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Optimal rates of convergence in the Weibull model based on

kernel-type estimators

Cécile Mercadier∗ Philippe Soulier†

Abstract

Let F be a distribution function in the maximal domain of attraction of the Gumbel
distribution and such that − log(1−F (x)) = x1/θL(x) for a positive real number θ, called
the Weibul tail index, and a slowly varying function L. It is well known that the estimators
of θ have a very slow rate of convergence. We establish here a sharp optimality result in
the minimax sense, that is when L is treated as an infinite dimensional nuisance parameter
belonging to some functional class. We also establish the rate optimal asymptotic property
of a data-driven choice of the sample fraction that is used for estimation.

Keywords: Weibul tail index; Rates of convergence; Kernel-type estimators; Optimal sample fraction; Se-

quential procedure.

MSC2010 Subject Classification: primary 62G32; 62G20; secondary 62G05; 62F35.

1 Introduction

Let F be a probability distribution function on [0,∞) such that 1− F (x) = exp (−H(x)) for
x ≥ 0 and H← is regularly varying at infinity with positive index θ, i.e.

H←(t) = tθℓ(t)

where f← denotes the left-continuous inverse of a nondecreasing function f , and the function
ℓ is slowly varying at infinity, i.e. for all x > 0,

lim
t→∞

ℓ(xt)/ℓ(t) = 1 .

The quantile function Q = F← can then be expressed as

Q(t) = H←(− log(1 − t)) = (− log(1 − t))θℓ(− log(1 − t)) .

Such probability distributions F are usually called Weibull type distributions and the pa-
rameter θ is called the Weibull tail index or coefficient. These distributions belong to the
maximum domain of attraction of the Gumbel distribution. Note that θ = 1/2 for the posi-
tive part of the Gaussian distribution and θ = 1 for the Γ(a, λ) distribution. The estimation
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of the parameter θ has been considered by Beirlant et al. [1996], Embrechts et al. [1997] and
Girard [2004] among other references. These estimators are based on linear combinations of
log-spacings between upper order statistics. They have been proved to be consistent with
a logarithmic rate of convergence, under semiparametric assumptions, i.e. when the slowly
varying function ℓ is considered as an infinite dimensional nuisance parameter. Nevertheless,
this logarithmic rate of convergence has never been proved to be optimal in the minimax
sense.

To obtain the minimax rate of convergence of an estimator of θ in a semiparametric setting
is the first goal of this note. A lower bound is obtained in Section 2 and an upper bound
for a kernel estimator is derived in Section 3. As often when the rate of convergence is
logarithmic, the two bounds are matching. This was observed by Drees [1998] in the context
of estimation of the tail index of a regularly varying distribution. In Section 4, we discuss
the choice of the number of upper order statistics used to compute the estimator. Several
approaches have been considered, based on the asymptotic mean squared error. Pitfalls of
these methods have recently been highlighted by Asimit et al. [2010]. We suggest a different
approach, elaborating on an idea of Drees and Kaufmann [1998], which was itself inspired by
the so-called Lepsky method which is familiar in nonparametric estimation. This method is
shown to have optimal asymptotic properties. Unfortunately but unsurprisingly, this data-
driven estimator has a very poor finite sample behaviour. Improving on this method is the
subject of future research.

2 Lower bound

Let b be a function defined on [1,∞] such that limx→∞ b(x) = 0. Let L(b) be the class of
locally bounded slowly varying functions ℓ on [0,∞) that can be expressed as

ℓ(x) = exp

∫ x

1

η(s)

s
ds , (1)

with |η(s)| ≤ b(s) for s ≥ 1, and such that x 7→ xθℓ(x) is nondecreasing on [0,∞) for any θ > 0.

Theorem 2.1. Let θ2 > θ1 > 0 be positive real numbers and let b be a decreasing function
defined on [1,∞] such that limx→∞ b(x) = 0. Then

lim inf
n→∞

inf
θ̂n

sup
θ∈(θ1,θ2)

sup
ℓ∈L(b)

b−1(log(n)) E
(n)
θ,ℓ [|θ̂n − θ|] ≥ 1 , (2)

where E
(n)
θ,ℓ denotes expectation with respect to the law of an n-sample from a distribution with

quantile function Q(t) = (− log(1 − t))θℓ(− log(1 − t)), and the infimum is taken over all
sequences of estimators of θ.

Example 1. If b(x) = xρ with ρ < 0, then the lower bound for the rate of convergence of
estimators of θ is logρ(n).

Example 2. If b(x) = log−1(x), then the lower bound is log log(n).

Example 3. Consider a distribution function with tail F̄ (x) = c1x
δe−c2xβ

with ci > 0, β > 0
and δ 6= 0. Then the quantile function can be expressed as Q(t) = z1/βℓ(z) with z =
−c−1

2 log{(1− t)/c1} and ℓ(z) ∼ 1− β−2c−1
2 δz−1 log(z) as z → ∞. Thus ℓ is in the class L(b)

with b(z) = Cz−1 log(z) for large enough C and z ≥ e. The uniform rate of convergence over
this class is C−1 log(n)/ log log(n). See Kluppelberg and Villaseñor [1993] and Asimit et al.
[2010].
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3 Kernel estimates of the Weibull tail index

Let X1, X2, . . . , Xn be a sequence of independent and identically distributed random variables
with cumulative distribution function F . We denote by X1,n, . . . , Xn,n their associated order
statistics. Following Csörgő et al. [1985], the empirical quantile process, Qn is then defined
by

Qn(t) = Xk,n ⇔ k − 1

n
< t ≤ k

n
, 1 ≤ k ≤ n .

LetK denote a bounded nonnegative nonincreasing kernel with compact support in [0,∞) and
such that vK ′(v) is bounded. Without loss of generality, we can assume that K has compact
support in [0, 1]. Let also λ = λn > 0 be a tuning parameter such that limn→∞ λn = 0. The
kernel estimate of the Weibull tail index θ is defined by

θ̂n =

∫ 1
0 logQn(1 − vλ) d{vK(v)}

∫ 1
0

K(v)
(− log(vλ)) dv

. (3)

If K is moreover right continuous, we can write

θ̂n =

[nλ]∑

j=1

j

nλ
K

(
j

nλ

)
{logXn−j+1,n − logXn−j,n}

∫ 1

0

K(v)

(− log(vλ))
dv

where we set X0,n = 1.

Example 4. For λ = k/n and K(v) = 10≤v<1 we find that θ̂n = θ̂
(1)
n where the latter has been

introduced by Gardes and Girard [2006].

Theorem 3.1. If λ is chosen such that

lim
n→∞

b(− log λ)

b(log n)
= 1 , lim

n→∞
b(log n)

√
nλ = ∞ , (4)

then

lim
n→∞

Pθ,ℓ(|θ̂n − θ| ≤ b(log n)) = 1 , (5)

uniformly with respect to ℓ ∈ L(b).

Remark 1. It is possible to choose λ as in (4). See [Drees, 1998, Proposition 2.1]. Note that
Condition (4) implies that limn→∞ nλ = ∞.

Gathering Theorems 2.1 and 3.1 yields the following exact rate of convergence.

lim inf
n→∞

inf
θ̂n

sup
θ∈(θ1,θ2)

sup
ℓ∈L(b)

P
(n)
θ,ℓ

(
|θ̂n − θ| ≤ b(log n)

)
= 1 . (6)

Remark 2. The bound (6) is a minimax bound. This means that it is a uniform bound over
a certain class of distributions. The function b describes the a priori information on the class
of distribution from which the observed data is assumed to be sampled.

Example 5. If b(x) = xρ with ρ < 0, then the assumptions are satisfied for λ(n) = k(n)/n
where k(n) = log(n)q with q + 2ρ > 0.

Example 6. If b(x) = log−1(x), then the result holds for λ(n) = k(n)/n where k(n) =
log(n)αnβ with α ∈ R if β ∈ (0, 1) and α > 0 if β = 0.
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4 Data driven choice of the threshold

Recently, Asimit et al. [2010] discussed methods to select the sample fraction kn = λn that
may be employed in estimating the Weibull tail index. In particular, they noticed that there is
no value kn minimizing the asymptotic mean squared error. This is confirmed by our results.
Indeed, Theorem 3.1 shows that if kn is suitably chosen, the variance of the kernel estimator,
denoted by θ̂n,kn

, turns out to be asymptotically negligible with respect to its squared bias,
and Theorem 2.1 shows that this choice is optimal in the sharp asymptotic minimax sense
over certain functional classes. This kind of situation is well known in minimax nonparametric
or semiparametric estimation. See e.g. Butucea and Tsybakov [2007]. Adapting the idea of
Drees and Kaufmann [1998], which was itself inspired by the so-called Lepsky method, we
propose here a different choice of the sample fraction.

In this section, for simplicity of exposition, we consider the rectangular kernel K = 1[0,1) and
restrict the tuning paramter to the discrete grid λ = k/n. The resulting estimator of θ is
denoted by θ̂n,k:

θ̂n,k =
1
k

∑k
j=1 j{logXn−j+1,n − logXn−j,n}

n
k

∫ k/n
0

dv
− log v

Let rn be an increasing sequence. Define k̂n(rn) by

k̂n(rn) = min{k = 1, . . . , n− 1 | max
1≤i≤k

√
i|θ̂n,k − θ̂n,i| > rn} . (7)

Theorem 4.1. Let η ∈ L(b) be regularly varying at infinity with index ν < 0. If
√

log log(n) =

o(rn) and log(rn) = o(log n), then limn→∞ P(|θ̂n,k̂n(rn) − θ| ≤ b(log(n)) = 1.

This result means that θ̂n,k̂n(rn) is asymptotically optimal over the class L(b) restricted to

regularly varying functions. If we further restrict the class L(b) to nonincreasing functions,
we obtain an asymptotic confidence interval.

Corollary 4.2. Under the assumptions of Theorem 4.1, if moreover η is nonincreasing, then
(ern log(n)/{2η(log n)})−2k̂n(rn) →P 1, hence

lim
n→∞

P


|θ̂n,k̂n(rn) − θ| ≤ e rn log n

2

√
k̂n(rn)


 = 1 .

Numerical illustration

The theoretical result state that the data-driven estimator θ̂n,k̂n
has nice asymptotic properties

for any choice of the sequence rn which satisfies very weak constraints. Unfortunately, this is
not the case in practice. We have run simulations for large to very large sample sizes, which
reveal an extremely poor performance of this data-driven choice.

We have generated N replications of a n-sample from the distribution function F correspond-
ing to the function η(x) = x−1/2−3/2 u through (1), for u ∈ [0, 1], so that η is in the class L(b)
for b(x) = x−1/2. The value of the parameter u is uniformly distributed in [0, 1] and changes
for each replication. We have computed the N sequences {θ̂n,k|k = 1, . . . , n − 1}, which are
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plotted in black in Figures 1 and 2. The sample fraction k̂n(rn) is computed for each of these
N sequences, according to the algorithm (7). The N values are represented by vertical green
lines. The true value of the parameter θ is given by the horizontal blue line.

The estimator is severly biased and the confidence interval suggested in Corollary 4.1 is very

large and nearly useless. Its half-length ln = (e rn log n)/(2

√
k̂n(rn)) is given by Corollary 4.2.

An improvement of this method is needed, but we think that it is better to look for genuinely
semiparametric methods rather than to artificially restrict the model. For instance Asimit
et al. [2010] suggest to use the model of Example 3, but this is a parametric model, which
incurs a risk of misspecification.
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Figure 1: Sample properties of k̂n(rn) for θ = 0.761461, n = 1000, b(log n) ∼ 0.38.
(a) rn = logn and half-length ln ∼ 3.5. (b) rn = (logn)3/2 and half-length ln ∼ 8.75.
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Figure 2: Sample properties of k̂n(rn) for θ = 1.9439654, n = 1500, and b(log n) ∼ 0.37.
(a) rn = logn and half-length ln ∼ 3.63. (b) rn = (logn)3/2 and half-length ln ∼ 8.03.

5 Proofs

The proof of Theorem 2.1 follows a very standard path to obtain minimax risk bounds. It also
makes use of some computations in Beirlant et al. [2006]. The proof of Theorem 3.1 is very
much inspired from similar results for the Hill estimator in Csörgő et al. [1985]. The proof of
Theorem 4.1 is an adaptation of the proof of Drees and Kaufmann [1998, Corollary 1]. We
include all details for the sake of self-containedness.

We preface the proofs by recalling some results on the uniform empirical process. We deduce
from these results two lemmas that will be useful. Recall that the quantile function Q and
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the empirical quantile process Qn are defined by

Q(t) = (− log(1 − t))θ ℓ(− log(1 − t)) ,

Qn(t) = Xn,k ⇔ k − 1

n
< t ≤ k

n
, 1 ≤ k ≤ n .

Let Un denote the uniform quantile process, i.e. Qn(t) = Q(Un(t)) for any t ∈ [0, 1].

Lemma 5.1 (Csörgő et al. [1986]). There exists a sequence of Brownian bridges Bn such that
for any ν ∈ [0, 1/2),

sup
1/n≤u≤1

uν−1/2
∣∣√n{1 − u− Un(1 − u)} −Bn(u)

∣∣ = OP (n−ν) . (8)

Lemma 5.2 (Csörgő et al. [1985], Lemma 13). For D > 1, define An(D) = {u ∈ [1/n, 1] :
u/D ≤ 1 − Un(1 − u) ≤ Du}. Then

lim
D→∞

lim sup
n→∞

P(An(D)) = 1 .

Lemma 5.3 (Mason [1983], Lemma 14). For any ν ∈ [0, 1/2),

sup
1/n≤u≤1

nνuν−1|1 − u− Un(1 − u)| = OP (1) .

Lemma 5.4 (Csörgő and Horváth [1993], Theorem 4.2.1).

sup
1/n≤u≤1

n1/2u−1/2|1 − u− Un(1 − u)| = OP

(√
log log(n)

)
.

Denote

∆n(u) = log(− log{1 − Un(1 − u)}) − log(− log u) .

Combining Lemmas 5.2 and 5.4 we obtain

Lemma 5.5.

sup
1/n≤u≤1

√
u log u∆n(u) = OP

(√
log logn

n

)
.

Proof. By a Taylor expansion, we have

∆n(u) =
1 − u− Un(1 − u)

αn(u) log(αn(u))

with αn(u) such that

u ∧ {1 − Un(1 − u)} ≤ αn(u) ≤ u ∨ {1 − Un(1 − u)} .

Applying Lemmas 5.2 and 5.4, we get for any ǫ > 0, that there exists a constant D > 1 large
enough such that

D−1u ≤ αn(u) ≤ Du ,

|1 − u− Un(1 − u)| ≤ D
√

(log logn)/n
√
u ,

|u log(u)/ (αn(u) logαn(u)) | ≤ D ,

for all u ∈ (1/n, 1) with probability exceeding 1− ǫ. Thus, we obtain for large enough D that
max1/n≤u≤1 |

√
u log(u)∆n(u)| ≤ D2

√
(log logn)/n with probability exceeding 1 − ǫ.
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Lemma 5.6.

log{− log(1 − Un,n)} − log log n = OP (1/ log n) , (9)
∫ 1/n

0
∆n(u) du = OP (1/{n log n}) . (10)

Proof. To prove (9), we apply the convergence in distribution of Tn := − log(1−Un,n)− log(n)
to the Gumbel law combined with a Taylor expansion:

log{− log(1 − Un,n)} − log logn = Tn/ log n+ o(Tn/ log n) .

To prove (10), we write

∫ 1/n

0
∆n(u) du =

1

n
(log{− log(1 − Un,n)} − log logn) +

∫ 1/n

0
log logn− log(− log u) du.

The result follows from (9) and
∫ 1/n
0 log log n− log(− log u) du = O (1/(n log n)).

5.1 Proof of Theorem 2.1

Denote sn = log(n) and δn = b(log(n)). For ǫ ∈ {−1, 1}, define the function ℓǫn ∈ L(b) by

ℓǫn(x) = exp

{
ǫδn

∫ sn∧x

1

ds

s

}
= (sn ∧ x)ǫδn .

These functions belong to L(b) since b is nonincreasing, thus, defining ηǫ
n = ǫδn1[1,sn] yields (1)

with |ηn| ≤ b. Fix θ0 > 0 and define θǫ
n = θ0 + ǫδn, hǫ

n(z) = z1/θǫ
nℓǫn(z). Let F ǫ

n be the
probability distribtion function such that (F ǫ

n)←(t) = hǫ
n(− log(1−t)). Then − log[1−F ǫ

n(x)] =
{xℓǫn(x)}1/θǫ

n with

ℓǫn(x) = (x ∧ tn)ǫδn/θ0

and tn = sθ0
n . Define finally gǫ

n(x) = {xℓǫn(x)}1/θǫ
n , g0(x) = x1/θ0 and F0(x) = 1 − e−g0(x).

Then, sn = g0(tn) and F̄ ǫ(tn) = e−sn and

gǫ
n(x) =

{
g0(x) if x ≤ tn ,

x1/θǫ
ns

ǫδn/θǫ
n

n if x > tn .

Let P
n
+ and P

n
− be the law of a n sample of i.i.d. random variables with distribution F+

n

and F−n , respectively, and denote E
n
+ and E

n
− the corresponding expectations. For ζ ∈ (0, 1),

denote A = {dP
n
+/dP

n
− ≥ ζ}. Then, for any θ and ℓ ∈ L(b), for any estimator θn,

E
n
θ,ℓ[|θ̂n − θ|] ≥ 1

2
E

n
+[|θ̂n − θ+

n |] +
1

2
E

n
−[|θ̂n − θ−n |] =

1

2
E

n
−

[
|θ̂n − θ−n | +

dP
n
+

dP
n
−

|θ̂n − θ+
n |
]

≥ 1

2
E

n
−

[{
|θ̂n − θ−| +

dP
n
+

dP
n
−

|θ̂n − θ−n |
}

1A

]
≥ 1

2
E

n
−

[{
|θ̂n − θ−n | + ζ|θ̂n − θ+

n |
}

1A

]

≥ ζ

2
E

n
0

[
{|θ̂n − θ0| + |θ̂n − θn|}1A

]
≥ ζ|θ+

n − θ−n |
2

P
n
−(A) = ζδn P

n
−(A) . (11)
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In order to bound the last term, let

K(Pn
−,P

n
+) = E

n
−

[
log

(
dP

n
−

dP
n
+

)]

denote the Kullback-Leiber distance. By Pinsker’s inequality, [Tsybakov, 2004, Lemme 2.5],
we get

P
n
−(A) = 1 − P

n
−

(
dP

n
+

dP
n
−

≤ ζ

)
= 1 − P

n
−

(
log

(
dP

n
−

dP
n
+

)
≥ log(1/ζ)

)

≥ 1 − 1

log(1/ζ)
E

n
−

[
log

(
dP

n
+

dP
n
−

)

+

]
≥ 1 − 1√

2 log(1/ζ)

√
K(Pn

−,P
n
+) .

Since we consider an i.i.d. sample, we have

K(Pn
−,P

n
+) = nK(F−n , F

+
n )

and there only remains to prove that lim infn→∞ nK(F−n , F
+
n ) = 0.

For x > tn, the log-likelihood between F+
n and F−n (see Beirlant et al. [2006, Equation (6.4)])

is given by

log
dF+

n

dF−n
= log(θ−n /θ

+
n ) +

(
θ−n /θ

+
n − 1

)
log(g−n /sn) + g−n ×

{
1 − (g−n /sn)θ−n /θ+

n−1
}
.

Since log(dF+
n /dF

−
n ) = 0 for x ≤ tn, we obtain

K(F−n , F
+
n ) =

∫ ∞

tn

log(dF−n /dF
+
n ) dF−n

= − log(θ−n /θ
+
n )F̄−n (tn) −

(
θ−n /θ

+
n − 1

) ∫ ∞

tn

log(g−n /sn)dF−n

−
∫ ∞

tn

g−n ×
{

1 − (g−n /sn)θ−n /θ+
n−1

}
dF−n

= −I − (θ−n /θ
+
n − 1) × II − III .

We make the change of variable u = g−n (x) in the above integrals separately.

I = −e−sn(2δn/θ0 +O(δ2n)) ,

II =

∫ ∞

sn

log(u/sn) e−u du = e−sn

∫ ∞

0
log(1 + v/sn) e−vdv ∼ s−1

n e−sn ,

III =

∫ ∞

sn

u
{

1 − (u/sn)θ−n /θ+
n−1

}
e−u du

= e−sn

∫ ∞

0
(v + sn)

{
1 − (1 + v/sn)θ−n /θ+

n−1
}

e−v dv ∼ {2δn/θ0 +O(δ2n)}e−sn .

Summing the three terms yields

K(F−n , F
+
n ) = O

(
δn
sn

∨ δ2n
)

e−sn .

Since sn = log(n), it holds that limn→∞ nK(F−n , F
+
n ) = 0. Thus lim infn P

n
−(A) = 1. Plugging

this limit into (11) yields

lim inf
n→∞

sup
θ∈(θ1,θ2)

sup
ℓ∈L(b)

b−1(log(n)) Eθ,ℓ[|θ̂n − θ|] ≥ ζ lim inf
n→∞

P
n
−(A) = ζ .

Since this is true for all ζ ∈ (0, 1), (2) is proved.
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5.2 Proof of Theorem 3.1

Let us define L(t) = log(− log(t)). Then logQ(t) = θL(1 − t) + log ℓ(− log(1 − t)) and

θ̂n,λ = θ + θξn,λ + βn,λ + β̃n,λ , (12)

with

g(λ) =

∫ 1

0
L(vλ) d{vK(v)} =

∫ 1

0

K(v)

− log(vλ)
dv ∼

∫ 1
0 K(t) dt

log(1/λ)
,

ξn,λ =
1

g(λ)

∫ 1

0
{L(1 − Un(1 − vλ)) − L(vλ)}d{vK(v)} ,

βn,λ =
1

g(λ)

∫ 1

0

∫ − log(λv)

1

η(s)

s
dsd{vK(v)} =

1

g(λ)

∫ 1

0

η(− log(vλ))

− log(vλ)
K(v) dv ,

β̃n,λ =
1

g(λ)

∫ 1

0

∫ − log{1−Un(1−vλ)}

− log(λv)

η(s)

s
dsd{vK(v)} .

The term βn,λ is a deterministic bias. Since b is decreasing, a bound for βn,λ is given by

|βn,λ| ≤ b(− log(λ)) ,

uniformly with respect to ℓ ∈ L(b). We will prove in Subsection 5.2.1 that
√
nλ ξn,λ converges

weakly to a centered Gaussian distribution and in Subsection 5.2.2 that β̃n,λ = oP (b(log n)).
These results, together with the decomposition (12) and Assumption (4), yield (5).

5.2.1 The stochastic term ξn,λ

Let {Bn} be a sequence of Brownian bridges such that Eq. (8) in Lemma 5.1 holds. Informally,
we can write

L(1 − Un(1 − λv)) − L(λv) ≈ L′(λv){1 − λv − Un(1 − λv)} ≈ Bn(λv)√
nλv log(λv)

.

Thus, we hope that we can prove that

∫ 1

0
{L(1 − Un(1 − λv)) − L(λv)}d{vK(v)} ,

has the the same asymptotic distribution as

1√
nλ

∫ 1

0

Bn(λv)

v log(λv)
d{vK(v)} ∼d

1√
nλ log(1/λ)

N

(
0, 2

∫ 1

0
K(t) d{tK(t)}

)
.

We will prove that this approximation is valid by splitting the integral into two parts. Recall
that we have defined ∆n(u) = L(1 − Un(1 − u)) − L(u).

Lemma 5.7. Under the assumptions of Theorem 3.1,

√
nλ log(1/λ)

∫ 1

1/(λn)
∆n(λv) d{vK(v)} →d N

(
0, 2

∫ 1

0
K(t) d{tK(t)}

)
, (13)

√
nλ log(1/λ)

∫ 1

1/(λn)
|∆n(λv)| |d{vK(v)}| = OP (1) . (14)
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Proof of Lemma 5.7. Define

δn,λ =
√
nλ log(1/λ)

∫ 1

1/(λn)

{
∆n(λv) − Bn(λv)√

nλv log(λv)

}
d{vK(v)} ,

ζn,λ =
log(1/λ)√

λ

∫ 1

1/(λn)

Bn(λv)

v log(λv)
d{vK(v)} .

Then
√
nλ log(1/λ)

∫ 1
1/(λn) ∆n(λv) d{vK(v)} = δn,λ + ζn,λ. We will prove that δn,λ = oP (1)

and ζn,λ converges weakly to the desired limit. Denote B̃n(u) =
√
n{1− u−Un(1− u)}. The

function L is differentiable with L′(u) = 1/(u log u), hence

∆n(λv) = L (1 − Un(1 − λv)) − L(λv) = L′(αn(λv))
B̃n(λv)√

n
=

B̃n(λv)√
nαn(λv) log(αn(λv))

with αn(u) = u+ ϑn−1/2B̃n(u), for some ϑ ∈ (0, 1) and

(λv) ∧ {1 − Un(1 − λv)} ≤ αn(λv) ≤ (λv) ∨ {1 − Un(1 − λv)} . (15)

Define Rn,λ by

Rn,λ =
√
nλ log(1/λ)

∫ 1

1/(λn)

{
∆n(λv) − B̃n(λv)√

nλv log(λv)

}
d{vK(v)} .

Applying Lemmas 5.2 and 5.3, for any ǫ > 0 and ν ∈ (1/4, 1/2), we can find D > 1 and A > 0
such that, with probability exceeding 1 − ǫ,

D−1u ≤ αn(u) ≤ Du , |B̃n(u)| ≤ An−νu1−ν . (16)

Since the function u → −u log u is increasing near zero, we obtain, with probability greater
than 1 − ǫ,

|Rn,λ| ≤ AD
√
λ log(1/λ)n1/2−ν

×
∫ 1

1/(λn)

(λv)1−ν |λv log(λv) − αn(λv) log(αn(λv))|
λ2v2| log(λv) log(λv/D)| |d{vK(v)}| . (17)

Note now that the function u→ −u log u is concave and increasing near zero with derivative
log(1/u) − 1, so (15) and (16) imply that, with probability greater than 1 − ǫ,

|λv log(λv) − αn(v) log(αn(v))| ≤ |λv log(λv) − (1 − Un(1 − λv)) log(1 − Un(1 − λv))|
≤ |log (λv ∧ {1 − Un(1 − λv)})| |1 − λv − Un(1 − λv)|
≤ An−ν (λv)1−ν |log (λv ∧ {1 − Un(1 − λv)})|
≤ An−ν (λv)1−ν |log(λv/D)| .

Plugging this bound into (17) yields, for ν ∈ (0, 1/2),

|Rn,λ| ≤ A2D(nλ)1/2−2ν

∫ 1

1/(λn)
v−2ν |d{vK(v)}| ≤ C(nλ)1/2−2ν ,

for some constant C, with probability greater than 1 − ǫ. Thus Rn,λ = oP (1).
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Denote now

Sn,λ =
√
nλ log(1/λ)

∫ 1

1/(λn)

B̃n(λv) −Bn(λv)√
nλv log(λv)

d{vK(v)} .

Applying Lemma 5.1, for any ǫ ∈ (0, 1), there exists A such that, with probability exceed-
ing 1 − ǫ,

|Sn,λ| ≤ A(nλ)−ν

∫ 1

1/(λn)
v−1/2−ν d{vK(v)} .

Since the integral is convergent, we get that Sn,λ = OP ((nλ)−ν) = oP (1). Altogether, we
obtain that δn,λ = oP (1).

We must now prove that ζn,λ converges weakly to the desired limit. Since {ζn,λ} is a sequence
of centered Gaussian random variables, we only need to prove that its variance converges.
We compute

var(ζn,λ) = 2
log2(1/λ)

λ

∫ 1

1/λn

d{tK(t)}
t log(λt)

∫ t

1/λn

λs(1 − λt)

s log(λs)
d{sK(s)}

∼ 2

∫ 1

1/λn

d{tK(t)}
t

∫ t

1/λn
d{sK(s)} ∼ 2

∫ 1

0
K(t)d{tK(t)} .

This proves (13). To prove (14), it only remains to prove that

log(1/λ)√
λ

∫ 1

1/(λn)

|Bn(λv)|
v log(λv)

d{vK(v)} = OP (1) . (18)

Since E[|Bn(λv)|] =
√

2/π
√
λv, we have

log(1/λ)√
λ

E

[∫ 1

1/(λn)

|Bn(λv)|
v| log(λv)| d{vK(v)}

]
=

√
2 log(1/λ)√

π

∫ 1

1/(λn)

d{vK(v)}
v1/2| log(λv)|

≤
√

2

π

∫ 1

0
v−1/2 d{vK(v)} .

This proves (18), which concludes the proof of Lemma 5.7.

Lemma 5.8. Under the assumptions of Theorem 3.1,
√
nλ log(1/λ)

∫ 1/(λn)
0 ∆n(λv) d{vK(v)} =

oP (1).

Proof of Lemma 5.8. Note that if vλ < 1/n, then Un(1 − vλ) = Un,n. Thus,

√
nλ log(1/λ)

∫ 1/(λn)

0
{L(1 − Un,n) − L(vλ)}d{vK(v)}

=

√
nλ log(1/λ){L(1 − Un,n) − L(1/n)}

λn
K(1/{λn}) (19)

+
√
nλ log(1/λ)

∫ 1/{λn}

0
{L(1/n) − L(vλ)}d{vK(v)} . (20)
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Since − log(1 − Un,n) + log(1/n) converges weakly to the standard Gumbel law, we get that
L(1 − Un,n) − L(1/n) = OP (1/ log n), thus the term in (19) is OP ((nλ)−1/2 log(1/λ)/ log n).
Applying integration by parts, we see that the term in (20) is

−
√
nλ log(1/λ)

∫ 1/(λn)

0

K(v)

(− log(vλ))
dv = O

(
(nλ)−1/2log(1/λ)/ log n

)
= O

(
(nλ)−1/2

)
.

In conclusion, we have proved that

√
nλξn,λ →d N


0,

2
∫ 1
0 K(t)d{tK(t)}
(∫ 1

0 K(t) dt
)2


 .

5.2.2 The term β̃n,λ

Write β̃n,λ = φn,λ + ψn,λ with

φn,λ =
1

g(λ)

∫ 1/(λn)

0

∫ − log{1−Un(1−vλ)}

− log(vλ)

η(s)

s
dsd{vK(v)} ,

ψn,λ =
1

g(λ)

∫ 1

1/(λn)

∫ − log{1−Un(1−vλ)}

− log(vλ)

η(s)

s
dsd{vK(v)} .

Note that if vλ < 1/n, then Un(1 − vλ) = Un,n. Thus, integrating by parts, we obtain

φn,λ =
1

g(λ)

∫ 1/(λn)

0

∫ − log(1−Un,n)

− log vλ

η(s)

s
dsd{vK(v)}

=
K(1/λn)

λng(λ)

∫ − log(1−Un,n)

log n

η(s)

s
ds+

1

g(λ)

∫ 1/(λn)

0

η(− log(vλ))

− log(vλ)
K(v) dv .

The second term can be bounded by

b(log n)

g(λ)

∫ 1/(λn)

0

K(v)

− log(vλ)
dv = O

(
b(log n)

nλ

)
.

The first term can be bounded by

b(log(n) ∧ {− log(1 − Un,n)})
nλg(λ)

∣∣∣∣log
− log(1 − Un,n)

log n

∣∣∣∣

The weak convergence of − log(1 − Un,n) − log n to the standard Gumbel law implies that
− log(1 − Un,n) = OP (log n) and log{− log(1 − Un,n)/ log n} = OP (1/ log n). Altogether, we
obtain that φn,λ = OP (b(log n)/{nλ}).
Consider now ψn,λ. For 1/(λn) ≤ v ≤ 1, it holds that

− log(1 − Un(1 − vλ)) ≥ − log(1 − Un(1 − λ)) →P +∞ ,

since λ→ 0. It also holds that − log(vλ) ≥ − log λ→ +∞. Thus, defining

bn = b
(
{− log λ} ∧ {− log(1 − Un(1 − λ)}

)
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we get bn →P 0. This and the bound (14) in Lemma 5.7 yield

|ψn,λ| ≤
bn
g(λ)

∫ 1

1/(λn)

∣∣∣∣log
log(1 − Un(1 − λv))

log(λv)

∣∣∣∣ d{vK(v)} = oP (1/
√
nλ) .

Thus, under Assumption (4), we conlude that

β̃n,λ = OP

(
b(log n)√

nλ

)
+ oP

(
1√
nλ

)
= oP (b(log n)) .

5.3 Proof of Theorem 4.1

Define βn,k and k∗n by

βn,k =
n

kg(k/n)

∫ k/n

0

η(− log v)

− log(v)
dv

k∗n(rn) = min{k = 1, . . . , n− 1 | max
1≤i≤k

√
i|βn,k − βn,i| > rn} .

If the function η is regularly varying at infinity with index ν < 0, it can be proved as in [Drees
and Kaufmann, 1998, p. 156] that

k∗n(rn) ∼ {(e/2) rn log(n)/η(log n)}2 . (21)

This implies that k∗n(rn) is an intermediate sequence and satisfies condition (4), thus, by
Theorem 3.1, limn→∞ P(|θ̂n,k∗

n(rn) − θ| ≤ b(log n)) = 1. Thus, the proof will be concluded by

showing that limn→∞ P(k̂n(rn) = k∗n(rn)) = 1. Corollary 4.2 will follow by noting that if η is
nondecreasing, we can replace b by η.

Let r−n and r+n be two sequences such that r−n < rn < r+n ,
√

log logn = o(r−n ), log(r+n ) =
o(log n) and

√
log log n = o(|rn − r±n |). Then k∗n(r−n ) and k∗n(r+n ) are intermediate sequences

by (21). Applying the definition of k̂n(rn) and k∗n(r±n ) and Lemma 5.9, we obtain straightfor-
wardly

P(k∗n(r−n ) ≤ k̂n(rn)) = P

(
max

1≤k≤k∗
n(r−n )

max
1≤i≤k

√
i|θ̂n,i − θ̂n,k| ≤ rn

)

≥ P

(
r−n + 2 max

1≤i≤k∗
n(r−n )

√
i|θ̂n,i − θ − βn,i| ≤ rn

)
→ 1 .

Conversely,

P(k∗n(r+n ) ≥ k̂n(rn)) ≥ P

(
max

1≤i≤k∗
n(r+

n )

√
i|θ̂n,i − θ̂n,k∗

n(r+
n )| > rn

)

≥ P

(
r+n − 2 max

1≤i≤k∗
n(r+

n )

√
i|θ̂n,i − θ − βn,i| > rn

)
→ 1 .

To conclude, it suffices to note that (21) implies that k∗n(r+n )/k∗n(r−n ) → 1.

Lemma 5.9. For any intermediate sequence kn,

max
1≤i≤kn

√
i|θ̂n,i − θ − βn,i| = OP

(√
log logn

)
. (22)
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Proof. Applying the decomposition (12), we have θ̂n,i − θ − βn,i = θξn,i + β̃n,i. We will
prove (22) by proving separately that

max
1≤i≤kn

√
i|ξn,i| = OP

(√
log logn

)
, (23)

max
1≤i≤kn

√
i|β̃n,i| = OP

(√
log logn

)
. (24)

We start by proving (23).

√
iξn,i =

n√
i g(i/n)

∫ 1/n

0
∆n(u) du+

n√
i g(i/n)

∫ i/n

1/n
∆n(u) du .

Applying Lemma 5.5, applying Lemma 5.6, we obtain

max
1≤i≤n−1

n√
ig(n/i)

∫ i/n

1/n
|∆n(u)|du

= OP

(√
n log logn

)
× max

1≤i≤n−1

1√
ig(i/n)

∫ i/n

1/n

du√
u log u

= OP

(√
log logn

)
.

Next, since Un(1 − u) = Un,n for u ∈ [0, 1/n], we have

∫ 1/n

0
∆n(u) du = n−1L(1 − Un,n) −

∫ 1/n

0
L(u)du

= n−1{L(1 − Un,n) − L(n)} +O(1/{n log(n)}) = OP (1/{n log(n)}) .

Thus

max
1≤i≤n−1

n√
i g(i/n)

∫ 1/n

0
∆n(u) du = OP (1) .

This proves (23). Consider now (24). As before, we split the integral defining β̃n,i into two
parts. Write β̃n,i = φn,i + ψn,i, with

φn,i =
n

ig(i/n)

∫ 1/n

0

∫ − log{1−Un(1−u)}

− log(u)

η(s)

s
dsdu ,

ψn,i =
n

ig(i/n)

∫ i/n

1/n

∫ − log{1−Un(1−u)}

− log(u)

η(s)

s
dsdu .

Since Un(1 − u) = Un,n for u ≤ 1/n, applying the bound (10) in Lemma 5.6 yields

max
1≤i≤n−1

√
i |φn,i| ≤ max

1≤i≤n−1

n√
ig(i/n)

b({log n} ∧ {− log(1 − Un,n)})OP (1/(n log n))

= OP (b(log n)) = oP (1) .

For any intermediate sequence kn, we have that − log(1 − kn) →P ∞. Thus, noting that b is
nonincreasing and applying Lemma 5.6, we have,

max
1≤i≤kn

|ψn,i| ≤ b({log n} ∧ {− log(1 − kn/n)}) max
1≤i≤kn

n√
ig(i/n)

∫ i/n

1/n
|∆n(u)|du

= oP

(√
log log n

)
.
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Miklós Csörgő, Sándor Csörgő, Lajos Horváth, and David M. Mason. Weighted empirical
and quantile processes. Ann. Probab., 14(1):31–85, 1986.
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