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We consider a heteroscedastic convolution density model under the "ordinary smooth assumption". We introduce a new adaptive wavelet estimator based on term-by-term hard thresholding rule. Its asymptotic properties are explored via the minimax approach under the mean integrated squared error over Besov balls. We prove that our estimator attains near optimal rates of convergence (lower bounds are determined). Simulation results are reported to support our theoretical findings.

Introduction

Problem statement and prior art The heteroscedastic deconvolution problem can be formulated as follows. Suppose we have n random variables Y 1 , . . . , Y n where, for any v ∈ {1, . . . , n},

Y v = X v + ǫ v , (1) 
X 1 , . . . , X n are i.i.d. random variables and ǫ 1 , . . . , ǫ n are independent random variables, also independent of X 1 , . . . , X n . The density of X 1 is unknown and denoted f . For any v ∈ {1, . . . , n}, the density of ǫ v is known, denoted g v and satisfies the "ordinary smooth case" (to be defined precisely in Section 2). The goal is to estimate f when only Y 1 , . . . , Y n are observed. Such a deconvolution problem arises in various areas including signal processing, biology, chemistry and economy.

In the homoscedastic case i.e. g 1 = . . . = g n , (1) becomes the standard convolution density model. Various estimation techniques can be found in e.g. [START_REF] Caroll | Optimal rates of convergence for deconvolving a density[END_REF], [START_REF] Devroye | Consistent deconvolution in density estimation[END_REF], [START_REF] Fan | On the optimal rates of convergence for nonparametric deconvolution problem[END_REF], [START_REF] Pensky | Adaptive wavelet estimator for nonparametric density deconvolution[END_REF], [START_REF] Zhang | Boundary bias correction for nonparametric deconvolution[END_REF], [START_REF] Fan | Wavelet deconvolution[END_REF], [START_REF] Butucea | Minimax estimation of the noise level and of the signal density in a semiparametric convolution model[END_REF], [START_REF] Hall | Discrete-transform approach to deconvolution problems[END_REF], [START_REF] Comte | Penalized contrast estimator for density deconvolution[END_REF], [START_REF] Delaigle | Estimation of boundary and discontinuity points in deconvolution problems[END_REF], [START_REF] Lacour | Rates of convergence for nonparametric deconvolution[END_REF], [START_REF] Hall | A ridge-parameter approach to deconvolution[END_REF] and [START_REF] Lounici | Global Uniform Risk Bounds for Wavelet Deconvolution Estimators[END_REF]. In the heteroscedastic case, (1) has been recently investigated in [START_REF] Delaigle | Density estimation with heteroscedastic error[END_REF], [START_REF] Staudenmayer | Density estimation in the presence of heteroskedastic measurement error[END_REF], [START_REF] Meister | Density deconvolution in a two-level heteroscedastic model with unknown error density[END_REF] and [START_REF] Wang | Estimating smooth distribution function in the presence of heterogeneous measurement errors[END_REF] via kernel and Spline methods. [START_REF] Meister | Deconvolution Problems in Nonparametric Statistics[END_REF] gave an elaboration on nonparametric deconvolution, including wavelet methods and [START_REF] Wang | Deconvolution estimation in measurement error models: The R package decon[END_REF] discussed the problem from a practical point of view.

Contributions and relation to prior work

In this study, we focus our attention on nonparametric wavelet-based methods. They are attractive for nonparametric function estimation because of their ability to adapt to unknown smoothness of the function, hence allowing to estimate accurately its local features such as discontinuities and aberrations. From a theoretical point of view, they can achieve near optimal convergence rates over a wide range of function classes (typically, Besov balls) and enjoy better mean integrated squared error (MISE) properties than kernel methods. See e.g. [START_REF] Antoniadis | Wavelets in statistics: a review (with discussion)[END_REF] and [START_REF] Härdle | Wavelet, Approximation and Statistical Applications[END_REF]. The estimation of f from (1) in the homoscedastic case via wavelet-based techniques can be found in [START_REF] Pensky | Adaptive wavelet estimator for nonparametric density deconvolution[END_REF], [START_REF] Fan | Wavelet deconvolution[END_REF] and [START_REF] Lounici | Global Uniform Risk Bounds for Wavelet Deconvolution Estimators[END_REF].

The construction of our adaptive estimator uses a similar Fourier-wavelet methodology to the one of [START_REF] Pensky | Adaptive wavelet estimator for nonparametric density deconvolution[END_REF] or [START_REF] Fan | Wavelet deconvolution[END_REF]. The idea is to select the large wavelet coefficients estimators by using a term-by-term thresholding rule (hard thresholding is considered here). Our estimator enjoys the originality to be able to handle the heteroscedasticity of (1) and to operate a new "observations thresholding" rule. Its performances are evaluated via the minimax approach under the MISE over Besov balls. We determine upper and lower bounds of the minimax risk of our estimator and prove that it is nearly optimal. We also report some simulation results to illustrate the potential applicability of the estimator and to support our theoretical findings.

Paper organization

The paper is organized as follows. Model assumptions on (1) are introduced in Section 2. Section 3 briefly describes compactly supported wavelet bases, as well as characterization of Besov balls through wavelet sequence norm equivalence. Our hard thresholding estimator is described in Section 4. Our main results are stated and discussed in Section 5. A simulation study is reported and commented in Section 6, before drawing conclusions in Section 7. The technical proofs are deferred to Section 8.

Model assumptions

Without loss of generality, we assume that the support of f is included in [-Ω, Ω] and that there exists a constant

C * > 0 such that sup x∈[-Ω,Ω] f (x) ≤ C * < ∞.
(2)

We define the Fourier transform of an integrable function h by

F (h)(x) = ∞ -∞ h(y)e -ixy dy, x ∈ R.
The notation • will be used for the complex conjugate. We consider the "heteroscedastic" ordinary smooth assumption on g 1 , . . . , g n : there exist three constants, C g > 0, c g > 0 and δ > 1, and n positive real numbers σ 1 , . . . , σ n such that, for any v ∈ {1, . . . , n} and any x ∈ R,

| F(g v )(x)| ≥ c g (1 + σ 2 v x 2 ) δ/2
(3) and, for any ℓ ∈ {0, 1, 2}, the ℓ-th derivative of the Fourier transform of

g v satisfies    lim x→0 σ 2 v |x| δ+2ℓ |(F (g v )(x)) (ℓ) | ≤ C g , lim x→∞ σ 2 v |x| δ+ℓ |(F (g v )(x)) (ℓ) | ≤ C g . (4) 
In the homoscedastic case, (3) becomes the standard ordinary smooth assumption. See e.g. [START_REF] Pensky | Adaptive wavelet estimator for nonparametric density deconvolution[END_REF], [START_REF] Fan | Wavelet deconvolution[END_REF] and [START_REF] Lounici | Global Uniform Risk Bounds for Wavelet Deconvolution Estimators[END_REF].

Example: for any v ∈ {1, . . . , n}, let us set

ǫ v = p u=1 ε u,v ,
where p ∈ N * , (ε u,v ) u∈{1,...,p} are i.i.d. random variables having the Laplace density Laplace(0, σ v ):

h v (x) = (1/2σ v )e -|x|/σv , x ∈ R. Then F (g v )(x) = (F (h v )(x)) p = 1 (1 + σ 2 v x 2 ) p .
Thus (3) is satisfied with δ = 2p. Moreover, if there exists a constant c * > 0 such that inf v∈{1,...,n} σ 2 v ≥ c * , then (4) is satisfied as well. In the sequel, we set

w n = n v=1 1 (1 + σ 2 v ) δ
and, for technical reasons, we suppose that w n ≥ e.

Wavelets and Besov balls

Let N ∈ N * , and φ and ψ be the Daubechies scaling and wavelet functions dbN (in particular, φ and ψ are compactly supported). We choose N such that φ ∈ C α and ψ ∈ C α for α > 6 + δ where δ refers to (3). Define the scaled and translated versions of the scaling and wavelet functions as

φ j,k (x) = 2 j/2 φ(2 j x -k), ψ j,k (x) = 2 j/2 ψ(2 j x -k).
Then there exists an integer τ and a set Λ j of consecutive integers with a length proportional to 2 j such that, for any integer ℓ ≥ τ , the collection

B = {φ ℓ,k (.), k ∈ Λ ℓ ; ψ j,k (.); j ∈ N-{0, . . . , ℓ-1}, k ∈ Λ j } is an orthonormal basis of L 2 ([-Ω, Ω]) = {h : [-Ω, Ω] → R; Ω -Ω h 2 (x)dx < ∞}.
We refer to [START_REF] Cohen | Wavelets on the interval and fast wavelet transforms[END_REF] and [START_REF] Mallat | A wavelet tour of signal processing[END_REF] for a comprehensive account on wavelets.

For any integer ℓ ≥ τ , any h ∈ L 2 ([-Ω, Ω]) can be expanded on B as

h(x) = k∈Λ ℓ α ℓ,k φ ℓ,k (x) + ∞ j=ℓ k∈Λj β j,k ψ j,k (x),
where α j,k and β j,k are the scaling and wavelet coefficients of h defined through the inner product on

L 2 ([-Ω, Ω]) α j,k = Ω -Ω h(x)φ j,k (x)dx, β j,k = Ω -Ω h(x)ψ j,k (x)dx. (5) 
Let M > 0, s > 0, p ≥ 1 and r ≥ 1. A function h belongs to B s p,r (M ) if and only if there exists a constant M * > 0 (depending on M ) such that the associated wavelet coefficients (5) satisfy

2 τ (1/2-1/p) k∈Λτ |α τ,k | p 1/p +    ∞ j=τ   2 j(s+1/2-1/p)   k∈Λj |β j,k | p   1/p    r    1/r ≤ M * .
In this expression, s is a smoothness parameter and p and r are norm parameters. Besov balls contain the Hölder and Sobolev balls. See e.g. [START_REF] Meyer | Wavelets and Operators[END_REF] and [START_REF] Mallat | A wavelet tour of signal processing[END_REF].

Hard thresholding estimator

The first step to estimate f consists in expanding f on B and estimating its unknown wavelet coefficients. For any integer j ≥ τ and any k ∈ Λ j ,

• we estimate α j,k = Ω -Ω f (x)φ j,k (x)dx by α j,k = 1 2πw n n v=1 1 (1 + σ 2 v ) δ ∞ -∞ F (φ j,k )(x) F (g v )(x) e -ixYv dx,
• we estimate

β j,k = Ω -Ω f (x)ψ j,k (x)dx by β j,k = 1 w n n v=1 G v,j,k 1I {|Gv,j,k|≤θ2 δj √ wn ln wn } , (6) 
where

G v,j,k = 1 2π 1 (1 + σ 2 v ) δ ∞ -∞ F (ψ j,k )(x) F (g v )(x) e -ixYv dx,
for any random event A, 1I A is the indicator function on A and

θ = (C * /(2πc 2 g )) ∞ -∞ (1 + x 2 ) δ |F (ψ) (x)| 2 dx.
We define the hard thresholding estimator f by

f (x) = k∈Λτ α τ,k φ τ,k (x) + j1 j=τ k∈Λj β j,k 1I n | b β j,k |≥κθ2 δj q ln wn wn o ψ j,k (x), (7) 
where κ ≥ 8/3 + 2 + 2 16/9 + 4 and j 1 is the integer satisfying

1 2 w 1/(2δ+1) n < 2 j1 ≤ w 1/(2δ+1) n .
The feature of the hard thresholding estimator is to only estimate the "large" unknown wavelet coefficients of f which are those encoding the main features of f . See e.g. [START_REF] Mallat | A wavelet tour of signal processing[END_REF].

Our estimator (7) can be viewed as an extension of the one in [START_REF] Fan | Wavelet deconvolution[END_REF] to the heteroscedastic case. The presence of the "observations thresholding" in (6) allows us to treat this case without any restrictive assumptions on σ 1 , . . . , σ n . Mention that it can be removed under some assumptions on j 1 .

Minimaxity results

Theorem 1 (Upper bound) Consider (1) under (2) and (3). Let f be as given by (7) and r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > (2δ + 1)/p}. Then, for n a large enough, there exists a constant C > 0 such that

sup f ∈B s p,r (M) E Ω -Ω f (x) -f (x) 2 dx ≤ C ln w n w n 2s/(2s+2δ+1)
.

The proof of Theorem 1 relies on (Chesneau 2011, Theorem 2) and several probability results related to α j,k and β j,k .

To establish the minimax optimality of f , the minimax lower bounds must be explored. This is done in Theorem 2 below.

Theorem 2 (Lower bound) Consider (1) under (2), ( 3) and (4). Assume that there exists a constant c * > 0 such that inf v∈{1,...,n} σ 2 v ≥ c * . Then there exists a constant c > 0 such that, for any s > 0, p ≥ 1, r ≥ 1 and n large enough, 2s+2δ+1) ,

inf e f sup f ∈B s p,r (M) E Ω -Ω f (x) -f (x) 2 dx ≥ c(w * n ) -2s/(
where w * n = n v=1 1/σ 2δ
v and the infimum is taken over all possible estimators f of f . The proof of Theorem 2 builds upon (Tsybakov 2004, Theorem 2.5) and several auxiliary results.

Discussion

Naturally, in the homoscedastic case, we have w n = Cn and from Theorem 1, we obtain the same rate of convergence as the one attained by the hard thresholding estimator in (Fan and Koo 2002, Theorem 2) i.e. (ln n/n) 2s/(2s+2δ+1) . As far as the lower bound is concerned, we first point out that 2s+2δ+1) . Therefore, due to Theorems 1 and 2, f is optimal in the minimax sense up to the logarithmic term (ln w n ) 2s/(2s+2δ+1) . We would like to stress the fact that some choices of σ 1 , . . . , σ n can severely deteriorate the performance of f . As a simple example, take σ 2 v = v for any v ∈ {1, . . . , n}, and δ = 1: for n large enough, we have w n = C ln n and w * n = C ln n, and the optimal rate of convergence becomes (ln n) -2s/(2s+3) .

w n = n v=1 1/(1+ σ 2 v ) δ = n v=1 1/σ 2δ v = w * n . However, if there exists a constant c * > 0 such that inf v∈{1,...,n} σ 2 v ≥ c * , then we have (ln w n /w n ) 2s/(2s+2δ+1) ≤ C(ln w n /w * n ) 2s/(

Simulation results

In this simulation, n = 10 4 samples (Y v ) v∈{1,••• ,n} were generated according to model (1), where for v ∈ {1, • • • , n} ǫ v ∼ Laplace(0, σ v ) and σ v were independently randomly generated in (0, +∞). X v were i.i.d. with a common density supported in [-Ω, Ω]. More precisely, we simulated smooth densities.

X v = m i=1 U v,i , where U v,i ∼ U([-Ω/m, Ω/m]), i.e.
Following the philosophy of reproducible research, a toolbox is made available freely for download at the address http://www.greyc.ensicaen.fr/ ~jfadili/software.html. This toolbox is a collection of Matlab functions and scripts that implement our estimator and allow to reproduce the figures reported in this paper. It requires at least WaveLab 802 ( 2001) to run properly.

The results are depicted in Fig. 1(a)-(c) for respectively m ∈ {1, 2, 4}. It can be clearly seen that our adaptive hard thresholding estimator is very effective to estimate each of the three densities. The recovered wavelet coefficients are also shown where most of the irregularities are captured in the estimated coefficients. In the figure, we also display the empirical MISE as a function of the threshold κ, where the vertical dashed line represents the lower-bound 8/3 + 2 + 2 16/9 + 4 ≈ 9.474 . . . advocated by our estimator (7). One can see that the minimum of the MISE occurs beyond this lower-bound hence supporting the choice dictated by our theoretical procedure, although derived in an asymptotic setting.

Conclusion and perspectives

In this paper, considering (1), we have constructed an adaptive wavelet estimator and proved that it is nearly optimal in the minimax sense. Among possible perspectives of the present work, an interesting one would be to improve the estimation of f via another wavelet thresholding estimator such as the block thresholding one (see e.g. [START_REF] Pensky | On convergence rates equivalency and sampling strategies in functional deconvolution models[END_REF]). This needs further investigations that we leave for a future work.

Proofs

Proof of Theorem 1. We will apply the following general result. It is derived to (Chesneau 2011, Theorem 2).

Theorem 3 [START_REF] Chesneau | Adaptive wavelet estimator for a function and its derivatives in an indirect convolution model[END_REF] Let Ω > 0. We want to estimate an unknown function f with support in [-Ω, Ω] from n independent random variables (or vectors) U 1 , . . , U n . We consider the wavelet basis B and the notations of Section 3.

Suppose that there exist n functions h 1 , . . . , h n and a sequence of real numbers (µ v ) v∈N * satisfying lim v→∞ µ v = ∞, such that, for any γ ∈ {φ, ψ}, (A1) any integer j ≥ τ and any k ∈ Λ j ,

E 1 µ n n v=1 h v (γ j,k , U v ) = Ω -Ω f (x)γ j,k (x)dx.
(A2) there exist two constants, θ γ > 0 and δ > 0, such that, for any integer j ≥ τ and any k ∈ Λ j ,

1 µ 2 n n v=1 E (h v (γ j,k , U v )) 2 ≤ θ 2 γ 2 2δj 1 µ n .
We define the hard thresholding estimator f by

f (x) = k∈Λτ α τ,k φ τ,k (x) + j1 j=τ k∈Λj β j,k 1I n | b β j,k |≥κθ ψ 2 δj q ln µn µn o ψ j,k (x),
where

α j,k = 1 µ n n v=1 h v (φ j,k , U v ), β j,k = 1 µ n n v=1 h v (ψ j,k , U v )1I {|hv(ψj,k,Uv)|≤θψ2 δj √ µn ln µn } , κ = 8/3 + 2 + 2 16/9 + 4 and j 1 is the integer satisfying (1/2)µ 1/(2δ+1) n < 2 j1 ≤ µ 1/(2δ+1) n . Let r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2
) and s > (2δ + 1)/p}. Then there exists a constant C > 0 such that

sup f ∈B s p,r (M) E Ω -Ω f (x) -f (x) 2 dx ≤ C ln µ n µ n 2s/(2s+2δ+1)
.

Let us now investigate the assumptions (A1) and (A2) of Theorem 3 with, for any v ∈ {1, . . . , n}, U

v = Y v , h v (γ j,k , y) = 1 (1 + σ 2 v ) δ 2π ∞ -∞ F (γ j,k )(x) F (g v )(x) e -ixy dx
and µ n = w n .

On (A1). Since X v and ǫ v are independent, we have

E e -ixYv = E e -ixXv E e -ixǫv = F (f )(x)F (g v )(x).
This combined with the Fubini theorem and the Parseval-Plancherel theorem yield, for any integer j ≥ τ and any k ∈ Λ j ,

E 1 µ n n v=1 h v (γ j,k , Y v ) = 1 w n n v=1 1 (1 + σ 2 v ) δ 1 2π ∞ -∞ F (γ j,k )(x) F (g v )(x) E e -ixYv dx = 1 w n n v=1 1 (1 + σ 2 v ) δ 1 2π ∞ -∞ F (γ j,k )(x) F (g v )(x) F (f )(x)F (g v )(x)dx = 1 2π ∞ -∞ F (γ j,k )(x)F (f )(x)dx 1 w n n v=1 1 (1 + σ 2 v ) δ = 1 2π ∞ -∞ F (γ j,k )(x)F (f )(x)dx = Ω -Ω f (x)γ j,k (x)dx. (8) 
On (A2). We have

1 µ 2 n n v=1 E (h v (γ j,k , Y v )) 2 = 1 w 2 n n v=1 1 (1 + σ 2 v ) 2δ (2π) 2 E   ∞ -∞ F (γ j,k )(x) F (g v )(x) e -ixYv dx 2   . (9)
Since X v and ǫ v are independent, the density of

Y v is q v (x) = (f ⋆ g v )(x) = ∞ -∞ f (t)g v (x -t)dt, x ∈ R. Therefore E   ∞ -∞ F (γ j,k )(x) F (g v )(x) e -ixYv dx 2   = ∞ -∞ ∞ -∞ F (γ j,k )(x) F (g v )(x) e -ixy dx 2 q v (y)dy = ∞ -∞ F F (γ j,k )(.) F (g v )(.) (y) 
2 q v (y)dy.

(10)

Since, by (2), sup x∈R f (x) ≤ C * and g v is a density, we have sup v∈{1,...,n}

sup x∈R q v (x) ≤ C * sup v∈{1,...,n} ∞ -∞ g v (t)dt = C * .
The Parseval-Plancherel theorem and (3) imply that

∞ -∞ F F (γ j,k )(.) F (g v )(.) (y) 2 q v (y)dy ≤ C * ∞ -∞ F F (γ j,k )(.) F (g v )(.) (y) 2 dy = 2πC * ∞ -∞ F (γ j,k )(x) F (g v )(x) 2 dx ≤ 2π C * c 2 g ∞ -∞ (1 + x 2 σ 2 v ) δ |F (γ j,k ) (x)| 2 dx. (11) 
By a change of variables, we obtain

|F (γ j,k ) (x)| = 2 -j/2 F (γ) (x/2 j ) .
Using again a change of variables and the inequality 1

+ σ 2 v x 2 ≤ (1 + σ 2 v )(1 + x 2 ), we have ∞ -∞ (1 + x 2 σ 2 v ) δ |F (γ j,k ) (x)| 2 dx = 2 -j ∞ -∞ (1 + x 2 σ 2 v ) δ F (γ) (x/2 j ) 2 dx = ∞ -∞ (1 + 2 2j x 2 σ 2 v ) δ |F (γ) (x)| 2 dx ≤ 2 2δj ∞ -∞ (1 + σ 2 v x 2 ) δ |F (γ) (x)| 2 dx ≤ 2 2δj (1 + σ 2 v ) δ ∞ -∞ (1 + x 2 ) δ |F (γ) (x)| 2 dx. (12) 
It follows from ( 10), ( 11) and ( 12) that

E   ∞ -∞ F (γ j,k )(x) F (g v )(x) e -ixYv dx 2   ≤ 2π(C * /c 2 g ) ∞ -∞ (1 + x 2 ) δ |F (γ) (x)| 2 dx 2 2δj (1 + σ 2 v ) δ . (13) 
Putting ( 9) and ( 13) together, we obtain

1 µ 2 n n v=1 E (h v (γ j,k , Y v )) 2 ≤ θ 2 γ 2 2δj 1 w 2 n n v=1 1 (1 + σ 2 v ) 2δ (1 + σ 2 v ) δ = θ 2 γ 2 2δj 1 w 2 n w n = θ 2 γ 2 2δj 1 w n , (14) 
where

θ γ = (C * /(2πc 2 g )) ∞ -∞ (1 + x 2 ) δ |F (γ) (x)| 2 dx.
It follows from Theorem 3, ( 8) and ( 14) that the hard thresholding estimator (7) satisfies, for any r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > (2δ+1)/p}, sup

f ∈B s p,r (M) E Ω -Ω f (x) -f (x) 2 dx ≤ C ln w n w n 2s/(2s+2δ+1)
.

The proof of Theorem 1 is complete.

Proof of Theorem 2. We will apply the following general result. It is (Tsybakov 2004, Theorem 2.5).

Theorem 4 [START_REF] Tsybakov | Introduction à l'estimation nonparamétrique[END_REF]) Let (F , d) be a metric space, (X , A, (P θ ) θ∈F ) be a probability space, m ∈ N-{0, 1}, Θ ⊆ F be a set containing m+1 elements θ 0 , . . . , θ m and, for any j ∈ {0, . . . , m}, P j = P θj . We make the following assumptions:

(H1) For any (j, k) ∈ {0, . . . , m} 2 with j = k, there exists δ > 0 such that d(θ j , θ k ) ≥ 2δ.

(H2) Let K be the Kullback divergence defined by

K(P, Q) = ln dP dQ dP if P << Q, ∞ otherwise.
There exists α ∈ (0, 1/8) such that

K m = inf v∈{0,...,m} 1 m k∈{0,...,m} k =v K(P k , P v ) ≤ α log m.
Then there exists a constant c > 0 such that

sup b θ sup θ∈Θ P θ (d( θ, θ) ≥ δ) ≥ c.
Consider the Besov balls B s p,r (M ). Let j 0 be an integer suitably chosen below. For any ε = (ε k ) k∈Λj 0 ∈ {0, 1} Card(Λj 0 ) , set

h ε (x) = ρ(x) + M * 2 -j0(s+1/2) k∈Λj 0 ε k ψ j0,k (x), where M * > 0 is a constant, ρ(x) = C 0 (1 + x 2 ) r0 ,
with r 0 ∈ (1/2, 1) and C 0 > 0 is such that ρ is a density. Then h ε is a density and, with a suitable M * , h ε ∈ B s p,r (M ) (see (Fan and Koo 2002, Lemma 4)). The Varshamov-Gilbert theorem (see [START_REF] Tsybakov | Introduction à l'estimation nonparamétrique[END_REF], Lemma 2.7)) asserts that there exist a set E j0 = ε (0) , . . . , ε (Tj 0 ) and two constants, c ∈]0, 1[ and α ∈]0, 1[, such that, for any u ∈ {0, . . . , T j0 }, ε (u) = (ε (u) k ) k∈Λj 0 ∈ {0, 1} Card(Λj 0 ) and any (u, v) ∈ {0, . . . , T j0 } 2 with u < v, the following hold:

k∈Λj 0 |ε (u) k -ε (v) k | ≥ c2 j0 , T j0 ≥ e α2 j 0 . (15) 
Let us now consider the set

Θ = {h ε (u) (x); u ∈ {0, . . . , T j0 }} and the L 2 - distance d(h, k) = Ω -Ω (h(x) -k(x)) 2 dx 1/2 for (h, k) ∈ (L 2 ([-Ω, Ω])) 2 .
Note that, due to the Markov inequality, for any real number δ > 0, we have inf

e f sup f ∈B s p,r (M) E Ω -Ω f (x) -f (x) 2 dx ≥ pδ 2 , ( 16 
) where p = inf e f sup u∈{0,...,Tj 0 } P h ε (u) d f , h ε (u) ≥ δ
and P f = × n v=1 P v f where P v f is the probability measure related to (1). In order to bound p, let us now investigate the assumptions (H1) and (H2) of Theorem 4 with the set Θ = {h ε (u) (x); u ∈ {0, . . . , T j0 }} previously defined (so m = T j0 ) and the L 2 -distance.

On (H1). For any (u, v) ∈ {0, . . . , T j0 } 2 with u = v, using the orthonormality of B, the fact that, for any k ∈ Λ j0 , |ε 1} and (15), we have

(u) k -ε (v) k | ∈ {0,
d (h ε (u) , h ε (v) ) = Ω -Ω (h ε (u) (x) -h ε (v) (x)) 2 dx 1/2 = M * 2 -j0(s+1/2)    Ω -Ω   k∈Λj 0 (ε (u) k -ε (v) k )ψ j0,k (x)   2 dx    1/2 = M * 2 -j0(s+1/2)   k∈Λj 0 |ε (u) k -ε (v) k |   1/2 ≥ c2 -j0(s+1/2) 2 j0/2 = c2 -j0s .
Therefore, if we set δ = (c/2)2 -j0s , we have

d (h ε (u) , h ε (v) ) ≥ 2δ. (17) 
On (H2). Let us now bound K Tj 0 . Let ⋆ be the convolution product. Let χ 2 be the chi-square divergence defined by

χ 2 (P, Q) =    dP dQ -1 2 dQ if P << Q, ∞ otherwise,
and set

F j0 (ξ) =    h ∈ L 2 ([-Ω, Ω]); h(x) = ρ(x) + k∈Λj 0 λ j0,k ψ j0,k (x) : |λ j0,k | ≤ ξ    .
For any f 2 ∈ F j0 (ξ) with ξ ≤ C 1 2 -j0(s+1/2) where C 1 > 0 denotes a suitable constant, we have sup

x∈[-Ω,Ω] |f 2 (x) -ρ(x)| ≤ (1/2) inf x∈[-Ω,Ω] ρ(x) and, a fortiori, (f 2 ⋆ g v )(x) ≥ 1 2 (ρ ⋆ g v )(x). (18) 
By the Fatou lemma, observe that

lim inf |x|→∞ (1 + x 2 ) r0 (ρ ⋆ g v )(x) ≥ C 0 ∞ -∞ lim inf |x|→∞ (1 + x 2 ) r0 (1 + (x -y) 2 ) r0 g v (y)dy = C 0 ∞ -∞ g v (y)dy = C 0 .
Therefore, for any v ∈ {1, . . . , n} and any x ∈ R, (ρ ⋆ g v )(x) ≥ C 0 (1 + x 2 ) -r0 .

(19)

Using (3), (4) and inf v∈{1,...,n} σ 2 v ≥ c * , we can apply (Fan and Koo 2002, Lemma 1) with 2 j0 σ v instead of 2 j0 . This yields the existence of a constant C > 0 such that, for any x ∈ R, (20)

Putting ( 18), ( 19) and ( 20) in [START_REF] Fan | Wavelet deconvolution[END_REF], Proof of Lemma 4), for any functions f 1 and f 2 in F j0 (ξ) with ξ ≤ C 1 2 -j0(s+1/2) , we have, for any v ∈ {1, . . . , n},

χ 2 P v f1 , P v f2 = ∞ -∞ ((f 1 ⋆ g v )(x) -(f 2 ⋆ g v )(x)) 2 (f 2 ⋆ g v )(x) dx ≤ 2 ∞ -∞ (((f 1 -f 2 ) ⋆ g v )(x)) 2 (ρ ⋆ g v )(x) dx ≤ C2 j0 ξ 2 2 -2δj0 1 σ 2δ v ∞ -∞ (1 + x 2 ) r0 (1 + |x|) 4 dx ≤ C2 j0 ξ 2 2 -2δj0 1 σ 2δ v ≤ C2 -2j0(s+1/2+δ) 2 j0 1 σ 2δ v . ( 21 
)
Using the elementary inequality: K(P, Q) ≤ χ 2 (P, Q), and (21), we have, for any (u, v) ∈ {0, . . . , T j0 } 2 with u = v,

K P h ε (u) , P h ε (v) = n v=1 K P v h ε (u) , P v h ε (v) ≤ n v=1 χ 2 P v h ε (u) , P v h ε (v) ≤ C2 -2j0(s+1/2+δ) 2 j0 n v=1 1 σ 2δ v = Cw * n 2 -2j0(s+1/2+δ) 2 j0 .
Hence

K Tj 0 = inf v∈{0,...,Tj 0 } 1 T j0 u∈{0,...,Tj 0 } u =v K P h ε (u) , P h ε (v)
≤ Cw * n 2 -2j0(s+1/2+δ) 2 j0 .

Choosing j 0 such that 2 -j0(s+1/2+δ) = c 0 1 (w * n ) 1/2 (i.e. 2 j0 = (w * n ) 1/(2s+2δ+1) ), (22) where c 0 denotes a suitable constant, (15) implies the existence of α * ∈ (0, 1/8) satisfying

K Tj 0 ≤ Cc 2 0 2 j0 ≤ α * log T j0 . (23) 
It follows from Theorem 4, ( 17), ( 22) and ( 23 = c(w * n ) -2s/(2s+2δ+1) .

The proof of Theorem 2 is complete.

  m = 1 corresponds to the uniform distribution, m = 2 the triangular distribution, etc.. Thus varying m allows to show the ability of our wavelet-based estimator in adaptively recovering a large class of densities spanning a wide range of irregularities, going from discontinuous to

  m = 2 (triangular).

Fig. 1

 1 Fig. 1 Original (dashed) and estimated densities (solid) using our wavelet hard thresholding estimator from n = 10 4 heteroscedastic noisy samples Yv according to (1) with ǫv ∼ Laplace(0, σv), and Xv = P m i=1 U v,i are i.i.d. with U v,i ∼ U ([-Ω/m, Ω/m]), Ω = 50m. (a): m = 1. (b): m = 2. (c): m = 4. (d): MISE values as a function of κ for m = 1 (left), m = 2 (middle) and m = 4 (right).

F

  (ψ)(y)F (g v )(2 j0 y)e -ixy dy ≤ C 2 -δj0 σ δ v (1 + |x|) 2and, for any sequence of real numbers (u j0,k ) k∈Λj 0 such that sup k∈Λj 0 |u j0,k |

  ..,Tj 0 } P h ε (u) d f , h ε (u) ≥ δ ≥ c 2 ≥ c2 -2j0s
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