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Abstract We consider a heteroscedastic convolution density model under the
“ordinary smooth assumption”. We introduce a new adaptive wavelet estima-
tor based on term-by-term hard thresholding rule. Its asymptotic properties
are explored via the minimax approach under the mean integrated squared
error over Besov balls. We prove that our estimator attains near optimal rates
of convergence (lower bounds are determined). Simulation results are reported
to support our theoretical findings.
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1 Introduction

Problem statement and prior art The heteroscedastic deconvolution prob-
lem can be formulated as follows. Suppose we have n random variables Y1, . . . , Yn
where, for any v ∈ {1, . . . , n},

Yv = Xv + ǫv, (1)

X1, . . . , Xn are i.i.d. random variables and ǫ1, . . . , ǫn are independent random
variables, also independent of X1, . . . , Xn. The density of X1 is unknown and
denoted f . For any v ∈ {1, . . . , n}, the density of ǫv is known, denoted gv and
satisfies the “ordinary smooth case” (to be defined precisely in Section 2). The
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Laboratoire de Mathématiques Nicolas Oresme, CNRS-Univ. de Caen, Campus II, Science
3, 14032 Caen, France. E-mail: chesneau@math.unicaen.fr

Jalal Fadili
GREYC CNRS-ENSICAEN-Univ. de Caen, ENSICAEN 14050 Caen Cedex, France. E-mail:
Jalal.Fadili@greyc.ensicaen.fr



2 Christophe Chesneau, Jalal Fadili

goal is to estimate f when only Y1, . . . , Yn are observed. Such a deconvolution
problem arises in various areas including signal processing, biology, chemistry
and economy.

In the homoscedastic case i.e. g1 = . . . = gn, (1) becomes the standard
convolution density model. Various estimation techniques can be found in e.g.
Caroll and Hall (1988), Devroye (1989), Fan (1991), Pensky and Vidakovic
(1999), Zhang and Karunamuni (2000), Fan and Koo (2002), Butucea and
Matias (2005), Hall and Qiu (2005), Comte et al. (2006), Delaigle and Gijbels
(2006), Lacour (2006), Hall and Meister (2007) and Lounici and Nickl (2011).
In the heteroscedastic case, (1) has been recently investigated in Delaigle and
Meister (2008), Staudenmayer et al. (2008), Meister et al. (2010) and Wang et
al. (2010) via kernel and Spline methods. Meister (2009) gave an elaboration
on nonparametric deconvolution, including wavelet methods and Wang and
Wang (2011) discussed the problem from a practical point of view.

Contributions and relation to prior work In this study, we focus our at-
tention on nonparametric wavelet-based methods. They are attractive for non-
parametric function estimation because of their ability to adapt to unknown
smoothness of the function, hence allowing to estimate accurately its local fea-
tures such as discontinuities and aberrations. From a theoretical point of view,
they can achieve near optimal convergence rates over a wide range of func-
tion classes (typically, Besov balls) and enjoy better mean integrated squared
error (MISE) properties than kernel methods. See e.g. Antoniadis (1997) and
Härdle et al. (1998). The estimation of f from (1) in the homoscedastic case
via wavelet-based techniques can be found in Pensky and Vidakovic (1999),
Fan and Koo (2002) and Lounici and Nickl (2011).

The construction of our adaptive estimator uses a similar Fourier-wavelet
methodology to the one of Pensky and Vidakovic (1999) or Fan and Koo
(2002). The idea is to select the large wavelet coefficients estimators by using
a term-by-term thresholding rule (hard thresholding is considered here). Our
estimator enjoys the originality to be able to handle the heteroscedasticity of
(1) and to operate a new “observations thresholding” rule. Its performances
are evaluated via the minimax approach under the MISE over Besov balls.
We determine upper and lower bounds of the minimax risk of our estimator
and prove that it is nearly optimal. We also report some simulation results
to illustrate the potential applicability of the estimator and to support our
theoretical findings.

Paper organization The paper is organized as follows. Model assumptions
on (1) are introduced in Section 2. Section 3 briefly describes compactly sup-
ported wavelet bases, as well as characterization of Besov balls through wavelet
sequence norm equivalence. Our hard thresholding estimator is described in
Section 4. Our main results are stated and discussed in Section 5. A simulation
study is reported and commented in Section 6, before drawing conclusions in
Section 7. The technical proofs are deferred to Section 8.
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2 Model assumptions

Without loss of generality, we assume that the support of f is included in
[−Ω,Ω] and that there exists a constant C∗ > 0 such that

sup
x∈[−Ω,Ω]

f(x) ≤ C∗ <∞. (2)

We define the Fourier transform of an integrable function h by

F(h)(x) =

∫ ∞

−∞

h(y)e−ixydy, x ∈ R.

The notation · will be used for the complex conjugate.
We consider the “heteroscedastic” ordinary smooth assumption on g1, . . . , gn:

there exist three constants, Cg > 0, cg > 0 and δ > 1, and n positive real num-
bers σ1, . . . , σn such that, for any v ∈ {1, . . . , n} and any x ∈ R,

| F(gv)(x)| ≥
cg

(1 + σ2
vx

2)δ/2
(3)

and, for any ℓ ∈ {0, 1, 2}, the ℓ-th derivative of the Fourier transform of gv
satisfies





lim
x→0

σ2
v|x|δ+2ℓ|(F(gv)(x))

(ℓ)| ≤ Cg,

lim
x→∞

σ2
v|x|δ+ℓ|(F(gv)(x))

(ℓ)| ≤ Cg.
(4)

In the homoscedastic case, (3) becomes the standard ordinary smooth as-
sumption. See e.g. Pensky and Vidakovic (1999), Fan and Koo (2002) and
Lounici and Nickl (2011).

Example: for any v ∈ {1, . . . , n}, let us set

ǫv =

p∑

u=1

εu,v,

where p ∈ N∗, (εu,v)u∈{1,...,p} are i.i.d. random variables having the Laplace

density Laplace(0, σv): hv(x) = (1/2σv)e
−|x|/σv , x ∈ R. Then

F(gv)(x) = (F(hv)(x))
p =

1

(1 + σ2
vx

2)p
.

Thus (3) is satisfied with δ = 2p. Moreover, if there exists a constant c∗ > 0
such that infv∈{1,...,n} σ

2
v ≥ c∗, then (4) is satisfied as well.

In the sequel, we set

wn =

n∑

v=1

1

(1 + σ2
v)
δ

and, for technical reasons, we suppose that wn ≥ e.
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3 Wavelets and Besov balls

Let N ∈ N∗, and φ and ψ be the Daubechies scaling and wavelet functions
dbN (in particular, φ and ψ are compactly supported). We choose N such
that φ ∈ Cα and ψ ∈ Cα for α > 6 + δ where δ refers to (3). Define the scaled
and translated versions of the scaling and wavelet functions as

φj,k(x) = 2j/2φ(2jx− k), ψj,k(x) = 2j/2ψ(2jx− k).

Then there exists an integer τ and a set Λj of consecutive integers with a
length proportional to 2j such that, for any integer ℓ ≥ τ , the collection
B = {φℓ,k(.), k ∈ Λℓ; ψj,k(.); j ∈ N−{0, . . . , ℓ−1}, k ∈ Λj} is an orthonormal

basis of L2([−Ω,Ω]) = {h : [−Ω,Ω] → R;
∫ Ω
−Ω h

2(x)dx < ∞}. We refer to
Cohen et al. (1993) and Mallat (2009) for a comprehensive account on wavelets.

For any integer ℓ ≥ τ , any h ∈ L2([−Ω,Ω]) can be expanded on B as

h(x) =
∑

k∈Λℓ

αℓ,kφℓ,k(x) +
∞∑

j=ℓ

∑

k∈Λj

βj,kψj,k(x),

where αj,k and βj,k are the scaling and wavelet coefficients of h defined through
the inner product on L2([−Ω,Ω])

αj,k =

∫ Ω

−Ω

h(x)φj,k(x)dx, βj,k =

∫ Ω

−Ω

h(x)ψj,k(x)dx. (5)

Let M > 0, s > 0, p ≥ 1 and r ≥ 1. A function h belongs to Bsp,r(M) if
and only if there exists a constant M∗ > 0 (depending on M) such that the
associated wavelet coefficients (5) satisfy

2τ(1/2−1/p)

(
∑

k∈Λτ

|ατ,k|p
)1/p

+




∞∑

j=τ


2j(s+1/2−1/p)



∑

k∈Λj

|βj,k|p



1/p



r


1/r

≤M∗.

In this expression, s is a smoothness parameter and p and r are norm param-
eters. Besov balls contain the Hölder and Sobolev balls. See e.g. Meyer (1992)
and Mallat (2009).

4 Hard thresholding estimator

The first step to estimate f consists in expanding f on B and estimating its
unknown wavelet coefficients. For any integer j ≥ τ and any k ∈ Λj,
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• we estimate αj,k =
∫ Ω
−Ω

f(x)φj,k(x)dx by

α̂j,k =
1

2πwn

n∑

v=1

1

(1 + σ2
v)
δ

∫ ∞

−∞

F (φj,k)(x)

F(gv)(x)
e−ixYvdx,

• we estimate βj,k =
∫ Ω
−Ω f(x)ψj,k(x)dx by

β̂j,k =
1

wn

n∑

v=1

Gv,j,k1I{|Gv,j,k|≤θ2δj√ wn
lnwn

}, (6)

where

Gv,j,k =
1

2π

1

(1 + σ2
v)
δ

∫ ∞

−∞

F (ψj,k)(x)

F(gv)(x)
e−ixYvdx,

for any random event A, 1IA is the indicator function on A and

θ =

√
(C∗/(2πc2g))

∫ ∞

−∞

(1 + x2)δ |F (ψ) (x)|2 dx.

We define the hard thresholding estimator f̂ by

f̂(x) =
∑

k∈Λτ

α̂τ,kφτ,k(x) +

j1∑

j=τ

∑

k∈Λj

β̂j,k1In
|bβj,k|≥κθ2δj

q
lnwn
wn

oψj,k(x), (7)

where κ ≥ 8/3 + 2 + 2
√

16/9 + 4 and j1 is the integer satisfying

1

2
w1/(2δ+1)
n < 2j1 ≤ w1/(2δ+1)

n .

The feature of the hard thresholding estimator is to only estimate the
“large” unknown wavelet coefficients of f which are those encoding the main
features of f . See e.g. Mallat (2009).

Our estimator (7) can be viewed as an extension of the one in Fan and Koo
(2002) to the heteroscedastic case. The presence of the “observations thresh-
olding” in (6) allows us to treat this case without any restrictive assumptions
on σ1, . . . , σn. Mention that it can be removed under some assumptions on j1.

5 Minimaxity results

Theorem 1 (Upper bound) Consider (1) under (2) and (3). Let f̂ be as
given by (7) and r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > (2δ + 1)/p}.
Then, for n a large enough, there exists a constant C > 0 such that

sup
f∈Bsp,r(M)

E

(∫ Ω

−Ω

(
f̂(x) − f(x)

)2

dx

)
≤ C

(
lnwn
wn

)2s/(2s+2δ+1)

.
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The proof of Theorem 1 relies on (Chesneau 2011, Theorem 2) and several

probability results related to α̂j,k and β̂j,k.

To establish the minimax optimality of f̂ , the minimax lower bounds must
be explored. This is done in Theorem 2 below.

Theorem 2 (Lower bound) Consider (1) under (2), (3) and (4). Assume
that there exists a constant c∗ > 0 such that infv∈{1,...,n} σ

2
v ≥ c∗. Then there

exists a constant c > 0 such that, for any s > 0, p ≥ 1, r ≥ 1 and n large
enough,

inf
ef

sup
f∈Bsp,r(M)

E

(∫ Ω

−Ω

(
f̃(x) − f(x)

)2

dx

)
≥ c(w∗

n)−2s/(2s+2δ+1),

where w∗
n =

∑n
v=1 1/σ2δ

v and the infimum is taken over all possible estimators

f̃ of f .

The proof of Theorem 2 builds upon (Tsybakov 2004, Theorem 2.5) and several
auxiliary results.

5.1 Discussion

Naturally, in the homoscedastic case, we have wn = Cn and from Theorem 1,
we obtain the same rate of convergence as the one attained by the hard thresh-
olding estimator in (Fan and Koo 2002, Theorem 2) i.e. (lnn/n)2s/(2s+2δ+1).
As far as the lower bound is concerned, we first point out that wn =

∑n
v=1 1/(1+

σ2
v)
δ 6= ∑n

v=1 1/σ2δ
v = w∗

n. However, if there exists a constant c∗ > 0 such that
infv∈{1,...,n} σ

2
v ≥ c∗, then we have (lnwn/wn)

2s/(2s+2δ+1) ≤ C(lnwn/w
∗
n)2s/(2s+2δ+1).

Therefore, due to Theorems 1 and 2, f̂ is optimal in the minimax sense up to
the logarithmic term (lnwn)2s/(2s+2δ+1).
We would like to stress the fact that some choices of σ1, . . . , σn can severely
deteriorate the performance of f̂ . As a simple example, take σ2

v = v for any
v ∈ {1, . . . , n}, and δ = 1: for n large enough, we have wn = C lnn and
w∗
n = C lnn, and the optimal rate of convergence becomes (lnn)−2s/(2s+3).

6 Simulation results

In this simulation, n = 104 samples (Yv)v∈{1,··· ,n} were generated according to
model (1), where for v ∈ {1, · · · , n} ǫv ∼ Laplace(0, σv) and σv were indepen-
dently randomly generated in (0,+∞). Xv were i.i.d. with a common density
supported in [−Ω,Ω]. More precisely, we simulated Xv =

∑m
i=1 Uv,i, where

Uv,i ∼ U([−Ω/m,Ω/m]), i.e. m = 1 corresponds to the uniform distribution,
m = 2 the triangular distribution, etc.. Thus varying m allows to show the
ability of our wavelet-based estimator in adaptively recovering a large class of
densities spanning a wide range of irregularities, going from discontinuous to
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Fig. 1 Original (dashed) and estimated densities (solid) using our wavelet hard thresh-
olding estimator from n = 104 heteroscedastic noisy samples Yv according to (1) with
ǫv ∼ Laplace(0, σv), and Xv =

Pm
i=1

Uv,i are i.i.d. with Uv,i ∼ U([−Ω/m, Ω/m]), Ω = 50m.
(a): m = 1. (b): m = 2. (c): m = 4. (d): MISE values as a function of κ for m = 1 (left),
m = 2 (middle) and m = 4 (right).
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smooth densities.

Following the philosophy of reproducible research, a toolbox is made avail-
able freely for download at the address http://www.greyc.ensicaen.fr/

~jfadili/software.html. This toolbox is a collection of Matlab functions
and scripts that implement our estimator and allow to reproduce the figures
reported in this paper. It requires at least WaveLab 802 (2001) to run properly.

The results are depicted in Fig. 1(a)-(c) for respectivelym ∈ {1, 2, 4}. It can
be clearly seen that our adaptive hard thresholding estimator is very effective
to estimate each of the three densities. The recovered wavelet coefficients are
also shown where most of the irregularities are captured in the estimated
coefficients. In the figure, we also display the empirical MISE as a function
of the threshold κ, where the vertical dashed line represents the lower-bound
8/3 + 2 + 2

√
16/9 + 4 ≈ 9.474 . . . advocated by our estimator (7). One can

see that the minimum of the MISE occurs beyond this lower-bound hence
supporting the choice dictated by our theoretical procedure, although derived
in an asymptotic setting.

7 Conclusion and perspectives

In this paper, considering (1), we have constructed an adaptive wavelet estima-
tor and proved that it is nearly optimal in the minimax sense. Among possible
perspectives of the present work, an interesting one would be to improve the
estimation of f via another wavelet thresholding estimator such as the block
thresholding one (see e.g. Pensky and Sapatinas (2010)). This needs further
investigations that we leave for a future work.

8 Proofs

Proof of Theorem 1. We will apply the following general result. It is derived
to (Chesneau 2011, Theorem 2).

Theorem 3 (Chesneau (2011)) Let Ω > 0. We want to estimate an un-
known function f with support in [−Ω,Ω] from n independent random vari-
ables (or vectors) U1, . . . , Un. We consider the wavelet basis B and the nota-
tions of Section 3.

Suppose that there exist n functions h1, . . . , hn and a sequence of real num-
bers (µv)v∈N∗ satisfying limv→∞ µv = ∞, such that, for any γ ∈ {φ, ψ},
(A1) any integer j ≥ τ and any k ∈ Λj,

E

(
1

µn

n∑

v=1

hv(γj,k, Uv)

)
=

∫ Ω

−Ω

f(x)γj,k(x)dx.
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(A2) there exist two constants, θγ > 0 and δ > 0, such that, for any integer
j ≥ τ and any k ∈ Λj,

1

µ2
n

n∑

v=1

E

(
(hv(γj,k, Uv))

2
)
≤ θ2γ2

2δj 1

µn
.

We define the hard thresholding estimator f̂ by

f̂(x) =
∑

k∈Λτ

α̂τ,kφτ,k(x) +

j1∑

j=τ

∑

k∈Λj

β̂j,k1In
|bβj,k|≥κθψ2δj

q
lnµn
µn

oψj,k(x),

where

α̂j,k =
1

µn

n∑

v=1

hv(φj,k, Uv),

β̂j,k =
1

µn

n∑

v=1

hv(ψj,k, Uv)1I{|hv(ψj,k,Uv)|≤θψ2δj
√

µn
lnµn

},

κ = 8/3 + 2 + 2
√

16/9 + 4 and j1 is the integer satisfying (1/2)µ
1/(2δ+1)
n <

2j1 ≤ µ
1/(2δ+1)
n .

Let r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > (2δ + 1)/p}. Then
there exists a constant C > 0 such that

sup
f∈Bsp,r(M)

E

(∫ Ω

−Ω

(
f̂(x) − f(x)

)2

dx

)
≤ C

(
lnµn
µn

)2s/(2s+2δ+1)

.

Let us now investigate the assumptions (A1) and (A2) of Theorem 3 with,
for any v ∈ {1, . . . , n}, Uv = Yv,

hv(γj,k, y) =
1

(1 + σ2
v)
δ2π

∫ ∞

−∞

F (γj,k)(x)

F(gv)(x)
e−ixydx

and µn = wn.

On (A1). Since Xv and ǫv are independent, we have

E
(
e−ixYv

)
= E

(
e−ixXv

)
E
(
e−ixǫv

)
= F(f)(x)F(gv)(x).
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This combined with the Fubini theorem and the Parseval-Plancherel theo-
rem yield, for any integer j ≥ τ and any k ∈ Λj,

E

(
1

µn

n∑

v=1

hv(γj,k, Yv)

)

=
1

wn

n∑

v=1

1

(1 + σ2
v)
δ

1

2π

∫ ∞

−∞

F (γj,k)(x)

F(gv)(x)
E
(
e−ixYv

)
dx

=
1

wn

n∑

v=1

1

(1 + σ2
v)
δ

1

2π

∫ ∞

−∞

F (γj,k)(x)

F(gv)(x)
F(f)(x)F(gv)(x)dx

=
1

2π

∫ ∞

−∞

F (γj,k)(x)F(f)(x)dx

(
1

wn

n∑

v=1

1

(1 + σ2
v)
δ

)

=
1

2π

∫ ∞

−∞

F (γj,k)(x)F(f)(x)dx =

∫ Ω

−Ω

f(x)γj,k(x)dx. (8)

On (A2). We have

1

µ2
n

n∑

v=1

E

(
(hv(γj,k, Yv))

2
)

=
1

w2
n

n∑

v=1

1

(1 + σ2
v)

2δ(2π)2
E




∣∣∣∣∣

∫ ∞

−∞

F (γj,k)(x)

F(gv)(x)
e−ixYvdx

∣∣∣∣∣

2


 . (9)

Since Xv and ǫv are independent, the density of Yv is qv(x) = (f ⋆gv)(x) =∫∞

−∞
f(t)gv(x− t)dt, x ∈ R. Therefore

E



∣∣∣∣∣

∫ ∞

−∞

F (γj,k)(x)

F(gv)(x)
e−ixYvdx

∣∣∣∣∣

2

 =

∫ ∞

−∞

∣∣∣∣∣

∫ ∞

−∞

F (γj,k)(x)

F(gv)(x)
e−ixydx

∣∣∣∣∣

2

qv(y)dy

=

∫ ∞

−∞

∣∣∣∣∣F
(
F (γj,k)(.)

F(gv)(.)

)
(y)

∣∣∣∣∣

2

qv(y)dy.

(10)

Since, by (2), supx∈R f(x) ≤ C∗ and gv is a density, we have

sup
v∈{1,...,n}

sup
x∈R

qv(x) ≤ C∗ sup
v∈{1,...,n}

∫ ∞

−∞

gv(t)dt = C∗.

The Parseval-Plancherel theorem and (3) imply that

∫ ∞

−∞

∣∣∣∣∣F
(
F (γj,k)(.)

F(gv)(.)

)
(y)

∣∣∣∣∣

2

qv(y)dy ≤ C∗

∫ ∞

−∞

∣∣∣∣∣F
(
F (γj,k)(.)

F(gv)(.)

)
(y)

∣∣∣∣∣

2

dy

= 2πC∗

∫ ∞

−∞

∣∣∣∣∣
F (γj,k)(x)

F(gv)(x)

∣∣∣∣∣

2

dx ≤ 2π
C∗

c2g

∫ ∞

−∞

(1 + x2σ2
v)
δ |F (γj,k) (x)|2 dx.

(11)
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By a change of variables, we obtain |F (γj,k) (x)| = 2−j/2
∣∣F (γ) (x/2j)

∣∣.
Using again a change of variables and the inequality 1 + σ2

vx
2 ≤ (1 +

σ2
v)(1 + x2), we have

∫ ∞

−∞

(1 + x2σ2
v)
δ |F (γj,k) (x)|2 dx = 2−j

∫ ∞

−∞

(1 + x2σ2
v)
δ
∣∣F (γ) (x/2j)

∣∣2 dx

=

∫ ∞

−∞

(1 + 22jx2σ2
v)
δ |F (γ) (x)|2 dx ≤ 22δj

∫ ∞

−∞

(1 + σ2
vx

2)δ |F (γ) (x)|2 dx

≤ 22δj(1 + σ2
v)
δ

∫ ∞

−∞

(1 + x2)δ |F (γ) (x)|2 dx. (12)

It follows from (10), (11) and (12) that

E



∣∣∣∣∣

∫ ∞

−∞

F (γj,k)(x)

F(gv)(x)
e−ixYvdx

∣∣∣∣∣

2



≤
(

2π(C∗/c
2
g)

∫ ∞

−∞

(1 + x2)δ |F (γ) (x)|2 dx
)

22δj(1 + σ2
v)
δ. (13)

Putting (9) and (13) together, we obtain

1

µ2
n

n∑

v=1

E

(
(hv(γj,k, Yv))

2
)
≤ θ2γ2

2δj 1

w2
n

n∑

v=1

1

(1 + σ2
v)

2δ
(1 + σ2

v)
δ

= θ2γ2
2δj 1

w2
n

wn = θ2γ2
2δj 1

wn
, (14)

where θγ =
√

(C∗/(2πc2g))
∫∞

−∞
(1 + x2)δ |F (γ) (x)|2 dx.

It follows from Theorem 3, (8) and (14) that the hard thresholding estimator
(7) satisfies, for any r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > (2δ+1)/p},

sup
f∈Bsp,r(M)

E

(∫ Ω

−Ω

(
f̂(x) − f(x)

)2

dx

)
≤ C

(
lnwn
wn

)2s/(2s+2δ+1)

.

The proof of Theorem 1 is complete.

�

Proof of Theorem 2. We will apply the following general result. It is (Tsy-
bakov 2004, Theorem 2.5).

Theorem 4 (Tsybakov (2004)) Let (F , d) be a metric space, (X ,A, (Pθ)θ∈F)
be a probability space, m ∈ N−{0, 1}, Θ ⊆ F be a set containing m+1 elements
θ0, . . . , θm and, for any j ∈ {0, . . . ,m}, Pj = Pθj . We make the following as-
sumptions:
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(H1) For any (j, k) ∈ {0, . . . ,m}2 with j 6= k, there exists δ > 0 such that

d(θj , θk) ≥ 2δ.

(H2) Let K be the Kullback divergence defined by

K(P,Q) =

{∫
ln
(
dP
dQ

)
dP if P << Q,

∞ otherwise.

There exists α ∈ (0, 1/8) such that

Km = inf
v∈{0,...,m}

1

m

∑

k∈{0,...,m}
k 6=v

K(Pk,Pv) ≤ α logm.

Then there exists a constant c > 0 such that

sup
bθ

sup
θ∈Θ

Pθ(d(θ̂, θ) ≥ δ) ≥ c.

Consider the Besov balls Bsp,r(M). Let j0 be an integer suitably chosen

below. For any ε = (εk)k∈Λj0 ∈ {0, 1}Card(Λj0 ), set

hε(x) = ρ(x) +M∗2
−j0(s+1/2)

∑

k∈Λj0

εkψj0,k(x),

where M∗ > 0 is a constant,

ρ(x) =
C0

(1 + x2)r0
,

with r0 ∈ (1/2, 1) and C0 > 0 is such that ρ is a density. Then hε is a density
and, with a suitable M∗, hε ∈ Bsp,r(M) (see (Fan and Koo 2002, Lemma 4)).

The Varshamov-Gilbert theorem (see (Tsybakov 2004, Lemma 2.7)) as-
serts that there exist a set Ej0 =

{
ε(0), . . . , ε(Tj0 )

}
and two constants, c ∈]0, 1[

and α ∈]0, 1[, such that, for any u ∈ {0, . . . , Tj0}, ε(u) = (ε
(u)
k )k∈Λj0 ∈

{0, 1}Card(Λj0 ) and any (u, v) ∈ {0, . . . , Tj0}2 with u < v, the following hold:

∑

k∈Λj0

|ε(u)
k − ε

(v)
k | ≥ c2j0 , Tj0 ≥ eα2j0 . (15)

Let us now consider the set Θ = {hε(u)(x); u ∈ {0, . . . , Tj0}} and the L2-

distance d(h, k) =
(∫ Ω

−Ω
(h(x) − k(x))2dx

)1/2

for (h, k) ∈ (L2([−Ω,Ω]))2.

Note that, due to the Markov inequality, for any real number δ > 0, we have

inf
ef

sup
f∈Bsp,r(M)

E

(∫ Ω

−Ω

(
f̃(x) − f(x)

)2

dx

)
≥ pδ2, (16)
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where
p = inf

ef
sup

u∈{0,...,Tj0}

Ph
ε(u)

(
d
(
f̃ , hε(u)

)
≥ δ
)

and Pf = ×nv=1Pvf where Pvf is the probability measure related to (1).
In order to bound p, let us now investigate the assumptions (H1) and (H2)

of Theorem 4 with the set Θ = {hε(u)(x); u ∈ {0, . . . , Tj0}} previously defined
(so m = Tj0) and the L2-distance.

On (H1). For any (u, v) ∈ {0, . . . , Tj0}2 with u 6= v, using the orthonormality

of B, the fact that, for any k ∈ Λj0 , |ε
(u)
k − ε

(v)
k | ∈ {0, 1} and (15), we have

d (hε(u) , hε(v)) =

(∫ Ω

−Ω

(hε(u)(x) − hε(v)(x))
2dx

)1/2

= M∗2
−j0(s+1/2)



∫ Ω

−Ω



∑

k∈Λj0

(ε
(u)
k − ε

(v)
k )ψj0,k(x)




2

dx




1/2

= M∗2
−j0(s+1/2)




∑

k∈Λj0

|ε(u)
k − ε

(v)
k |




1/2

≥ c2−j0(s+1/2)2j0/2 = c2−j0s.

Therefore, if we set δ = (c/2)2−j0s, we have

d (hε(u) , hε(v)) ≥ 2δ. (17)

On (H2). Let us now bound KTj0 . Let ⋆ be the convolution product. Let χ2

be the chi-square divergence defined by

χ2(P,Q) =






∫ (
dP
dQ

− 1
)2

dQ if P << Q,

∞ otherwise,

and set

Fj0(ξ) =




h ∈ L2([−Ω,Ω]); h(x) = ρ(x) +
∑

k∈Λj0

λj0,kψj0,k(x) : |λj0,k| ≤ ξ




 .

For any f2 ∈ Fj0(ξ) with ξ ≤ C12
−j0(s+1/2) where C1 > 0 denotes a suit-

able constant, we have supx∈[−Ω,Ω] |f2(x) − ρ(x)| ≤ (1/2) infx∈[−Ω,Ω] ρ(x)
and, a fortiori,

(f2 ⋆ gv)(x) ≥
1

2
(ρ ⋆ gv)(x). (18)

By the Fatou lemma, observe that

lim inf
|x|→∞

(1 + x2)r0(ρ ⋆ gv)(x) ≥ C0

∫ ∞

−∞

lim inf
|x|→∞

(1 + x2)r0

(1 + (x − y)2)r0
gv(y)dy

= C0

∫ ∞

−∞

gv(y)dy = C0.
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Therefore, for any v ∈ {1, . . . , n} and any x ∈ R,

(ρ ⋆ gv)(x) ≥ C0(1 + x2)−r0 . (19)

Using (3), (4) and infv∈{1,...,n} σ
2
v ≥ c∗, we can apply (Fan and Koo 2002,

Lemma 1) with 2j0σv instead of 2j0 . This yields the existence of a constant
C > 0 such that, for any x ∈ R,

∣∣∣∣
1

2π

∫ ∞

−∞

F(ψ)(y)F(gv)(2
j0y)e−ixydy

∣∣∣∣ ≤ C
2−δj0

σδv(1 + |x|)2

and, for any sequence of real numbers (uj0,k)k∈Λj0 such that supk∈Λj0 |uj0,k| ≤
L,

∣∣∣∣∣∣




∑

k∈Λj0

uj0,kψj0,k ⋆ gv



 (x)

∣∣∣∣∣∣
≤ C2j0/2L

2−δj0

σδv(1 + |x|)2 . (20)

Putting (18), (19) and (20) in (Fan and Koo 2002, Proof of Lemma 4), for
any functions f1 and f2 in Fj0(ξ) with ξ ≤ C12

−j0(s+1/2), we have, for any
v ∈ {1, . . . , n},

χ2
(
Pvf1 ,P

v
f2

)
=

∫ ∞

−∞

((f1 ⋆ gv)(x) − (f2 ⋆ gv)(x))
2

(f2 ⋆ gv)(x)
dx

≤ 2

∫ ∞

−∞

(((f1 − f2) ⋆ gv)(x))
2

(ρ ⋆ gv)(x)
dx

≤ C2j0ξ22−2δj0
1

σ2δ
v

∫ ∞

−∞

(1 + x2)r0

(1 + |x|)4 dx

≤ C2j0ξ22−2δj0 1

σ2δ
v

≤ C2−2j0(s+1/2+δ)2j0
1

σ2δ
v

. (21)

Using the elementary inequality: K(P,Q) ≤ χ2(P,Q), and (21), we have,
for any (u, v) ∈ {0, . . . , Tj0}2 with u 6= v,

K
(
Ph

ε(u)
,Ph

ε(v)

)
=

n∑

v=1

K
(
Pvh

ε(u)
,Pvh

ε(v)

)
≤

n∑

v=1

χ2
(
Pvh

ε(u)
,Pvh

ε(v)

)

≤ C2−2j0(s+1/2+δ)2j0
n∑

v=1

1

σ2δ
v

= Cw∗
n2−2j0(s+1/2+δ)2j0 .

Hence

KTj0 = inf
v∈{0,...,Tj0}

1

Tj0

∑

u∈{0,...,Tj0}
u6=v

K
(

Ph
ε(u)

,Ph
ε(v)

)

≤ Cw∗
n2−2j0(s+1/2+δ)2j0 .
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Choosing j0 such that

2−j0(s+1/2+δ) = c0
1

(w∗
n)1/2

(i.e. 2j0 = (w∗
n)1/(2s+2δ+1)), (22)

where c0 denotes a suitable constant, (15) implies the existence of α∗ ∈
(0, 1/8) satisfying

KTj0 ≤ Cc202
j0 ≤ α∗ logTj0 . (23)

It follows from Theorem 4, (17), (22) and (23) that

p = inf
ef

sup
u∈{0,...,Tj0}

Ph
ε(u)

(
d
(
f̃ , hε(u)

)
≥ δ
)
≥ c > 0

and, by (16),

inf
ef

sup
f∈Bsp,r(M)

E

(∫ Ω

−Ω

(
f̃(x) − f(x)

)2

dx

)
≥ pδ2 ≥ c2−2j0s

= c(w∗
n)−2s/(2s+2δ+1).

The proof of Theorem 2 is complete.

�
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