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Abstract We consider a heteroscedastic convolution density model under the
“ordinary smooth case”. We introduce a new adaptive wavelet estimator based
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1 Motivations

The heteroscedastic deconvolution problem can be formulated as follows. Sup-
pose we have n random variables Y1, . . . , Yn where, for any v ∈ {1, . . . , n},

Yv = Xv + εv, (1)

X1, . . . , Xn are i.i.d. random variables and ε1, . . . , εn are independent random
variables, also independent of X1, . . . , Xn. The density of X1 is unknown and
denoted f . For any v ∈ {1, . . . , n}, the density of εv is known, denoted gv
and satisfies the “ordinary smooth case” (defined in Section 2). We want to
estimate f when only Y1, . . . , Yn are observed. Such a deconvolution problem
arises often in engineering, biology, chemistry and economy.

In the homoscedastic case i.e. g1 = . . . = gn, (1) becomes the standard
convolution density model. Various estimation techniques can be found in e.g.
Caroll and Hall (1988), Devroye (1989), Fan (1991), Pensky and Vidakovic

Laboratoire de Mathématiques Nicolas Oresme, Université de Caen Basse-Normandie, Cam-
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(1999), Zhang and Karunamuni (2000), Fan and Koo (2002), Butucea and
Matias (2005), Hall and Qiu (2005), Comte et al. (2006), Delaigle and Gijbels
(2006), Lacour (2006), Hall and Meister (2007) and Lounici and Nickl (2011).
In the heteroscedastic case, (1) has been recently investigated in Delaigle and
Meister (2008), Staudenmayer et al. (2008), Meister et al. (2010) and Wang
et al. (2010) via kernel and Splines methods.

In this study, we focus our attention on wavelet methods. They are attrac-
tive for nonparametric function estimation because of their ability in estimat-
ing local features such as discontinuities and aberrations. From a theoretical
point of view, they can achieve near optimal convergence rates over a wide
range of function classes (typically, the Besov balls) and enjoy better mean
integrated squared error (MISE) properties than kernel methods. See e.g. An-
toniadis (1997) and Härdle et al. (1998). The estimation of f from (1) in the
homoscedastic case via wavelet-based techniques can be found in Pensky and
Vidakovic (1999), Fan and Koo (2002) and Lounici and Nickl (2011).

The construction of our adaptive estimator uses a similar Fourier-wavelet
methodology to the one of Pensky and Vidakovic (1999) or Fan and Koo
(2002). The idea is to select the large wavelet coefficients estimators by us-
ing a term-by-term thresholding rule (hard thresholding is considered). Our
estimator has the originality to treat the heteroscedasticity of (1) and oper-
ate a new “observations thresholding”. Its performances are evaluated via the
minimax approach under the mean integrated squared error over the Besov
balls (to be defined in Section 3). We determine upper and lower bounds of
the minimax risk of our estimator and prove that it is near optimal.

The paper is organized as follows. Assumptions on (1) are introduced in
Section 2. Section 3 briefly describes the wavelet basis and the Besov balls.
Our hard thresholding estimator is presented in Section 4. The results are set
in Section 5. Technical proofs are given in Section 6.

2 Assumptions

Without loss of generality, we assume that the support of f is included in
[−Ω,Ω] and that there exists a constant C∗ > 0 such that

sup
x∈R

f(x) ≤ C∗ <∞. (2)

We define the Fourier transform of an integrable function h by

F(h)(x) =

∫ ∞
−∞

h(y)e−ixydy, x ∈ R.

The notation · will be used for the complex conjugate.
We consider the “heteroscedastic” ordinary smooth case on g1, . . . , gn:

there exist three constants, Cg > 0, cg > 0 and δ > 1, and n positive real
numbers σ1, . . . , σn such that, for any v ∈ {1, . . . , n} and any x ∈ R,

cg
(1 + σ2

vx
2)δ/2

≤ |F(gv)(x)| ≤ Cg
(1 + σ2

vx
2)δ/2

. (3)
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In the homoscedastic case, (3) becomes the standard ordinary smooth assump-
tion. See e.g. Pensky and Vidakovic (1999), Fan and Koo (2002) and Lounici
and Nickl (2011).

Example: for any v ∈ {1, . . . , n}, let us set

εv =

p∑
u=1

εu,v,

where p ∈ N∗, (εu,v)u∈{1,...,p} are i.i.d. random variables having the Laplace

density Laplace(0, σv): hv(x) = (1/2σv)e
−|x|/σv , x ∈ R. Then

F(gv)(x) = (F(hv)(x))p =
1

(1 + σ2
vx

2)p
.

Thus (3) is satisfied with Cg = cg = 1 and δ = 2p.

In the sequel, we set

wn =

n∑
v=1

1

(1 + σ2
v)δ

and, for technical reasons, we suppose that wn ≥ e.

3 Wavelets and Besov balls

Let N ∈ N∗, and φ and ψ be the Daubechies wavelets dbN (in particular, φ
and ψ are compactly supported). We chose N such that φ ∈ Cυ and ψ ∈ Cυ
for υ > 1 + δ where δ refers to (3). Set

φj,k(x) = 2j/2φ(2jx− k), ψj,k(x) = 2j/2ψ(2jx− k).

Then there exists an integer τ and a set of consecutive integers Λj with a
length proportional to 2j such that, for any integer ` ≥ τ , the collection
B = {φ`,k(.), k ∈ Λ`; ψj,k(.); j ∈ N−{0, . . . , `−1}, k ∈ Λj} is an orthonormal

basis of L2([−Ω,Ω]) = {h : [−Ω,Ω] → R;
∫ Ω
−Ω h

2(x)dx < ∞}. We refer to
Cohen et al. (1993) and Mallat (2009).

For any integer ` ≥ τ , any h ∈ L2([−Ω,Ω]) can be expanded on B as

h(x) =
∑
k∈Λ`

α`,kφ`,k(x) +

∞∑
j=`

∑
k∈Λj

βj,kψj,k(x),

where αj,k and βj,k are the wavelet coefficients of h defined by

αj,k =

∫ Ω

−Ω
h(x)φj,k(x)dx, βj,k =

∫ Ω

−Ω
h(x)ψj,k(x)dx. (4)
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Let M > 0, s > 0, p ≥ 1 and r ≥ 1. A function h belongs to Bsp,r(M) if
and only if there exists a constant M∗ > 0 (depending on M) such that the
associated wavelet coefficients (4) satisfy

2τ(1/2−1/p)

(∑
k∈Λτ

|ατ,k|p
)1/p

+

 ∞∑
j=τ

2j(s+1/2−1/p)

∑
k∈Λj

|βj,k|p
1/p


r

1/r

≤M∗.

In this expression, s is a smoothness parameter and p and r are norm param-
eters. Besov balls contain the Hölder and Sobolev balls. See e.g. Meyer (1992)
and Mallat (2009).

4 Hard thresholding estimator

The first step to estimate f consists in expanding f on B and estimating its
unknown wavelet coefficients. For any integer j ≥ τ and any k ∈ Λj ,

– we estimate αj,k =
∫ Ω
−Ω f(x)φj,k(x)dx by

α̂j,k =
1

2πwn

n∑
v=1

1

(1 + σ2
v)δ

∫ ∞
−∞

F (φj,k)(x)

F(gv)(x)
e−ixYvdx,

– we estimate βj,k =
∫ Ω
−Ω f(x)ψj,k(x)dx by

β̂j,k =
1

wn

n∑
v=1

Gv,j,k1I{|Gv,j,k|≤θ2δj
√

wn
lnwn
}, (5)

where

Gv,j,k =
1

2π

1

(1 + σ2
v)δ

∫ ∞
−∞

F (ψj,k)(x)

F(gv)(x)
e−ixYvdx,

for any random event A, 1IA is the indicator function on A and θ =√
(C∗/2πc2∗)

∫∞
−∞(1 + x2)δ |F (ψ) (x)|2 dx.

We define the hard thresholding estimator f̂ by

f̂(x) =
∑
k∈Λτ

α̂τ,kφτ,k(x) +

j1∑
j=τ

∑
k∈Λj

β̂j,k1I{
|β̂j,k|≥κθ2δj

√
lnwn
wn

}ψj,k(x), (6)

where κ ≥ 8/3 + 2 + 2
√

16/9 + 4 and j1 is the integer satisfying

1

2
w1/(2δ+1)
n < 2j1 ≤ w1/(2δ+1)

n .



Wavelet-based density estimation in a heteroscedastic convolution model 5

The feature of the hard thresholding estimator is to only estimate the
”large” unknown wavelet coefficients of f which are those containing the main
characteristics of f . See e.g. Mallat (2009).

Our estimator (6) can be viewed as an extension of the one in Fan and
Koo (2002) to the heteroscedastic case.

The presence of the “observations thresholding” in (5) allows us to treat
this case under no restrictive assumptions on σ1, . . . , σn.

5 Results

Theorem 1 Consider (1) under the assumptions of Section 2. Let f̂ be (6)
and r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > (2δ + 1)/p}. Then, for a
large enough n, there exists a constant C > 0 such that

sup
f∈Bsp,r(M)

E

(∫ Ω

−Ω

(
f̂(x)− f(x)

)2
dx

)
≤ C

(
lnwn
wn

)2s/(2s+2δ+1)

.

The proof of Theorem 1 is based on (Chesneau 2011, Theorem 2) and several

probability results related to α̂j,k and β̂j,k.
Naturally, in the homoscedastic case, we have wn = Cn and we obtain

the same rate of convergence to the one attained by the hard thresholding
estimator in (Fan and Koo 2002, Theorem 2) i.e. (lnn/n)2s/(2s+2δ+1).

To discuss the minimax optimality of f̂ , the minimax lower bounds must
be explored. This is done in Theorem 2 below.

Theorem 2 Consider (1) under the assumptions of Section 2. Assume that
there exists a constant c∗ > 0 such that infv∈{1,...,n} σ

2
v ≥ c∗. Then there exists

a constant c > 0 such that, for any s > 0, p ≥ 1, r ≥ 1 and n large enough,

inf
f̃

sup
f∈Bsp,r(M)

E

(∫ Ω

−Ω

(
f̃(x)− f(x)

)2
dx

)
≥ c(w∗n)−2s/(2s+2δ+1),

where w∗n =
∑n
v=1 1/σ2δ

v and the infimum is taken over all possible estimators

f̃ of f .

The proof of Theorem 2 is based on (Tsybakov 2004, Theorem 2.5) and several
auxiliary results.

Note that, wn =
∑n
v=1 1/(1 + σ2

v)δ 6=
∑n
v=1 1/σ2δ

v = w∗n. However, if
there exists a constant c∗ > 0 such that infv∈{1,...,n} σ

2
v ≥ c∗, then we have

(lnwn/wn)2s/(2s+2δ+1) ≤ C(lnwn/w
∗
n)2s/(2s+2δ+1). Therefore, due to Theo-

rems 1 and 2, f̂ is optimal in the minimax sense up to the logarithmic term
(lnwn)2s/(2s+2δ+1).

Note that σ1, . . . , σn can really deteriorate the performance of f̂ . A simple
example is, for any v ∈ {1, . . . , n}, σ2

v = v and δ = 1: for n large enough,
wn = C lnn and w∗n = C lnn and the optimal rate of convergence becomes
(lnn)−2s/(2s+3).
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6 Proofs

Proof of Theorem 1. We will apply the following general result. It is a
reformulation of (Chesneau 2011, Theorem 2).

Theorem 3 (Chesneau (2011)) Let Ω > 0. We want to estimate an un-
known function f with support in [−Ω,Ω] from n independent random vari-
ables (or vectors) U1, . . . , Un. We consider the wavelet basis B and the nota-
tions of Section 3. Suppose that there exist n functions h1, . . . , hn such that,
for any γ ∈ {φ, ψ},

(A1) any integer j ≥ τ and any k ∈ Λj,

E

(
1

n

n∑
v=1

hv(γj,k, Uv)

)
=

∫ Ω

−Ω
f(x)γj,k(x)dx.

(A2) there exist a sequence of real numbers (µv)v∈N∗ satisfying limv→∞ µv =
∞ and two constants, θγ > 0 and δ > 0, such that, for any integer j ≥ τ
and any k ∈ Λj,

1

n2

n∑
v=1

E
(

(hv(γj,k, Uv))
2
)
≤ θ2γ22δj

1

µn
.

We define the hard thresholding estimator f̂ by

f̂(x) =

2τ−1∑
k=0

α̂τ,kφτ,k(x) +

j1∑
j=τ

2j−1∑
k=0

β̂j,k1I{|β̂j,k|≥κλj,n}ψj,k(x),

where

α̂j,k =
1

n

n∑
v=1

hv(φj,k, Uv), β̂j,k =
1

n

n∑
v=1

hv(ψj,k, Uv)1I{|hv(ψj,k,Uv)|≤ηj,n},

for any random event A, 1IA is the indicator function on A,

ηj,n = θψ2δj
√

µn
lnµn

, λj,n = θψ2δj

√
lnµn
µn

,

κ = 8/3 + 2 + 2
√

16/9 + 4 and j1 is the integer satisfying

(1/2)µ1/(2δ+1)
n < 2j1 ≤ µ1/(2δ+1)

n .

Let r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > (2δ + 1)/p}. Then
there exists a constant C > 0 such that

sup
f∈Bsp,r(M)

E

(∫ Ω

−Ω

(
f̂(x)− f(x)

)2
dx

)
≤ C

(
lnµn
µn

)2s/(2s+2δ+1)

.
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Let us now investigate the assumptions (A1) and (A2) of Theorem 3 with,
for any v ∈ {1, . . . , n}, Uv = Yv,

hv(γj,k, y) =
n

wn

1

(1 + σ2
v)δ2π

∫ ∞
−∞

F (γj,k)(x)

F(gv)(x)
e−ixydx

and µn = wn.

On (A1). Since Xv and εv are independent, we have

E
(
e−ixYv

)
= E

(
e−ixXv

)
E
(
e−ixεv

)
= F(f)(x)F(gv)(x).

This combines with the Fubini theorem and the Parseval-Plancherel theo-
rem yield, for any integer j ≥ τ and any k ∈ Λj ,

E

(
1

n

n∑
v=1

hv(γj,k, Yv)

)

=
1

wn

n∑
v=1

1

(1 + σ2
v)δ

1

2π

∫ ∞
−∞

F (γj,k)(x)

F(gv)(x)
E
(
e−ixYv

)
dx

=
1

wn

n∑
v=1

1

(1 + σ2
v)δ

1

2π

∫ ∞
−∞

F (γj,k)(x)

F(gv)(x)
F(f)(x)F(gv)(x)dx

=
1

2π

∫ ∞
−∞
F (γj,k)(x)F(f)(x)dx

(
1

wn

n∑
v=1

1

(1 + σ2
v)δ

)

=
1

2π

∫ ∞
−∞
F (γj,k)(x)F(f)(x)dx =

∫ Ω

−Ω
f(x)γj,k(x)dx. (7)

On (A2). We have

1

n2

n∑
v=1

E
(

(hv(γj,k, Yv))
2
)

=
1

w2
n

n∑
v=1

1

(1 + σ2
v)2δ(2π)2

E

∣∣∣∣∣
∫ ∞
−∞

F (γj,k)(x)

F(gv)(x)
e−ixYvdx

∣∣∣∣∣
2
 . (8)

Since Xv and εv are independent, the density of Yv is qv(x) = (f ?gv)(x) =∫∞
−∞ f(t)gv(x− t)dt, x ∈ R. Therefore

E

∣∣∣∣∣
∫ ∞
−∞

F (γj,k)(x)

F(gv)(x)
e−ixYvdx

∣∣∣∣∣
2
 =

∫ ∞
−∞

∣∣∣∣∣
∫ ∞
−∞

F (γj,k)(x)

F(gv)(x)
e−ixydx

∣∣∣∣∣
2

qv(y)dy

=

∫ ∞
−∞

∣∣∣∣∣F
(
F (γj,k)(.)

F(gv)(.)

)
(y)

∣∣∣∣∣
2

qv(y)dy.

(9)
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Since, by (2), supx∈R f(x) ≤ C∗ and gv is a density, we have

sup
v∈{1,...,n}

sup
x∈R

qv(x) ≤ C∗ sup
v∈{1,...,n}

∫ ∞
−∞

gv(t)dt = C∗.

The Parseval-Plancherel theorem and (3) imply that∫ ∞
−∞

∣∣∣∣∣F
(
F (γj,k)(.)

F(gv)(.)

)
(y)

∣∣∣∣∣
2

qv(y)dy ≤ C∗
∫ ∞
−∞

∣∣∣∣∣F
(
F (γj,k)(.)

F(gv)(.)

)
(y)

∣∣∣∣∣
2

dy

= 2πC∗

∫ ∞
−∞

∣∣∣∣∣F (γj,k)(x)

F(gv)(x)

∣∣∣∣∣
2

dx ≤ 2π
C∗
c2g

∫ ∞
−∞

(1 + x2σ2
v)δ |F (γj,k) (x)|2 dx.

(10)

By a change of variables, we obtain |F (γj,k) (x)| = 2−j/2
∣∣F (γ) (x/2j)

∣∣.
Using again a change of variables and the inequality 1 + σ2

vx
2 ≤ (1 +

σ2
v)(1 + x2), we have∫ ∞
−∞

(1 + x2σ2
v)δ |F (γj,k) (x)|2 dx = 2−j

∫ ∞
−∞

(1 + x2σ2
v)δ
∣∣F (γ) (x/2j)

∣∣2 dx
=

∫ ∞
−∞

(1 + 22jx2σ2
v)δ |F (γ) (x)|2 dx ≤ 22δj

∫ ∞
−∞

(1 + σ2
vx

2)δ |F (γ) (x)|2 dx

≤ 22δj(1 + σ2
v)δ
∫ ∞
−∞

(1 + x2)δ |F (γ) (x)|2 dx. (11)

It follows from (9), (10) and (11) that

E

∣∣∣∣∣
∫ ∞
−∞

F (γj,k)(x)

F(gv)(x)
e−ixYvdx

∣∣∣∣∣
2


≤
(

2π(C∗/c
2
g)

∫ ∞
−∞

(1 + x2)δ |F (γ) (x)|2 dx
)

22δj(1 + σ2
v)δ. (12)

Putting (8) and (12) together, we obtain

1

n2

n∑
v=1

E
(

(hv(γj,k, Yv))
2
)
≤ θ2γ22δj

1

w2
n

n∑
v=1

1

(1 + σ2
v)2δ

(1 + σ2
v)δ

= θ2γ22δj
1

w2
n

wn = θ2γ22δj
1

wn
, (13)

where θγ =
√

(C∗/2πc2g)
∫∞
−∞(1 + x2)δ |F (γ) (x)|2 dx.

It follows from Theorem 3, (7) and (13) that the hard thresholding estimator
(6) satisfies, for any r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > (2δ+1)/p},

sup
f∈Bsp,r(M)

E

(∫ Ω

−Ω

(
f̂(x)− f(x)

)2
dx

)
≤ C

(
lnwn
wn

)2s/(2s+2δ+1)

.

The proof of Theorem 1 is complete.
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Proof of Theorem 2. We will apply the following general result. It is (Tsybakov
2004, Theorem 2.5).

Theorem 4 (Tsybakov (2004)) Let (F , d) be a metric space, (X ,A, (Pθ)θ∈F )
be a probability space, m ∈ N−{0, 1}, Θ ⊆ F be a set containing m+1 elements
θ0, . . . , θm and, for any j ∈ {0, . . . ,m}, Pj = Pθj . We make the following as-
sumptions:

(H1) For any (j, k) ∈ {0, . . . ,m}2 with j 6= k, there exists δ > 0 such that

d(θj , θk) ≥ 2δ.

(H2) Let K be the Kullback divergence defined by

K(P,Q) =

{∫
ln
(
dP
dQ

)
dP if P << Q,

∞ otherwise.

There exists α ∈ (0, 1/8) such that

Km = inf
v∈{0,...,m}

1

m

∑
k∈{0,...,m}

k 6=v

K(Pk,Pv) ≤ α logm.

Then there exists a constant c > 0 such that

sup
θ̂

sup
θ∈Θ

Pθ(d(θ̂, θ) ≥ δ) ≥ c.

Consider the Besov balls Bsp,r(M). Let j0 be an integer suitably chosen

below. For any ε = (εk)k∈Λj0 ∈ {0, 1}
Card(Λj0 ), set

hε(x) = ρ(x) +M∗2
−j0(s+1/2)

2j0−1∑
k=0

εkψj0,k(x),

where M∗ > 0 is a constant,

ρ(x) =
C0

(1 + x2)r0
,

with r0 ∈ (1/2, 1) and C0 > 0 is such that ρ is a density. Then hε is a density
and, with a suitable M∗, hε ∈ Bsp,r(M) (see (Fan and Koo 2002, Lemma 4)).

The Varshamov-Gilbert theorem (see (Tsybakov 2004, Lemma 2.7)) as-
serts that there exist a set Ej0 =

{
ε(0), . . . , ε(Tj0 )

}
and two constants, c ∈]0, 1[

and α ∈]0, 1[, such that, for any u ∈ {0, . . . , Tj0}, ε(u) = (ε
(u)
k )k∈Λj0 ∈

{0, 1}Card(Λj0 ) and any (u, v) ∈ {0, . . . , Tj0}2 with u < v, the following hold:∑
k∈Λj0

|ε(u)k − ε
(v)
k | ≥ c2

j0 , Tj0 ≥ eα2
j0
. (14)
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Let us now consider the set Θ = {hε(u)(x); u ∈ {0, . . . , Tj0}} and the L2-

distance d(h, k) =
(∫ Ω
−Ω(h(x)− k(x))2dx

)1/2
for (h, k) ∈ (L2([−Ω,Ω]))2.

Note that, due to the Markov inequality, for any real number δ > 0, we have

inf
f̃

sup
f∈Bsp,r(M)

E

(∫ Ω

−Ω

(
f̃(x)− f(x)

)2
dx

)
≥ pδ2, (15)

where

p = inf
f̃

sup
u∈{0,...,Tj0}

Ph
ε(u)

(
d
(
f̃ , hε(u)

)
≥ δ
)

and Pf = ×nv=1Pvf where Pvf is the probability measure related to (1).
In order to bound p, let us now investigate the assumptions (H1) and (H2)

of Theorem 4 with the set Θ = {hε(u)(x); u ∈ {0, . . . , Tj0}} previously defined
(so m = Tj0) and the L2-distance.

On (H1). For any (u, v) ∈ {0, . . . , Tj0}2 with u 6= v, using the orthonormality

of B, the fact that, for any k ∈ Λj0 , |ε(u)k − ε
(v)
k | ∈ {0, 1} and (14), we have

d (hε(u) , hε(v)) =

(∫ Ω

−Ω
(hε(u)(x)− hε(v)(x))2dx

)1/2

= M∗2
−j0(s+1/2)

∫ Ω

−Ω

 ∑
k∈Λj0

(ε
(u)
k − ε

(v)
k )ψj0,k(x)

2

dx


1/2

= M∗2
−j0(s+1/2)

 ∑
k∈Λj0

|ε(u)k − ε
(v)
k |

1/2

≥ c2−j0(s+1/2)2j0/2 = c2−j0s.

Therefore, if we set δ = (c/2)2−j0s, we have

d (hε(u) , hε(v)) ≥ 2δ. (16)

On (H2). Let us now bound KTj0 . Let ? be the convolution product. Let χ2

be the chi-square divergence defined by

χ2(P,Q) =


∫ (

dP
dQ − 1

)2
dQ if P << Q,

∞ otherwise,

and set

Fj0(ξ) =

h ∈ L2([−Ω,Ω]); h(x) = ρ(x) +
∑
k∈Λj0

λj0,kψj0,k(x) : |λj0,k| ≤ ξ

 .
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For any f2 ∈ Fj0(ξ) with ξ ≤ C12−j0(s+1/2) where C1 > 0 denotes a suit-
able constant, we have supx∈[−Ω,Ω] |f2(x) − ρ(x)| ≤ (1/2) infx∈[−Ω,Ω] ρ(x)
and, a fortiori,

(f2 ? gv)(x) ≥ 1

2
(ρ ? gv)(x). (17)

Using (3) and infv∈{1,...,n} σ
2
v ≥ c∗, we have

| F(gv)(x)| ≤ Cg
(1 + σ2

vx
2)δ/2

≤ C

σδv(1 + x2)δ/2
. (18)

By the Fatou lemma, observe that

lim inf
|x|→∞

(1 + x2)r0(ρ ? gv)(x) ≥ C0

∫ ∞
−∞

lim inf
|x|→∞

(1 + x2)r0

(1 + (x− y)2)r0
gv(y)dy

= C0

∫ ∞
−∞

gv(y)dy = C0.

Therefore, for any v ∈ {1, . . . , n} and any x ∈ R,

(ρ ? gv)(x) ≥ C0(1 + x2)−r0 . (19)

Putting (17), (18) and (19) in (Fan and Koo 2002, Proof of Lemma 4), for
any functions f1 and f2 in Fj0(ξ) with ξ ≤ C12−j0(s+1/2), we have, for any
v ∈ {1, . . . , n},

χ2
(
Pvf1 ,P

v
f2

)
=

∫ ∞
−∞

((f1 ? gv)(x)− (f2 ? gv)(x))
2

(f2 ? gv)(x)
dx

≤ 2

∫ ∞
−∞

(((f1 − f2) ? gv)(x))
2

(ρ ? gv)(x)
dx

≤ C2j0ξ22−2δj0
1

σ2δ
v

∫ ∞
−∞

(1 + |x|)−4(1 + x2)r0dx

≤ C2j0ξ22−2δj0
1

σ2δ
v

≤ C2−2j0(s+1/2+δ)2j0
1

σ2δ
v

. (20)

Using the elementary inequality: K(P,Q) ≤ χ2(P,Q), and (20), we have,
for any (u, v) ∈ {0, . . . , Tj0}2 with u 6= v,

K
(
Ph

ε(u)
,Ph

ε(v)

)
=

n∑
v=1

K
(
Pvh

ε(u)
,Pvh

ε(v)

)
≤

n∑
v=1

χ2
(
Pvh

ε(u)
,Pvh

ε(v)

)
≤ C2−2j0(s+1/2+δ)2j0

n∑
v=1

1

σ2δ
v

= Cw∗n2−2j0(s+1/2+δ)2j0 .
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Hence

KTj0 = inf
v∈{0,...,Tj0}

1

Tj0

∑
u∈{0,...,Tj0}

u 6=v

K
(
Ph

ε(u)
,Ph

ε(v)

)

≤ Cw∗n2−2j0(s+1/2+δ)2j0 .

Choosing j0 such that

2−j0(s+1/2+δ) = c0
1

(w∗n)1/2
(i.e. 2j0 = (w∗n)1/(2s+2δ+1)), (21)

where c0 denotes a suitable constant, (14) implies the existence of α∗ ∈
(0, 1/8) satisfying

KTj0 ≤ Cc
2
02j0 ≤ α∗ log Tj0 . (22)

It follows from Theorem 4, (16), (21) and (22) that

p = inf
f̃

sup
u∈{0,...,Tj0}

Ph
ε(u)

(
d
(
f̃ , hε(u)

)
≥ δ
)
≥ c > 0

and, by (15),

inf
f̃

sup
f∈Bsp,r(M)

E

(∫ Ω

−Ω

(
f̃(x)− f(x)

)2
dx

)
≥ pδ2 ≥ c2−2j0s

= c(w∗n)−2s/(2s+2δ+1).

The proof of Theorem 2 is complete.
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Härdle, W., Kerkyacharian, G., Picard, D. and Tsybakov, A. (1998). Wavelet, Approxima-
tion and Statistical Applications, Lectures Notes in Statistics New York 129, Springer
Verlag.

Lacour, C. (2006). Rates of convergence for nonparametric deconvolution. C. R. Acad. Sci.
Paris Ser. I Math., 342 (11), 877-882.

Lounici, K. and Nickl, R. (2011). Global Uniform Risk Bounds for Wavelet Deconvolution
Estimators. The Annals of Statistics, 39, 201-231.

Mallat, S. (2009). A wavelet tour of signal processing. Elsevier/ Academic Press, Amsterdam,
third edition. The sparse way, With contributions from Gabriel Peyré.
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