed methods to select the sample fraction k n that may be employed in estimating the Weibull tail index. In particular, they noticed that there is no value k n minimizing the asymptotic mean squared error. This is confirmed by our results. Indeed, Theorem 3.1 shows that if k n is suitably chosen, the variance of the kernel estimator, denoted by θn,kn , turns out to be asymptotically negligible with respect to its squared bias, and Theorem 2.1 shows that this choice is optimal in the sharp asymptotic minimax sense over certain functional classes. This kind of situation is well known in minimax nonparametric or semiparametric estimation. See e.g. [START_REF] Butucea | Sharp optimality in density deconvolution with dominating bias. I. Rossiȋskaya Akademiya[END_REF]. Adapting the idea of Drees and Kaufmann [1998], which was itself inspired by the so-called Lepsky method, we propose here a different choice of the sample fraction.

In this section, for simplicity of exposition, we consider the rectangular kernel K = 1 [0,1) and restrict the tuning paramter to

the discrete grid λ = k/n. The resulting estimator of θ is θn,k = k -1 k j=1 j{log X n-j+1,n -log X n-j,n } / n k k/n 0 (-log v) -1 dv .
Let r n be an increasing sequence. Define kn (r n ) by

kn (r n ) = min{k = 1, . . . , n -1 | max 1≤i≤k √ i| θn,k -θn,i | > r n } . (6) Theorem 4.1. Let η ∈ L(b) be regularly varying at infinity with negative index. If log log(n) = o(r n ) and log(r n ) = o(log n), then lim n→∞ P(| θn, kn(rn) -θ| ≤ b(log(n)) = 1.
This result means that θn, kn(rn) is asymptotically optimal over the class L(b) restricted to regularly varying functions. If we further restrict the class L(b) to nonincreasing functions, we obtain an asymptotic confidence interval.

Corollary 4.2. Under the assumptions of Theorem 4.1, if η is nonincreasing, then (er

n log(n)/{2η(log n)}) -2 kn (r n ) → P 1, hence lim n→∞ P | θn, kn(rn) -θ| ≤ e r n log n/ 2 kn (r n ) = 1.
Numerical illustration The theoretical result state that the data-driven estimator θn, kn has nice asymptotic properties for any choice of the sequence r n which satisfies very weak constraints. Unfortunately, this is not the case in practice. We have run simulations for large to very large sample sizes, which reveal an extremely poor performance of this data-driven choice.

We have generated N replications of a n-sample from the distribution function F corresponding to the function η(x) = x -1/2-3/2 u through (1), for u ∈ [0, 1], so that η is in the class L(b) for b(x) = x -1/2 . The value of the parameter u is uniformly distributed in [0, 1] and changes for each replication. We have computed the N sequences { θn,k |k = 1, . . . , n -1}, which are plotted in black in Figures 1 and2. The sample fraction kn (r n ) is computed for each of these N sequences, according to the algorithm (6). The N values are represented by vertical green lines. The true value of the parameter θ is given by the horizontal blue line.

The estimator is severly biased and the confidence interval suggested in Corollary 4.1 is very large and nearly useless. Its half-length l n = (e r n log n)/(2 kn (r n )) is given by Corollary 4.2. An improvement of this method is needed, but we think that it is better to look for genuinely semiparametric methods rather than to artificially restrict the model. For instance [START_REF] Asimit | Pitfalls in using Weibull tailed distributions[END_REF] suggest to use the model of Example 3, but this is a parametric model, which incurs a risk of misspecification. 

Proofs

The proof of Theorem 2.1 follows a very standard path to obtain minimax risk bounds. It also makes use of some computations in [START_REF] Beirlant | Semiparametric lower bounds for tail index estimation[END_REF]. The proof of Theorem 3.1 is very much inspired from similar results for the Hill estimator in [START_REF] Csörgő | Kernel estimates of the tail index of a distribution[END_REF]. The proof of Theorem 4.1 is an adaptation of the proof of Drees and Kaufmann [1998, Corollary 1]. We include all details for the sake of self-containedness. We preface the proofs by recalling some results on the uniform empirical process. We deduce from these results two lemmas that will be useful. Let U n denote the uniform quantile process, i.e. Q n (t) = Q(U n (t)) for any t ∈ [0, 1].

Lemma 5.1 [START_REF] Wiley | Weighted empirical and quantile processes[END_REF]). There exists a sequence of Brownian bridges B n such that for any ν ∈ [0, 1/2), sup

1/n≤u≤1 u ν-1/2 √ n{1 -u -U n (1 -u)} -B n (u) = O P (n -ν ) . ( 7 
)
Lemma 5.2 [START_REF] Csörgő | Kernel estimates of the tail index of a distribution[END_REF], Lemma 13).

For D > 1, define A n (D) = {u ∈ [1/n, 1] : u/D ≤ 1 -U n (1 -u) ≤ Du}. Then lim D→∞ lim sup n→∞ P(A n (D)) = 1.
Lemma 5.3 [START_REF] Mason | The asymptotic distribution of weighted empirical distribution functions[END_REF], Lemma 14). For any ν

∈ [0, 1/2), sup 1/n≤u≤1 n ν u ν-1 |1 -u -U n (1 -u)| = O P (1).
Lemma 5.4 [START_REF] Wiley | Weighted empirical and quantile processes[END_REF], Theorem 4.2.1). sup

1/n≤u≤1 n 1/2 u -1/2 |1 -u -U n (1 -u)| = O P log log(n) . Denote ∆ n (u) = log(-log{1 -U n (1 -u)}) -log(-log u).
Combining Lemmas 5.2 and 5.4 we obtain Lemma 5.5. We have

sup 1/n≤u≤1 √ u log u ∆ n (u) = O P n -1 log log n .
Proof. By a Taylor expansion, we have

∆ n (u) = {1 -u -U n (1 -u)}/{α n (u) log(α n (u))} with α n (u) such that u ∧ {1 -U n (1 -u)} ≤ α n (u) ≤ u ∨ {1 -U n (1 -u)} .
Applying Lemmas 5.2 and 5.4, we get for any > 0, that there exists a constant D > 1 large enough such that

D -1 u ≤ α n (u) ≤ Du , |1 -u -U n (1 -u)| ≤ D (log log n)/n √ u , |u log(u)/ (α n (u) log α n (u)) | ≤ D ,
for all u ∈ (1/n, 1) with probability exceeding 1 -. Thus, we obtain for large enough D that max 1/n≤u≤1 | √ u log(u)∆ n (u)| ≤ D 2 (log log n)/n with probability exceeding 1 -.

Lemma 5.6.

log{-log(1 -U n,n )} -log log n = O P (1/ log n) , ( 8 
) 1/n 0 ∆ n (u) du = O P (1/{n log n}) . (9) 
Proof. To prove (8), we apply the convergence in distribution of

T n := -log(1 -U n,n ) -log(n) to the Gumbel law combined with a Taylor expansion: log{-log(1 -U n,n )} -log log n = T n / log n + o(T n / log n).
To prove (9), we write

1/n 0 ∆ n (u) du = 1 n (log{-log(1 -U n,n )} -log log n) + 1/n 0 log log n -log(-log u) du.
The result follows from (8) and 

1/n 0 log log n -log(-log u) du = O (1/(n log n)).
n = θ 0 + δ n , h n (z) = z θ n l - n (z). Let F n be the probability distribtion function such that (F n ) ← (t) = h n (-log(1 -t)).
Then -log[1-F n (x)] = {x n (x)} 1/θ n with n (x) = (x∧t n ) δn/θ0 and t n = s θ0 n . Define finally g n (x) = {x n (x)} 1/θ n , g 0 (x) = x 1/θ0 and F 0 (x) = 1 -e -g0(x) . Then, s n = g 0 (t n ) and F (t n ) = e -sn and

g n (x) = g 0 (x) if x ≤ t n ,
x 

E n θ, [| θn -θ|] ≥ 1 2 E n + [| θn -θ + n |] + 1 2 E n -[| θn -θ - n |] = 1 2 E n -| θn -θ - n | + dP n + dP n - | θn -θ + n | ≥ 1 2 E n - | θn -θ - n | + dP n + dP n - | θn -θ + n | 1 A ≥ 1 2 E n - | θn -θ - n | + ζ| θn -θ + n | 1 A ≥ ζ 2 E n -{| θn -θ - n | + | θn -θ + n |}1 A ≥ ζ|θ + n -θ - n | 2 P n -(A) = ζδ n P n -(A) . ( 10 
)
In order to bound the last term, let K(P n -,

P n + ) = E n -log dP n -/dP n +
denote the Kullback-Leiber distance. By Pinsker's inequality, [Tsybakov, 2004, Lemme 2.5], we get

P n -(A) = 1-P n - dP n + dP n - ≤ ζ = 1-P n -log dP n - dP n + ≥ log(1/ζ) ≥ 1- 1 log(1/ζ) E n -log dP n + dP n -+ ≥ 1- 1 √ 2 log(1/ζ) K(P n -, P n + ) .
Since we consider an i.i.d. sample, K(P n -, P n + ) = nK(F - n , F + n ) and there only remains to prove that lim inf n→∞ nK(F - n , F + n ) = 0. For x > t n , the log-likelihood between F + n and F - n (see Beirlant et al. [2006, Equation (6.4)]) is given by

log dF + n dF - n = log(θ - n /θ + n ) + θ - n /θ + n -1 log(g - n /s n ) + g - n 1 -(g - n /s n ) θ - n /θ + n -1 . Since log(dF + n /dF - n ) = 0 for x ≤ t n , we obtain K(F - n , F + n ) = ∞ tn log(dF - n /dF + n ) dF - n = -log(θ - n /θ + n ) F - n (t n ) -θ - n /θ + n -1 ∞ tn log(g - n /s n )dF - n - ∞ tn g - n 1 -(g - n /s n ) θ - n /θ + n -1 dF - n = -I -(θ - n /θ + n -1) × II -III .
We make the change of variable u = g - n (x) in the above integrals separately.

I = -e -sn (2δ n /θ 0 + O(δ 2 n )) , II = ∞ sn log(u/s n ) e -u du = e -sn ∞ 0 log(1 + v/s n ) e -v dv ∼ s -1 n e -sn , III = ∞ sn u 1 -(u/s n ) θ - n /θ + n -1 e -u du= e -sn ∞ 0 (v + s n ) 1 -(1 + v/s n ) θ - n /θ + n -1 e -v dv ∼ {2δ n /θ 0 + O(δ 2 n )}e -sn .
Summing the three terms yields

K(F - n , F + n ) = O δn sn ∨ δ 2 n e -sn . Since s n = log(n), it holds that lim n→∞ nK(F - n , F + n ) = 0. Thus lim inf n P n -(A) = 1. Plugging this limit into (10) yields lim inf n→∞ sup θ∈(θ1,θ2) sup ∈L(b) b -1 (log(n)) E θ, [| θn -θ|] ≥ ζ lim inf n→∞ P n -(A) = ζ .
Since this is true for all ζ ∈ (0, 1), the result is proved.

Proof of Theorem 3.1

Let us define L(t) = log(-log(t)). Then log

Q(t) = θL(1 -t) + log (-log(1 -t)) and θn,λ = θ + θξ n,λ + β n,λ + β n,λ , (11) 
with

g(λ) = 1 0 L(vλ) d{vK(v)} = 1 0 K(v) -log(vλ) dv ∼ 1 0 K(t) dt log(1/λ) , ξ n,λ = 1 g(λ) 1 0 {L(1 -U n (1 -vλ)) -L(vλ)} d{vK(v)} , β n,λ = 1 g(λ) 1 0 -log(λv) 1 η(s) s ds d{vK(v)} = 1 g(λ) 1 0 η(-log(vλ)) -log(vλ) K(v) dv , β n,λ = 1 g(λ) 1 0 -log{1-Un(1-vλ)} -log(λv) η(s) s ds d{vK(v)} .
The term β n,λ is a deterministic bias. Since b is decreasing, a bound for β n,λ is given by |β n,λ | ≤ b(-log(λ)), uniformly with respect to ∈ L(b). We will prove in Subsection 5.2.1 that √ nλ ξ n,λ converges weakly to a centered Gaussian distribution and in Subsection 5.2.2 that β n,λ = o P (b(log n)). These results, together with the decomposition (11) and Assumption (3), yield (4).

The stochastic term ξ n,λ

Let {B n } be a sequence of Brownian bridges such that Eq. ( 7) in Lemma 5.1 holds. Informally, we can write

L(1 -U n (1 -λv)) -L(λv) ≈ L (λv){1 -λv -U n (1 -λv)} ≈ B n (λv) √ nλv log(λv) .
Thus, we hope that we can prove that

1 0 {L(1 -U n (1 -λv)) -L(λv)} d{vK(v)} has the same asymptotic distribution as 1 √ nλ 1 0 B n (λv) v log(λv) d{vK(v)} ∼ d 1 √ nλ log(1/λ) N 0, 2 1 0 K(t) d{tK(t)} .
We will prove that this approximation is valid by splitting the integral into two parts. Recall that we have defined ∆

n (u) = L(1 -U n (1 -u)) -L(u).
Lemma 5.7. Under the assumptions of Theorem 3.1,

√ nλ log(1/λ) 1 1/(λn) ∆ n (λv) d{vK(v)} → d N 0, 2 1 0 K(t) d{tK(t)} , (12) 
√ nλ log(1/λ) 1 1/(λn) |∆ n (λv)| |d{vK(v)}| = O P (1) . ( 13 
)
Proof of Lemma 5.7. Define

δ n,λ = √ nλ log(1/λ) 1 1/(λn) ∆ n (λv) - B n (λv) √ nλv log(λv) d{vK(v)} , and 
ζ n,λ = log(1/λ) √ λ 1 1/(λn) B n (λv) v log(λv) d{vK(v)} . Then √ nλ log(1/λ) 1 1/(λn) ∆ n (λv) d{vK(v)} = δ n,λ + ζ n,λ .
We will prove that δ n,λ = o P (1) and ζ n,λ converges weakly to the desired limit. Denote Bn

(u) = √ n{1 -u -U n (1 -u)}. The function L is differentiable with L (u) = 1/(u log u), hence ∆ n (λv) = L (1 -U n (1 -λv)) -L(λv) = L (α n (λv)) Bn (λv) √ n = Bn (λv) √ nα n (λv) log(α n (λv))
with α n (u) = u + ϑn -1/2 Bn (u), for some ϑ ∈ (0, 1) and

(λv) ∧ {1 -U n (1 -λv)} ≤ α n (λv) ≤ (λv) ∨ {1 -U n (1 -λv)} . ( 14 
) Define R n,λ = √ nλ log(1/λ) 1 1/(λn) ∆ n (λv) -Bn (λv)/(
√ nλv log(λv)) d{vK(v)}. Applying Lemmas 5.2 and 5.3, for any > 0 and ν ∈ (1/4, 1/2), we can find D > 1 and A > 0 such that, with probability exceeding 1 -,

D -1 u ≤ α n (u) ≤ Du , | Bn (u)| ≤ An -ν u 1-ν . ( 15 
)
Since the function u → -u log u is increasing near zero, we obtain, with probability greater than 1 -,

|R n,λ | ≤ AD √ λ log(1/λ)n 1/2-ν 1 1/(λn) (λv) 1-ν |λv log(λv) -α n (λv) log(α n (λv))| λ 2 v 2 | log(λv) log(λv/D)| |d{vK(v)}| . (16) 
Note now that the function u → -u log u is concave and increasing near zero with derivative log(1/u) -1, so ( 14) and ( 15) imply that, with probability greater than 1 -,

|λv log(λv) -α n (v) log(α n (v))| ≤ |λv log(λv) -(1 -U n (1 -λv)) log(1 -U n (1 -λv))| ≤ |log (λv ∧ {1 -U n (1 -λv)})| |1 -λv -U n (1 -λv)| ≤ An -ν (λv) 1-ν |log (λv ∧ {1 -U n (1 -λv)})| ≤ An -ν (λv) 1-ν |log(λv/D)| .
Plugging this bound into (16) yields, for ν

∈ (0, 1/2), |R n,λ | ≤ A 2 D(nλ) 1/2-2ν 1 1/(λn) v -2ν |d{vK(v)}| ≤ C(nλ) 1/2-2ν
, for some constant C, with probability greater than 1 -. Thus R n,λ = o P (1). Denote now

S n,λ = √ nλ log(1/λ) 1 1/(λn) Bn (λv) -B n (λv) √ nλv log(λv) d{vK(v)} .
Applying Lemma 5.1, for any ∈ (0, 1), there exists A such that, with probability exceeding 1 -,

|S n,λ | ≤ A(nλ) -ν 1 1/(λn) v -1/2-ν d{vK(v)} .
Since the integral is convergent, we get that S n,λ = O P ((nλ) -ν ) = o P (1). Altogether, we obtain that δ n,λ = o P (1).

We must now prove that ζ n,λ converges weakly to the desired limit. Since {ζ n,λ } is a sequence of centered Gaussian random variables, we only need to prove that its variance converges. We compute

var(ζ n,λ ) = 2 log 2 (1/λ) λ 1 1/λn d{tK(t)} t log(λt) t 1/λn λs(1 -λt) s log(λs) d{sK(s)} ∼ 2 1 1/λn d{tK(t)} t t 1/λn d{sK(s)} ∼ 2 1 0 K(t)d{tK(t)} .
This proves (12). To prove (13), it only remains to prove that

log(1/λ) √ λ 1 1/(λn) |B n (λv)| v log(λv) d{vK(v)} = O P (1) . ( 17 
) Since E[|B n (λv)|] = 2/π √ λv, we have log(1/λ) √ λ E 1 1/(λn) |B n (λv)| v| log(λv)| d{vK(v)} = √ 2 log(1/λ) √ π 1 1/(λn) d{vK(v)} v 1/2 | log(λv)| ≤ 2 π 1 0 v -1/2 d{vK(v)} .
This proves (17), which concludes the proof of Lemma 5.7.

Lemma 5.8. Under the assumptions of Theorem 3.1,

√ nλ log(1/λ) 1/(λn) 0 ∆ n (λv) d{vK(v)} = o P (1). Proof of Lemma 5.8. Note that if vλ < 1/n, then U n (1 -vλ) = U n,n . Thus, √ nλ log(1/λ) 1/(λn) 0 {L(1 -U n,n ) -L(vλ)} d{vK(v)} = √ nλ log(1/λ){L(1 -U n,n ) -L(1/n)} λn K(1/{λn}) (18) + √ nλ log(1/λ) 1/{λn} 0 {L(1/n) -L(vλ)} d{vK(v)} . (19) 
Since -log(1 -U n,n ) + log(1/n) converges weakly to the standard Gumbel law, we get that L

(1 -U n,n ) -L(1/n) = O P (1/ log n),
thus the term in ( 18) is O P ((nλ) -1/2 log(1/λ)/ log n). Applying integration by parts, we see that the term in ( 19) is -√ nλ log(1/λ) 1/(λn) 0

K(v)
(-log(vλ)) dv = O (nλ) -1/2 log(1/λ)/ log n = O (nλ) -1/2 .

In conclusion, we have proved that √ nλξ n,λ → d N(0, 2( 1 0 K(t) dt) -2 1 0 K(t)d{tK(t)}).

Proof. Applying the decomposition (11), we have θn,i -θ -β n,i = θξ n,i + βn,i . We will prove ( 22 

Figure 1 :Figure 2 :

 12 Figure 1: Sample properties of kn (r n ) for θ = 0.761461, n = 1000, b(log n) ∼ 0.38. (a) r n = log n and half-length l n ∼ 3.5. (b) r n = (log n) 3/2 and half-length l n ∼ 8.75.

5. 1

 1 Proof of Theorem 2.1 Denote s n = log(n) and δ n = b(log(n)). For ∈ {-1, 1}, define the function n ∈ L(b) by l n (x) = exp δ n sn∧x 1 ds s = (s n ∧ x) δn . These functions belong to L(b) since b is nonincreasing, thus, defining η n = δ n 1 [1,sn] yields (1) with |η n | ≤ b. Fix θ 0 > 0 and define θ

  Next, since U n (1 -u) = U n,n for u ∈ [0, 1/n], we have1/n 0 ∆ n (u) du = n -1 L(1 -U n,n ) -du = n -1 {L(1 -U n,n ) -L(n)} + O(1/{n log(n)}) = O P (1/{n log(n)}) . Thus max 1≤i≤n-1 n √ i g(i/n) 1/n 0 ∆ n (u) du = O P (1). This proves (23). Consider now (24). As before, we split the integral defining βn,i into two parts. Write βn,i = φ n,i + ψ n,i , withφ n,i = n ig(i/n) Since U n (1 -u) = U n,n for u ≤ 1/n, applying the bound (9) in Lemma 5n} ∧ {-log(1 -U n,n )})O P (1/(n log n)) = O P (b(log n)) = o P (1) .For any intermediate sequence k n , we have that -log(1 -k n ) → P ∞. Thus, noting that b is nonincreasing and applying Lemma 5.6, we have, max 1≤i≤kn |ψ n,i | ≤ b({log n}∧{-log(1-k n /n)}) max 1≤i≤kn |∆ n (u)| du = o P √ log log n .

  1/θ n s Let P n + and P n -be the law of a n sample of i.i.d. random variables with distribution F + n and F - n , respectively, and denote E n + and E n -the corresponding expectations. For ζ ∈ (0, 1), denote A = {dP n + /dP n -≥ ζ}. For any θ and ∈ L(b), for any θn ,

	δn/θ n n	if x > t n .
	sup	
	θ	
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The term βn,λ

Write βn,λ = φ n,λ + ψ n,λ with

Note that if vλ < 1/n, then U n (1 -vλ) = U n,n . Thus, integrating by parts, we obtain

The last term in the right hand side of ( 20) can be bounded by g -1 (λ)b(log n)

1/(λn) 0

. The first term in the right hand side of (20) can be bounded by

The weak convergence of -log(1

This and the bound (13) in Lemma 5.7 yield

Thus, under Assumption (3), we conlude that βn,λ = O P ((nλ) -1/2 b(log n)) + o P ((nλ) -1/2 ) = o P (b(log n)).

Proof of Theorem 4.1

Define

If the function η is regularly varying at infinity with index ν < 0, it can be proved as in [Drees and Kaufmann, 1998, p. 156

This implies that k * n (r n ) is an intermediate sequence and satisfies condition (3), thus, by Theorem 3.1, lim n→∞ P(| θn,k * n (rn) -θ| ≤ b(log n)) = 1. Thus, the proof will be concluded by showing that lim n→∞ P( kn (r n ) = k * n (r n )) = 1. Corollary 4.2 will follow by noting that if η is nondecreasing, we can replace b by η.

Let r - n and r + n be two sequences such that r - n < r n < r + n , 21). Applying the definition of kn (r n ) and k * n (r ± n ) and Lemma 5.9, we obtain straightforwardly

Conversely,

To conclude, it suffices to note that (21) implies that k * n (r + n )/k * n (r - n ) → 1. Lemma 5.9.