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Optimal rates of convergence in the Weibull model based on kernel-type

estimators

Cécile Mercadier∗ Philippe Soulier†

Abstract

Let F be a distribution function in the maximal domain of attraction of the Gumbel distribution and such that − log(1−
F (x)) = x1/θL(x) for a positive real number θ, called the Weibul tail index, and a slowly varying function L. It is well known
that the estimators of θ have a very slow rate of convergence. We establish here a sharp optimality result in the minimax
sense, that is when L is treated as an infinite dimensional nuisance parameter belonging to some functional class. We also
establish the rate optimal asymptotic property of a data-driven choice of the sample fraction that is used for estimation.
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1 Introduction

Let F be a probability distribution function on [0,∞) such that 1−F (x) = exp (−H(x)) for x ≥ 0 and H← is regularly varying
at infinity with positive index θ, i.e.

H←(t) = tθ`(t)

where f← denotes the left-continuous inverse of a nondecreasing function f , and the function ` is slowly varying at infinity,
i.e. for all x > 0, limt→∞ `(xt)/`(t) = 1. The quantile function Q = F← can then be expressed as Q(t) = H←(− log(1− t)). Such
probability distributions F are usually called Weibull type distributions and the parameter θ is called the Weibull tail index or
coefficient. These distributions belong to the maximum domain of attraction of the Gumbel distribution. Note that θ = 1/2
for the positive part of the Gaussian distribution and θ = 1 for the Γ(a, λ) distribution. The estimation of the parameter θ has
been considered by Beirlant et al. [1996], Embrechts et al. [1997] and Girard [2004] among other references. Their estimators
are based on linear combinations of log-spacings between upper order statistics. They have been proved to be consistent with a
logarithmic rate of convergence, under semiparametric assumptions, i.e. when the slowly varying function ` is considered as an
infinite dimensional nuisance parameter. Nevertheless, this logarithmic rate of convergence has never been proved to be optimal
in the minimax sense.

To obtain the minimax rate of convergence of an estimator of θ in a semiparametric setting is the first goal of this note. A
lower bound is obtained in Section 2 and an upper bound for a kernel estimator is derived in Section 3. As often when the rate of
convergence is logarithmic, the two bounds are matching. This was observed by Drees [1998] in the context of estimation of the
tail index of a regularly varying distribution. In Section 4, we discuss the choice of the number of upper order statistics used to
compute the estimator. Several approaches have been considered, based on the asymptotic mean squared error. Pitfalls of these
methods have recently been highlighted by Asimit et al. [2010]. We suggest a different approach, elaborating on an idea of Drees
and Kaufmann [1998], which was itself inspired by the so-called Lepsky method which is familiar in nonparametric estimation.
This method is shown to have optimal asymptotic properties. Unfortunately but unsurprisingly, this data-driven estimator has
a very poor finite sample behaviour. Improving practical aspects of this method is the subject of future research.

2 Lower bound

Let b be a nonincreasing function defined on [1,∞] such that limx→∞ b(x) = 0. Let L(b) be the class of locally bounded slowly
varying functions ` on [0,∞) that can be expressed as

`(x) = exp
∫ x

1

η(s)
s

ds , (1)

with |η(s)| ≤ b(s) for s ≥ 1, and such that x 7→ xθ`(x) is nondecreasing on [0,∞) for any θ > 0.
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Theorem 2.1. Let θ2 > θ1 > 0 be positive real numbers and let b be a decreasing function defined on [1,∞] such that
limx→∞ b(x) = 0. Then lim infn→∞ inf θ̂n supθ∈(θ1,θ2) sup`∈L(b) b

−1(log(n)) E(n)
θ,` [|θ̂n − θ|] ≥ 1, where E(n)

θ,` denotes expectation
with respect to the law of an n-sample from a distribution with quantile function Q(t) = (− log(1 − t))θ`(− log(1 − t)), and the
infimum is taken over all sequences of estimators of θ.

Example 1. If b(x) = xρ with ρ < 0, then the lower bound for the rate of convergence of estimators of θ is log−ρ(n).

Example 2. If b(x) = log−1(x), then the lower bound is log log(n).

Example 3. Consider a distribution function with tail F̄ (x) = c1x
δe−c2x

β

with ci > 0, β > 0 and δ 6= 0. Then the quantile
function can be expressed as Q(t) = z1/β`(z) with z = −c−1

2 log{(1− t)/c1} and `(z) ∼ 1− β−2c−1
2 δz−1 log(z) as z →∞. Thus

` is in the class L(b) with b(z) = Cz−1 log(z) for large enough C and z ≥ e. The uniform rate of convergence over this class is
C−1 log(n)/ log log(n). See Kluppelberg and Villaseñor [1993] and Asimit et al. [2010].

3 Kernel estimates of the Weibull tail index

Let X1, X2, . . . , Xn be a sequence of independent and identically distributed random variables with cumulative distribution
function F . We denote by X1,n, . . . , Xn,n their associated order statistics. Following Csörgő et al. [1985], the empirical quantile
process, Qn is then defined by Qn(t) = Xk,n if k−1

n < t ≤ k
n for 1 ≤ k ≤ n. Let K denote a bounded nonnegative nonincreasing

kernel with compact support in [0,∞) and such that vK ′(v) is bounded. Without loss of generality, we can assume that K has
compact support in [0, 1]. Let also λ = λn > 0 be a tuning parameter such that limn→∞ λn = 0. The kernel estimate of the
Weibull tail index θ is defined by

θ̂n =

∫ 1

0
logQn(1− vλ) d{vK(v)}∫ 1

0
K(v)

(− log(vλ)) dv
. (2)

If K is moreover right continuous, the numerator is
∑[nλ]
j=1(j/nλ)K(j/nλ) log(Xn−j+1,n/Xn−j,n) where we set X0,n = 1.

Example 4. For λ = k/n and K(v) = 10≤v<1 we find that θ̂n = θ̂
(1)
n which has been introduced by Gardes and Girard [2006].

Theorem 3.1. If λ is chosen such that

lim
n→∞

b(− log λ)
b(log n)

= 1 , lim
n→∞

b(log n)
√
nλ =∞ , (3)

then
lim
n→∞

P(n)
θ,` (|θ̂n − θ| ≤ b(log n)) = 1 , (4)

uniformly with respect to ` ∈ L(b).

Remark 1. It is possible to choose λ as in (3). See [Drees, 1998, Proposition 2.1]. Note that Condition (3) implies that
limn→∞ nλ =∞.

Gathering Theorems 2.1 and 3.1 yields the following exact rate of convergence

lim
n→∞

inf
θ̂n

sup
θ∈(θ1,θ2)

sup
`∈L(b)

P(n)
θ,`

(
|θ̂n − θ| ≤ b(log n)

)
= 1 . (5)

Remark 2. The bound (5) is a minimax bound. This means that it is a uniform bound over a certain class of distributions. The
function b describes the a priori information on the class of distribution from which the observed data is assumed to be sampled.

Example 5. If b(x) = xρ with ρ < 0, then the assumptions are satisfied for λ(n) = k(n)/n where k(n) = log(n)q with q+ 2ρ > 0.

Example 6. If b(x) = log−1(x), then the result holds for λ(n) = k(n)/n where k(n) = log(n)αnβ with α ∈ R if β ∈ (0, 1) and
α > 0 if β = 0.

4 Data driven choice of the threshold

Recently, Asimit et al. [2010] discussed methods to select the sample fraction kn that may be employed in estimating the Weibull
tail index. In particular, they noticed that there is no value kn minimizing the asymptotic mean squared error. This is confirmed
by our results. Indeed, Theorem 3.1 shows that if kn is suitably chosen, the variance of the kernel estimator, denoted by θ̂n,kn ,
turns out to be asymptotically negligible with respect to its squared bias, and Theorem 2.1 shows that this choice is optimal in the
sharp asymptotic minimax sense over certain functional classes. This kind of situation is well known in minimax nonparametric
or semiparametric estimation. See e.g. Butucea and Tsybakov [2007]. Adapting the idea of Drees and Kaufmann [1998], which
was itself inspired by the so-called Lepsky method, we propose here a different choice of the sample fraction.
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In this section, for simplicity of exposition, we consider the rectangular kernel K = 1[0,1) and restrict the tuning paramter to

the discrete grid λ = k/n. The resulting estimator of θ is θ̂n,k =
(
k−1

∑k
j=1 j{logXn−j+1,n − logXn−j,n}

)
/
(
n
k

∫ k/n
0

(− log v)−1dv
)

.

Let rn be an increasing sequence. Define k̂n(rn) by

k̂n(rn) = min{k = 1, . . . , n− 1 | max
1≤i≤k

√
i|θ̂n,k − θ̂n,i| > rn} . (6)

Theorem 4.1. Let η ∈ L(b) be regularly varying at infinity with negative index. If
√

log log(n) = o(rn) and log(rn) = o(log n),
then limn→∞ P(|θ̂n,k̂n(rn) − θ| ≤ b(log(n)) = 1.

This result means that θ̂n,k̂n(rn) is asymptotically optimal over the class L(b) restricted to regularly varying functions. If we
further restrict the class L(b) to nonincreasing functions, we obtain an asymptotic confidence interval.

Corollary 4.2. Under the assumptions of Theorem 4.1, if η is nonincreasing, then (ern log(n)/{2η(log n)})−2k̂n(rn) →P 1,

hence limn→∞ P
(
|θ̂n,k̂n(rn) − θ| ≤ e rn log n/

(
2
√
k̂n(rn)

))
= 1.

Numerical illustration The theoretical result state that the data-driven estimator θ̂n,k̂n has nice asymptotic properties for
any choice of the sequence rn which satisfies very weak constraints. Unfortunately, this is not the case in practice. We have run
simulations for large to very large sample sizes, which reveal an extremely poor performance of this data-driven choice.

We have generated N replications of a n-sample from the distribution function F corresponding to the function η(x) =
x−1/2−3/2u through (1), for u ∈ [0, 1], so that η is in the class L(b) for b(x) = x−1/2. The value of the parameter u is uniformly
distributed in [0, 1] and changes for each replication. We have computed the N sequences {θ̂n,k|k = 1, . . . , n − 1}, which are
plotted in black in Figures 1 and 2. The sample fraction k̂n(rn) is computed for each of these N sequences, according to the
algorithm (6). The N values are represented by vertical green lines. The true value of the parameter θ is given by the horizontal
blue line.

The estimator is severly biased and the confidence interval suggested in Corollary 4.1 is very large and nearly useless. Its

half-length ln = (e rn log n)/(2
√
k̂n(rn)) is given by Corollary 4.2. An improvement of this method is needed, but we think that

it is better to look for genuinely semiparametric methods rather than to artificially restrict the model. For instance Asimit et al.
[2010] suggest to use the model of Example 3, but this is a parametric model, which incurs a risk of misspecification.
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Figure 1: Sample properties of k̂n(rn) for θ = 0.761461, n = 1000, b(log n) ∼ 0.38.
(a) rn = log n and half-length ln ∼ 3.5. (b) rn = (log n)3/2 and half-length ln ∼ 8.75.
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Figure 2: Sample properties of k̂n(rn) for θ = 1.9439654, n = 1500, and b(log n) ∼ 0.37.
(a) rn = log n and half-length ln ∼ 3.63. (b) rn = (log n)3/2 and half-length ln ∼ 8.03.
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5 Proofs

The proof of Theorem 2.1 follows a very standard path to obtain minimax risk bounds. It also makes use of some computations
in Beirlant et al. [2006]. The proof of Theorem 3.1 is very much inspired from similar results for the Hill estimator in Csörgő
et al. [1985]. The proof of Theorem 4.1 is an adaptation of the proof of Drees and Kaufmann [1998, Corollary 1]. We include all
details for the sake of self-containedness.

We preface the proofs by recalling some results on the uniform empirical process. We deduce from these results two lemmas
that will be useful. Let Un denote the uniform quantile process, i.e. Qn(t) = Q(Un(t)) for any t ∈ [0, 1].

Lemma 5.1 (Csörgő et al. [1986]). There exists a sequence of Brownian bridges Bn such that for any ν ∈ [0, 1/2),

sup
1/n≤u≤1

uν−1/2
∣∣√n{1− u− Un(1− u)} −Bn(u)

∣∣ = OP (n−ν) . (7)

Lemma 5.2 (Csörgő et al. [1985], Lemma 13). For D > 1, define An(D) = {u ∈ [1/n, 1] : u/D ≤ 1− Un(1− u) ≤ Du}. Then
limD→∞ lim supn→∞ P(An(D)) = 1.

Lemma 5.3 (Mason [1983], Lemma 14). For any ν ∈ [0, 1/2), sup1/n≤u≤1 n
νuν−1|1− u− Un(1− u)| = OP (1).

Lemma 5.4 (Csörgő and Horváth [1993], Theorem 4.2.1). sup1/n≤u≤1 n
1/2u−1/2|1− u− Un(1− u)| = OP

(√
log log(n)

)
.

Denote ∆n(u) = log(− log{1− Un(1− u)})− log(− log u). Combining Lemmas 5.2 and 5.4 we obtain

Lemma 5.5. We have sup1/n≤u≤1

√
u log u∆n(u) = OP

(√
n−1log log n

)
.

Proof. By a Taylor expansion, we have ∆n(u) = {1− u− Un(1− u)}/{αn(u) log(αn(u))} with αn(u) such that

u ∧ {1− Un(1− u)} ≤ αn(u) ≤ u ∨ {1− Un(1− u)} .

Applying Lemmas 5.2 and 5.4, we get for any ε > 0, that there exists a constant D > 1 large enough such that

D−1u ≤ αn(u) ≤ Du ,

|1− u− Un(1− u)| ≤ D
√

(log log n)/n
√
u ,

|u log(u)/ (αn(u) logαn(u)) | ≤ D ,

for all u ∈ (1/n, 1) with probability exceeding 1− ε. Thus, we obtain for large enough D that max1/n≤u≤1 |
√
u log(u)∆n(u)| ≤

D2
√

(log log n)/n with probability exceeding 1− ε.

Lemma 5.6.

log{− log(1− Un,n)} − log log n = OP (1/ log n) , (8)∫ 1/n

0

∆n(u) du = OP (1/{n log n}) . (9)

Proof. To prove (8), we apply the convergence in distribution of Tn := − log(1 − Un,n) − log(n) to the Gumbel law combined
with a Taylor expansion: log{− log(1− Un,n)} − log log n = Tn/ log n+ o(Tn/ log n). To prove (9), we write∫ 1/n

0

∆n(u) du =
1
n

(log{− log(1− Un,n)} − log log n) +
∫ 1/n

0

log log n− log(− log u) du.

The result follows from (8) and
∫ 1/n

0
log log n− log(− log u) du = O (1/(n log n)).

5.1 Proof of Theorem 2.1

Denote sn = log(n) and δn = b(log(n)). For ε ∈ {−1, 1}, define the function `εn ∈ L(b) by

lεn(x) = exp
{
εδn

∫ sn∧x

1

ds
s

}
= (sn ∧ x)εδn .

These functions belong to L(b) since b is nonincreasing, thus, defining ηεn = εδn1[1,sn] yields (1) with |ηεn| ≤ b. Fix θ0 > 0 and
define θεn = θ0 + εδn, hεn(z) = zθ

ε
n l−εn (z). Let F εn be the probability distribtion function such that (F εn)←(t) = hεn(− log(1 − t)).
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Then − log[1−F εn(x)] = {x`εn(x)}1/θεn with `εn(x) = (x∧tn)εδn/θ0 and tn = sθ0n . Define finally gεn(x) = {x`εn(x)}1/θεn , g0(x) = x1/θ0

and F0(x) = 1− e−g0(x). Then, sn = g0(tn) and F̄ ε(tn) = e−sn and

gεn(x) =

{
g0(x) if x ≤ tn ,
x1/θεns

εδn/θ
ε
n

n if x > tn .

Let Pn+ and Pn− be the law of a n sample of i.i.d. random variables with distribution F+
n and F−n , respectively, and denote En+

and En− the corresponding expectations. For ζ ∈ (0, 1), denote A = {dPn+/dPn− ≥ ζ}. For any θ and ` ∈ L(b), for any θ̂n,

sup
θ

Enθ,`[|θ̂n − θ|] ≥
1
2

En+[|θ̂n − θ+n |] +
1
2

En−[|θ̂n − θ−n |] =
1
2

En−
[
|θ̂n − θ−n |+

dPn+
dPn−

|θ̂n − θ+n |
]

≥ 1
2

En−
[{
|θ̂n − θ−n |+

dPn+
dPn−

|θ̂n − θ+n |
}

1A

]
≥ 1

2
En−
[{
|θ̂n − θ−n |+ ζ|θ̂n − θ+n |

}
1A
]

≥ ζ

2
En−
[
{|θ̂n − θ−n |+ |θ̂n − θ+n |}1A

]
≥ ζ|θ+n − θ−n |

2
Pn−(A) = ζδn Pn−(A) . (10)

In order to bound the last term, let K(Pn−,Pn+) = En−
[
log
(
dPn−/dPn+

)]
denote the Kullback-Leiber distance. By Pinsker’s

inequality, [Tsybakov, 2004, Lemme 2.5], we get

Pn−(A) = 1−Pn−
(

dPn+
dPn−

≤ ζ
)

= 1−Pn−
(

log
(

dPn−
dPn+

)
≥ log(1/ζ)

)
≥ 1− 1

log(1/ζ)
En−

[
log
(

dPn+
dPn−

)
+

]
≥ 1− 1√

2 log(1/ζ)

√
K(Pn−,Pn+) .

Since we consider an i.i.d. sample, K(Pn−,Pn+) = nK(F−n , F
+
n ) and there only remains to prove that lim infn→∞ nK(F−n , F

+
n ) = 0.

For x > tn, the log-likelihood between F+
n and F−n (see Beirlant et al. [2006, Equation (6.4)]) is given by

log
dF+

n

dF−n
= log(θ−n /θ

+
n ) +

(
θ−n /θ

+
n − 1

)
log(g−n /sn) + g−n

(
1− (g−n /sn)θ

−
n /θ

+
n−1

)
.

Since log(dF+
n /dF

−
n ) = 0 for x ≤ tn, we obtain

K(F−n , F
+
n ) =

∫ ∞
tn

log(dF−n /dF
+
n ) dF−n

= − log(θ−n /θ
+
n )F̄−n (tn)−

(
θ−n /θ

+
n − 1

) ∫ ∞
tn

log(g−n /sn)dF−n −
∫ ∞
tn

g−n

(
1− (g−n /sn)θ

−
n /θ

+
n−1

)
dF−n

= −I − (θ−n /θ
+
n − 1)× II − III .

We make the change of variable u = g−n (x) in the above integrals separately.

I = −e−sn(2δn/θ0 +O(δ2n)) ,

II =
∫ ∞
sn

log(u/sn) e−u du = e−sn
∫ ∞

0

log(1 + v/sn) e−vdv ∼ s−1
n e−sn ,

III =
∫ ∞
sn

u
{

1− (u/sn)θ
−
n /θ

+
n−1

}
e−u du= e−sn

∫ ∞
0

(v + sn)
{

1− (1 + v/sn)θ
−
n /θ

+
n−1

}
e−v dv ∼ {2δn/θ0 +O(δ2n)}e−sn .

Summing the three terms yields K(F−n , F
+
n ) = O

(
δn
sn
∨ δ2n

)
e−sn . Since sn = log(n), it holds that limn→∞ nK(F−n , F

+
n ) = 0.

Thus lim infn Pn−(A) = 1. Plugging this limit into (10) yields

lim inf
n→∞

sup
θ∈(θ1,θ2)

sup
`∈L(b)

b−1(log(n)) Eθ,`[|θ̂n − θ|] ≥ ζ lim inf
n→∞

Pn−(A) = ζ .

Since this is true for all ζ ∈ (0, 1), the result is proved.

5.2 Proof of Theorem 3.1

Let us define L(t) = log(− log(t)). Then logQ(t) = θL(1− t) + log `(− log(1− t)) and

θ̂n,λ = θ + θξn,λ + βn,λ + β̃n,λ , (11)
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with
g(λ) =

∫ 1

0

L(vλ) d{vK(v)} =
∫ 1

0

K(v)
− log(vλ)

dv ∼
∫ 1

0
K(t) dt

log(1/λ)
,

ξn,λ =
1

g(λ)

∫ 1

0

{L(1− Un(1− vλ))− L(vλ)} d{vK(v)} ,

βn,λ =
1

g(λ)

∫ 1

0

∫ − log(λv)

1

η(s)
s

dsd{vK(v)} =
1

g(λ)

∫ 1

0

η(− log(vλ))
− log(vλ)

K(v) dv ,

β̃n,λ =
1

g(λ)

∫ 1

0

∫ − log{1−Un(1−vλ)}

− log(λv)

η(s)
s

dsd{vK(v)} .

The term βn,λ is a deterministic bias. Since b is decreasing, a bound for βn,λ is given by |βn,λ| ≤ b(− log(λ)), uniformly with
respect to ` ∈ L(b). We will prove in Subsection 5.2.1 that

√
nλ ξn,λ converges weakly to a centered Gaussian distribution and

in Subsection 5.2.2 that β̃n,λ = oP (b(log n)). These results, together with the decomposition (11) and Assumption (3), yield (4).

5.2.1 The stochastic term ξn,λ

Let {Bn} be a sequence of Brownian bridges such that Eq. (7) in Lemma 5.1 holds. Informally, we can write

L(1− Un(1− λv))− L(λv) ≈ L′(λv){1− λv − Un(1− λv)} ≈ Bn(λv)√
nλv log(λv)

.

Thus, we hope that we can prove that
∫ 1

0
{L(1− Un(1− λv))− L(λv)} d{vK(v)} has the same asymptotic distribution as

1√
nλ

∫ 1

0

Bn(λv)
v log(λv)

d{vK(v)} ∼d
1√

nλ log(1/λ)
N
(

0, 2
∫ 1

0

K(t) d{tK(t)}
)
.

We will prove that this approximation is valid by splitting the integral into two parts. Recall that we have defined ∆n(u) =
L(1− Un(1− u))− L(u).

Lemma 5.7. Under the assumptions of Theorem 3.1,

√
nλ log(1/λ)

∫ 1

1/(λn)

∆n(λv) d{vK(v)} →d N
(

0, 2
∫ 1

0

K(t) d{tK(t)}
)
, (12)

√
nλ log(1/λ)

∫ 1

1/(λn)

|∆n(λv)| |d{vK(v)}| = OP (1) . (13)

Proof of Lemma 5.7. Define

δn,λ =
√
nλ log(1/λ)

∫ 1

1/(λn)

{
∆n(λv)− Bn(λv)√

nλv log(λv)

}
d{vK(v)} ,

and
ζn,λ =

log(1/λ)√
λ

∫ 1

1/(λn)

Bn(λv)
v log(λv)

d{vK(v)} .

Then
√
nλ log(1/λ)

∫ 1

1/(λn)
∆n(λv) d{vK(v)} = δn,λ + ζn,λ. We will prove that δn,λ = oP (1) and ζn,λ converges weakly to the

desired limit. Denote B̃n(u) =
√
n{1− u− Un(1− u)}. The function L is differentiable with L′(u) = 1/(u log u), hence

∆n(λv) = L (1− Un(1− λv))− L(λv) = L′(αn(λv))
B̃n(λv)√

n
=

B̃n(λv)√
nαn(λv) log(αn(λv))

with αn(u) = u+ ϑn−1/2B̃n(u), for some ϑ ∈ (0, 1) and

(λv) ∧ {1− Un(1− λv)} ≤ αn(λv) ≤ (λv) ∨ {1− Un(1− λv)} . (14)

Define Rn,λ =
√
nλ log(1/λ)

∫ 1

1/(λn)

{
∆n(λv)− B̃n(λv)/(

√
nλv log(λv))

}
d{vK(v)}. Applying Lemmas 5.2 and 5.3, for any ε > 0

and ν ∈ (1/4, 1/2), we can find D > 1 and A > 0 such that, with probability exceeding 1− ε,

D−1u ≤ αn(u) ≤ Du , |B̃n(u)| ≤ An−νu1−ν . (15)
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Since the function u→ −u log u is increasing near zero, we obtain, with probability greater than 1− ε,

|Rn,λ| ≤ AD
√
λ log(1/λ)n1/2−ν

∫ 1

1/(λn)

(λv)1−ν |λv log(λv)− αn(λv) log(αn(λv))|
λ2v2| log(λv) log(λv/D)|

|d{vK(v)}| . (16)

Note now that the function u→ −u log u is concave and increasing near zero with derivative log(1/u)−1, so (14) and (15) imply
that, with probability greater than 1− ε,

|λv log(λv)− αn(v) log(αn(v))| ≤ |λv log(λv)− (1− Un(1− λv)) log(1− Un(1− λv))|
≤ |log (λv ∧ {1− Un(1− λv)})| |1− λv − Un(1− λv)|
≤ An−ν (λv)1−ν |log (λv ∧ {1− Un(1− λv)})|
≤ An−ν (λv)1−ν |log(λv/D)| .

Plugging this bound into (16) yields, for ν ∈ (0, 1/2), |Rn,λ| ≤ A2D(nλ)1/2−2ν
∫ 1

1/(λn)
v−2ν |d{vK(v)}| ≤ C(nλ)1/2−2ν , for some

constant C, with probability greater than 1− ε. Thus Rn,λ = oP (1). Denote now

Sn,λ =
√
nλ log(1/λ)

∫ 1

1/(λn)

B̃n(λv)−Bn(λv)√
nλv log(λv)

d{vK(v)} .

Applying Lemma 5.1, for any ε ∈ (0, 1), there exists A such that, with probability exceeding 1− ε,

|Sn,λ| ≤ A(nλ)−ν
∫ 1

1/(λn)

v−1/2−ν d{vK(v)} .

Since the integral is convergent, we get that Sn,λ = OP ((nλ)−ν) = oP (1). Altogether, we obtain that δn,λ = oP (1).
We must now prove that ζn,λ converges weakly to the desired limit. Since {ζn,λ} is a sequence of centered Gaussian random

variables, we only need to prove that its variance converges. We compute

var(ζn,λ) = 2
log2(1/λ)

λ

∫ 1

1/λn

d{tK(t)}
t log(λt)

∫ t

1/λn

λs(1− λt)
s log(λs)

d{sK(s)} ∼ 2
∫ 1

1/λn

d{tK(t)}
t

∫ t

1/λn

d{sK(s)} ∼ 2
∫ 1

0

K(t)d{tK(t)} .

This proves (12). To prove (13), it only remains to prove that

log(1/λ)√
λ

∫ 1

1/(λn)

|Bn(λv)|
v log(λv)

d{vK(v)} = OP (1) . (17)

Since E[|Bn(λv)|] =
√

2/π
√
λv, we have

log(1/λ)√
λ

E

[∫ 1

1/(λn)

|Bn(λv)|
v| log(λv)|

d{vK(v)}

]
=
√

2 log(1/λ)√
π

∫ 1

1/(λn)

d{vK(v)}
v1/2| log(λv)|

≤
√

2
π

∫ 1

0

v−1/2 d{vK(v)} .

This proves (17), which concludes the proof of Lemma 5.7.

Lemma 5.8. Under the assumptions of Theorem 3.1,
√
nλ log(1/λ)

∫ 1/(λn)

0
∆n(λv) d{vK(v)} = oP (1).

Proof of Lemma 5.8. Note that if vλ < 1/n, then Un(1− vλ) = Un,n. Thus,

√
nλ log(1/λ)

∫ 1/(λn)

0

{L(1− Un,n)− L(vλ)} d{vK(v)} =

√
nλ log(1/λ){L(1− Un,n)− L(1/n)}

λn
K(1/{λn}) (18)

+
√
nλ log(1/λ)

∫ 1/{λn}

0

{L(1/n)− L(vλ)} d{vK(v)} . (19)

Since − log(1−Un,n)+log(1/n) converges weakly to the standard Gumbel law, we get that L(1−Un,n)−L(1/n) = OP (1/ log n),
thus the term in (18) is OP ((nλ)−1/2 log(1/λ)/ log n). Applying integration by parts, we see that the term in (19) is
−
√
nλ log(1/λ)

∫ 1/(λn)

0
K(v)

(− log(vλ)) dv = O
(
(nλ)−1/2log(1/λ)/ log n

)
= O

(
(nλ)−1/2

)
.

In conclusion, we have proved that
√
nλξn,λ →d N(0, 2(

∫ 1

0
K(t) dt)−2

∫ 1

0
K(t)d{tK(t)}).
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5.2.2 The term β̃n,λ

Write β̃n,λ = φn,λ + ψn,λ with

φn,λ =
1

g(λ)

∫ 1/(λn)

0

∫ − log{1−Un(1−vλ)}

− log(vλ)

η(s)
s

dsd{vK(v)} ,

ψn,λ =
1

g(λ)

∫ 1

1/(λn)

∫ − log{1−Un(1−vλ)}

− log(vλ)

η(s)
s

dsd{vK(v)} .

Note that if vλ < 1/n, then Un(1− vλ) = Un,n. Thus, integrating by parts, we obtain

φn,λ =
K(1/λn)
λng(λ)

∫ − log(1−Un,n)

logn

η(s)
s

ds+
1

g(λ)

∫ 1/(λn)

0

η(− log(vλ))
− log(vλ)

K(v) dv . (20)

The last term in the right hand side of (20) can be bounded by g−1(λ)b(log n)
∫ 1/(λn)

0
(− log(vλ))−1K(v) dv = O((nλ)−1b(log n)).

The first term in the right hand side of (20) can be bounded by

b(log(n) ∧ {− log(1− Un,n)})
nλg(λ)

∣∣∣∣log
− log(1− Un,n)

log n

∣∣∣∣ .
The weak convergence of − log(1 − Un,n) − log n to the standard Gumbel law implies that − log(1 − Un,n) = OP (log n) and
log{− log(1− Un,n)/ log n} = OP (1/ log n). Altogether, we obtain that φn,λ = OP ((nλ)−1b(log n)).

Consider now ψn,λ. For 1/(λn) ≤ v ≤ 1, it holds that

− log(1− Un(1− vλ)) ≥ − log(1− Un(1− λ))→P +∞ ,

since λ → 0. It also holds that − log(vλ) ≥ − log λ → +∞. Thus, defining bn = b
(
{− log λ} ∧ {− log(1 − Un(1 − λ)}

)
we get

bn →P 0. This and the bound (13) in Lemma 5.7 yield

|ψn,λ| ≤
bn
g(λ)

∫ 1

1/(λn)

∣∣∣∣log
log(1− Un(1− λv))

log(λv)

∣∣∣∣ d{vK(v)} = oP (1/
√
nλ) .

Thus, under Assumption (3), we conlude that β̃n,λ = OP ((nλ)−1/2b(log n)) + oP ((nλ)−1/2) = oP (b(log n)).

5.3 Proof of Theorem 4.1

Define βn,k and k∗n by βn,k = n
kg(k/n)

∫ k/n
0

η(− log v)
− log(v) dv and k∗n(rn) = min{k = 1, . . . , n − 1 | max1≤i≤k

√
i|βn,k − βn,i| > rn}. If

the function η is regularly varying at infinity with index ν < 0, it can be proved as in [Drees and Kaufmann, 1998, p. 156] that

k∗n(rn) ∼ {(e/2) rn log(n)/η(log n)}2 . (21)

This implies that k∗n(rn) is an intermediate sequence and satisfies condition (3), thus, by Theorem 3.1, limn→∞ P(|θ̂n,k∗n(rn)−θ| ≤
b(log n)) = 1. Thus, the proof will be concluded by showing that limn→∞ P(k̂n(rn) = k∗n(rn)) = 1. Corollary 4.2 will follow by
noting that if η is nondecreasing, we can replace b by η.

Let r−n and r+n be two sequences such that r−n < rn < r+n ,
√

log log n = o(r−n ), log(r+n ) = o(log n) and
√

log log n = o(|rn−r±n |).
Then k∗n(r−n ) and k∗n(r+n ) are intermediate sequences by (21). Applying the definition of k̂n(rn) and k∗n(r±n ) and Lemma 5.9, we
obtain straightforwardly

P(k∗n(r−n ) ≤ k̂n(rn)) = P

(
max

1≤k≤k∗n(r−n )
max
1≤i≤k

√
i|θ̂n,i − θ̂n,k| ≤ rn

)
≥ P

(
r−n + 2 max

1≤i≤k∗n(r−n )

√
i|θ̂n,i − θ − βn,i| ≤ rn

)
→ 1 .

Conversely,

P(k∗n(r+n ) ≥ k̂n(rn)) ≥ P

(
max

1≤i≤k∗n(r+n )

√
i|θ̂n,i − θ̂n,k∗n(r+n )| > rn

)
≥ P

(
r+n − 2 max

1≤i≤k∗n(r+n )

√
i|θ̂n,i − θ − βn,i| > rn

)
→ 1 .

To conclude, it suffices to note that (21) implies that k∗n(r+n )/k∗n(r−n )→ 1.

Lemma 5.9. For any intermediate sequence kn,

max
1≤i≤kn

√
i|θ̂n,i − θ − βn,i| = OP

(√
log log n

)
. (22)
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Proof. Applying the decomposition (11), we have θ̂n,i − θ − βn,i = θξn,i + β̃n,i. We will prove (22) by proving separately that

max
1≤i≤kn

√
i|ξn,i| = OP

(√
log log n

)
, (23)

max
1≤i≤kn

√
i|β̃n,i| = OP

(√
log log n

)
. (24)

We start by proving (23). Note that

√
iξn,i =

n√
i g(i/n)

∫ 1/n

0

∆n(u) du+
n√

i g(i/n)

∫ i/n

1/n

∆n(u) du .

Applying Lemma 5.5, applying Lemma 5.6, we obtain

max
1≤i≤n−1

n√
ig(n/i)

∫ i/n

1/n

|∆n(u)|du = OP

(√
n log log n

)
× max

1≤i≤n−1

1√
ig(i/n)

∫ i/n

1/n

du√
u log u

= OP

(√
log log n

)
.

Next, since Un(1− u) = Un,n for u ∈ [0, 1/n], we have∫ 1/n

0

∆n(u) du = n−1L(1− Un,n)−
∫ 1/n

0

L(u)du = n−1{L(1− Un,n)− L(n)}+O(1/{n log(n)}) = OP (1/{n log(n)}) .

Thus max1≤i≤n−1
n√

i g(i/n)

∫ 1/n

0
∆n(u) du = OP (1) . This proves (23). Consider now (24). As before, we split the integral

defining β̃n,i into two parts. Write β̃n,i = φn,i + ψn,i, with

φn,i =
n

ig(i/n)

∫ 1/n

0

∫ − log{1−Un(1−u)}

− log(u)

η(s)
s

dsdu ,

ψn,i =
n

ig(i/n)

∫ i/n

1/n

∫ − log{1−Un(1−u)}

− log(u)

η(s)
s

dsdu .

Since Un(1− u) = Un,n for u ≤ 1/n, applying the bound (9) in Lemma 5.6 yields

max
1≤i≤n−1

√
i |φn,i| ≤ max

1≤i≤n−1

n√
ig(i/n)

b({log n} ∧ {− log(1− Un,n)})OP (1/(n log n)) = OP (b(log n)) = oP (1) .

For any intermediate sequence kn, we have that − log(1 − kn) →P ∞. Thus, noting that b is nonincreasing and applying
Lemma 5.6, we have, max1≤i≤kn |ψn,i| ≤ b({log n}∧{− log(1−kn/n)}) max1≤i≤kn

n√
ig(i/n)

∫ i/n
1/n
|∆n(u)|du = oP

(√
log log n

)
.
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