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Seismic attenuation in a phase change coexistence loop1

Yanick Ricard, J. Matas and F. Chambat2

Laboratoire des Sciences de la Terre, CNRS, Université de Lyon, Bat Géode, 2 rue3

Raphael Dubois, 69622, Villeurbanne, 07, France.1,1
4

Abstract5

Most phase transformations in the mantle occur across regions of multi-phase coexis-

tence. Inside these regions, the long term incompressibility becomes very low because

the density can increase both by compression and by changingphase. This difference

between long term and elastic incompressibilities is a typical situation where seismic

attenuation may happen. In this paper, we discuss the various differences between the

classical theory of sound attenuation in a reacting fluid andthe case of seismic propa-

gation in a two-phase loop. We derive a simple analytical model of a two-phase loop to

show that the phase change should affect both the bulk and theshear attenuation and in

rather similar proportion. We show that attenuation occursover two different frequency

ranges. For the olivine-wadsleyite phase change, the low frequency attenuation occurs

for periods larger than hundreds of years but the high frequency band occurs between 1

mn and 1 h (from 16 to 0.27 mHz) in the domain of surface waves and seismic modes.

We predict both bulk and shear quality factors between 1-10 in the middle of the 410

km phase loop.

Key words: Seismic attenuation, phase change6

The response to stress changes of the mineral aggregate thatconstitutes the man-7

tle controls the velocity and dissipation of seismic waves.As it is generally easier to8

work with arrival times or velocities of seismic waves than with their amplitudes, the9

seismologists have made more remarkable progress in mapping radial or 3D velocity10

structures than in mapping the attenuation. The scatteringof seismic waves by small11

scale heterogeneities and the focussing-defocussing effects of wave propagation in the12

presence of 3D velocity structures are indeed difficult to separate from intrinsic atten-13
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uation. In spite of observational difficulties, several global models of 1D attenuation14

have however been published (e.g. Dziewonski and Anderson,1981; Widmer et al.,15

1991; Durek and Ekstrom, 1996). The disagreement between them is however large16

and often larger than the uncertainties suggested by each individual model (see e.g.,17

Romanowicz and Mitchell, 2007, for a discussion). Three dimensional models are also18

available but are still a challenge and only the structures of the largest wavelengths19

have been mapped (Gung and Romanowicz, 2004). A better knowledge of attenuation20

is necessary to interpret the tomographic images and would however significantly im-21

prove our knowledge of mantle temperature (Anderson and Given, 1982; Karato and22

Karki, 2001; Matas and Bukowinski, 2007; Brodholt et al., 2007; Lekic et al., 2009).23

In the last 40 years, (e.g., Jackson and Anderson, 1970; Anderson, 1976; Karato24

and Spetzler, 1990), various attenuation mechanisms have been discussed including25

those due to phase changes. The attenuation of sound in a media undergoing a phase26

change is indeed a classical example of irreversible process that leads to attenuation27

(de Groot and Mazur, 1984). Recently Li and Weidner (2008) have succeeded in the28

very difficult laboratory measurement of attenuation that takes place across the mantle29

transition zone, due to the presence of phase changes. Theirpaper assumes that the30

phase change attenuation is only related to compression, i.e., to what seismologists31

call the ”bulk attenuation” (the quantity of energy lost during an oscillation of a pure32

isotropic compression). This attenuation is accounted forby the quality factorQκ on33

which seismologists have very little resolution. Seismologists tend to ascribe most of34

the attenuation to the ”shear attenuation” accounted for bythe quality factorQµ.35

In the laboratory, the pressure changes used to drive the phase change are at the36

gigapascal level, while those due to seismic wave propagation are much smaller, typi-37

cally of order 10−7 GPa (e.g., Aki and Richards, 2002). To rescale their observations,38

Li and Weidner (2008) propose a qualitative model of attenuation where the pressure39

perturbationδP associated with the seismic wave would drive the phase change at the40

interface between two grains by a distanced ∝ δP and this length should be compared41

to the timet necessary for cation diffusion, witht ∝ d2. Their model suggests therefore42

that the attenuation and the relaxation times are related tothe amplitude of the seismic43

perturbation. This non-linearity would invalidate various assumptions of seismology,44
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like the principle of linear superposition or the ability todescribe the wavefield obser-45

vation of an instrument as a series of convolutions. It wouldimply that seismic waves46

from large earthquakes see a more attenuating mantle than those from small ones.47

The model of Li and Weidner (2008) is based on general considerations that are48

explained in more details in Jackson (2007). However, Jackson (2007) warns us that49

”no attempt has been made to model the time-dependent stressat the phase boundary50

or the transformation kinetics, potentially strongly influenced by the rheology of the51

surrounding medium”. This is what we do in this paper where wepropose a micro-52

mechanical model of a coexistence loop. We show that dissipation occurs in two dif-53

ferent time periods and that the resulting attenuations areindependent of the seismic54

wave amplitudes. We confirm that phase change loops may be thezones of large atten-55

uations. We show that they should affect rather similarly the compressibility and the56

shear modulus.57

1. Reaction rates of phase changes58

The mechanism of attenuation due to a phase change in the mantle (or in a fluid) is59

easy to understand (de Groot and Mazur, 1984). The changes ofpressure due to a prop-60

agating sound wave affect differently the chemical potentials of the various coexisting61

phases and thus modify locally the thermodynamic equilibrium. This drives a miner-62

alogical phase change, a possible source of dissipation. However, the theory of seismic63

attenuation in the mantle cannot be directly derived from that of sound attenuation in64

fluids because the physics differs by at least four aspects.65

• First, the propagation of elastic waves is related to the rigidity µ (entirely for the66

S waves, and partly for the P waves) which is not considered for sound wave67

attenuation in fluids.68

• Second, contrary to gases or fluids that are usually used in textbooks to illustrate69

thermodynamics, the thermodynamic equilibrium in complexsolid aggregates70

is related to stresses, not to pressure. The pressure is not acontinuous quantity71

across the grain interfaces. According to Shimizu (1997), achemical potential72
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tensor should be defined on interfaces and the reaction rate should also depend73

on the crystal orientation. We assume here that the equilibrium on an interface74

only depends on the stresses normal to this interfaceσn which is a continuous75

variable (Paterson, 1973). In the absence of any viscoelastic stresses, the normal76

stress and the pressure can be identified and the usual thermodynamic rules are77

recovered.78

• Third, the rheology of the mantle is not only simply elastic but viscoelastic.79

Deviatoric stresses can relax for times larger than the Maxwell time of the vis-80

coelastic mantle, the ratio of viscosity to rigidity (see e.g., Ricard, 2007).81

• Fourth, the phase transformations in the mantle are not univariant. As mantle ma-82

terials are solid solutions and involves various cations, the phase changes occur83

across phase loops where two of more phases of various compositions coexist.84

For example, around 410 km, an olivine with a Fe/Mg ratio typically of 1/1085

(Ringwood, 1982), enters a phase loop where wadsleyite, with a larger Fe/Mg86

ratio, nucleates and then grows. This larger ratio is balanced by a symmetrical87

decrease of the Fe/Mg ratio in the remaining olivine. Acrossthe phase loop the88

percentage of wadsleyite increases with depth and this wadsleyite has a decreas-89

ing Fe/Mg ratio until the ratio of 1/10 which corresponds to the disappearance of90

the last grains of olivine. Notice that in a phase loop, the two phases are already91

present and the nucleation of new grains should not control the kinetics of trans-92

formation, contrary to what may happen when a single phase moves through a93

phase transition (Rubie and Ross, 1994).94

The sound propagation theory shows that the attenuation is ultimately related to95

the difference between the elastic parameters at very high frequency (the unrelaxed96

parameters) and those at very low frequency (the relaxed parameters) if the relaxation97

occurs within the period of the sound wave. The time dependent pressure variations98

δP (t) due a a high frequency seismic body wave, and the associated density variations99

δρ(t) are related by100

δP (t) = κ∞

δρ(t)

ρ
, (1)101
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whereκ∞ is the elastic incompressibility (or elastic bulk modulus). The subscript102

∞ indicates that this corresponds to the limit of infinite frequency,ω = +∞. More103

precisely,κ∞ should be the isentropic incompressibilityκS but we will not distinguish104

in this paper between the isothermal and isentropic elasticincompressibilities,κT and105

κS , that are at any rate, equal within 1%.106

At thermodynamic equilibrium, inside a multi-phase loop where the density jumps107

by ∆ρ over a depth range∆P , depth dependent pressure variations and depth depen-108

dent density variations are roughly proportional and related by109

dP

dr
=

κ0

ρ

dρ

dr
with κ0 = ρ

∆P

∆ρ
. (2)110

The equilibrium relation (2) defines the relaxed bulk modulus in the limit of zero fre-111

quency.112

If we take the example of the phase change around 410 km depth,between olivine113

and wadsleyite, the unrelaxed incompressibility (elasticbulk modulus) is aroundκ∞ =114

180 GPa. With an average density of 3630 kg m−3 and a density jump of180 kg115

m−3 over a thickness of 10 km (this value is reasonable although estimates ranging116

from 5 to 30 km have been proposed (see e.g., Shearer, 2000; Van der Meijde et al.,117

2003; Ricard et al., 2005)), the relaxed incompressibilityis κ0 = 7 GPa. Outside118

a coexistence loop, the elastic incompressibilityκ∞ that can be measured by a time119

dependent phenomenon (the propagation of elastic waves) and the incompressibility120

measured along a radial profileκ0 are usually considered as equal (or at least very121

close, see e.g., Bullen, 1940).122

The numerical expression ofκ0 in eq. (2) can be expressed in a more physical123

way that demonstrates thatκ0 is bounded byκ∞ (Li and Weidner, 2008). The density124

jump across a phase change∆ρ is due both to an intrinsic density jump∆ρχ (the125

density difference between the two phases at a given pressure and temperature) and to126

the compression of the material across the coexistence loop. In other term, the relaxed127

compressibility in the phase loop,1/κ0, is due both to the elastic compressibility1/κ∞128

and to an apparent compressibility to the density jump∆ρχ existing between the two129
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phases so that130

1

κ0

=
1

κ∞

+
∆ρχ

ρ

1

∆P
>

1

κ∞

. (3)131

When the transition thickness becomes very large,κ∞ andκ0 become therefore equal.132

The evolution of an interface interacting with an elastic wave can be computed from133

the mechanical properties of the two phases and the boundaryconditions on the inter-134

face. At the interface between grains, the total normal stress (pressure plus deviatoric135

stress) and shear stress are continuous. The boundary condition for the velocity across136

the reacting interface is expressed by137

ρα(vα − V).n = ρβ(vβ − V).n = −∆Γ, (4)138

whereρi andvi are the densities and the velocities of each phase,n the normal to the139

interface of the two media, directed fromα to β, V the interface velocity and∆Γ the140

reaction rate of theα → β reaction (in kg m−2 s−1). The velocity jump across the141

interface is therefore142

(vα − vβ).n = −
∆ρ

ραρβ

∆Γ, (5)143

where∆ρ stands forρβ − ρα.144

Although the expression of the reaction rate∆Γ might be very complex, it must145

cancel when the two phases are at thermodynamic equilibrium. The definition of the146

thermodynamic equilibrium is however subtle in the two-phase loop, and we discuss147

here two possible equilibrium conditions. We show in the following that the choice of148

one or the other expression does not change our conclusions on the seismic attenuation149

within the two-phase loop.150

When the material inside a phase loop is at equilibrium, the reaction rate is zero.151

When the system is perturbed, for example by a change of the far-field pressure,152

the normal stress on interfaces changes. The rules of irreversible thermodynamics153

(de Groot and Mazur, 1984) suggests that the reaction rate close to equilibrium is pro-154

portional to the distance to equilibrium, i.e. to the changeof affinity of the reaction.155

The associated changes of chemical potentials are initially related to the normal156

stress perturbations on the grain interfacesδσn. Therefore the reaction rate has often157

6



Page 7 of 30

Acc
ep

te
d 

M
an

us
cr

ip
t

been chosen in previous modelling to be (e.g. Morris, 2002; Krien and Fleitout, 2008)158

∆Γ ∝ −δσn, (6)159

(the minus sign comes from the convention sign for normal stress, opposite to pressure,160

in fluid mechanics). For a very slow perturbation, however, the equation (6) cannot161

hold. On a time scale for which inter atomic diffusion occurs, the Fe/Mg content of162

each phase evolves, and as the chemical potentials are also functions of composition, a163

new equilibrium is found. The reaction occurs until the pressure change and the density164

change are related by the condition (2). This implies to choose165

∆Γ ∝ −δσn − κ0

δρ

ρ
. (7)166

This relation could be rigourously obtained by following the more formal derivation of167

de Groot and Mazur (1984) provided the pressure replaces thenormal stress. Asκ0 is168

very small, we will see that the difference in the attenuation predictions between using169

(6) or (7) is however only sensible at very long periods, outside the seismic frequency170

band.171

We now need to define the geometrical distribution of the phases inside the loop172

and use (4) with (6) or (7) to be able to predict the effect of a seismic wave on the173

interface and thus on the attenuation. We assume that in eachhalf of a phase loop, the174

minor phase is made of spherical grains surrounded by the major phase (Morris, 2002).175

For example, in the shallower half of the 410 km depth transition, we consider theβ-176

phase as surrounded by theα matrix (see Figure 1). The outer radiusRe represents177

the average distance between the grains with radiir ≤ Re of the minor phase. In the178

deepest part of the loop, the majorβ-phase is supposed to surround the last grains ofα179

phase. This model will be used to describe the whole loop, although it is obvious that180

none of the two phases surrounds the other one in the middle ofthe loop.181

When the normal stress on an interface is increased, a new filmof the high pres-182

sureβ-phase grows at the expense of the low pressureα-phase. This reaction, associ-183

ated with minor changes of volume, facilitates the deformation, decreases the effective184

7
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strength, dissipates the elastic energy and therefore leads to attenuation. Notice that185

with the low pressure changes involved during the propagation of a seismic front,∼186

10−7 GPa, the thickness of the reacting film is only nanometric (Liand Weidner, 2008).187

This very small perturbation is however a significant sourceof dissipation.188

2. Radial deformation and complex incompressibility189

We assume for simplicity that the two phases have the same elastic properties with190

bulk modulusκ and rigidityµ. We neglect the difference of these parameters for the191

two phases which is of the order of the jumps in incompressibility and rigidity, about192

10% in PREM, at 410 km depth (Dziewonski and Anderson, 1981).We introduce the193

normalized radiuss = r/Re whereRe is the external radius and we useS for the value194

of s on the two-phase interface.195

In the case of isotropic radial compression of the two mediumof Figure 1, it is196

straightforward to show that with spherical symmetry the radial deformationur(s) in197

an elastic shell of compressibilityκ∞ and rigidityµ can be written198

ui
r = ais +

bi

s2
, (8)199

with i = α in the outer shell andi = β, inside (bβ is obviously 0 to insure thatuβ
r is200

finite ats = 0). The change of density is201

δρ = −3ρ̄
ur(Re)

Re

, (9)202

and the effective compressibility of the medium isκ,203

κ = ρ̄
δP

δρ
= −

Re

3ur(Re)
δP, (10)204

whereur(Re) andδP are the radial displacement and the pressure perturbation at the205

outer radiusRe.206

By using the general expression of the jump of normal velocity (5) and one of the207

8
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kinetic laws (6) or (7), we can write208

vα − vβ = C

(

δσn(S) − 3κ0

u(Re)

Re

)

, (11)209

whereC is a kinetic factor in m s−1 Pa−1 (the factorC includes the∆ρ/ραρβ term210

of (5)). By choosing a vanishingly smallκ0 or the κ0 deduced from the observed211

thickness of the transition we will be in agreement with (6) or with (7).212

If a sinusoidal pressure perturbation of frequencyω, δP exp(iωt), is applied on213

the external rim, the deformations and therefore the coefficientsai andbi, will also214

vary at the same frequency. From the general expression of the deformation, (8), the215

normal stress can be expressed (see Appendix A). By matchingthe normal stresses216

across the phase boundary ats and using the normal velocity jump condition (11) with217

vα = iωuα
r andvβ = iωuβ

r , the three constantsaα, bα andaβ can be found from which218

the effective incompressibility (10) is readily obtained (see Appendix A).219

We get220

κHF = κ∞ +
κi − κ∞

1 + iωτ1

, (12)221

(HF stands for ”high frequency” as it will be explained below) where222

κi = κ∞ − S3(κ∞ − κ0)
κ∞ + 4µ∞/3

κ∞S3 + 4µ∞/3
, (13)223

and where the relaxation constantτ1 is224

τ1 =
ReS

3Cκ∞

κ∞ + 4µ∞/3

κ∞S3 + 4µ∞/3
. (14)225

The use of the subscriptsi for ”intermediate” will soon be explained. The incompress-226

ibility at infinite frequency which is usually called the unrelaxed incompressibility is227

simply the elastic incompressibilityκ∞, while κi is the relaxed incompressibility ob-228

tained forω = 0.229

It might be surprising that the relaxed incompressibilityκi in this model does not230

correspond to the incompressibilityκ0 (see (2)) obtained from a radial seismological231

model. This is because in a purely elastic model, the deviatoric stresses remain in the232

9
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elastic matrix even at infinite time. To clarify this point wehave to remember that at233

large times, the Earth mantle does not behave as elastic but as viscous. The rigidity in234

the definition ofκi, is in fact the high frequency limit of a viscoelastic rheology (see235

e.g., Ricard, 2007)236

µ∗ = µ∞

iωτM

1 + iωτM

, (15)237

whereτM is the Maxwell time, ratio of viscosity to rigidity (the realelastic rigidity).238

If we redo the same modeling usingµ∗ instead ofµ∞ we get the same expressions239

as (12) and (13) but whereµ∗ replacesµ∞. The new expression of the viscoelastic240

incompressibility can be simplified and becomes after some algebra241

κ = κ∞ +
κi − κ∞

1 + iωτ1

+
κ0 − κi

(1 + iωτ1)(1 + iωτ2)
, (16)242

with the long relaxation timeτ2243

τ2 = τM

κS3 + 4µ/3

κS3
. (17)244

We can safely assume, at least for the olivine-wadsleyite transformation (see e.g., Li245

and Weidner, 2008), thatτ1 << τ2 ∼ τM , i.e., that the reaction occurs in a time246

shorter than the Maxwell time of a few hundred years. As is physically expected, the247

high frequency limit, when1 << ωτ1 << ωτ2 is the elastic valueκ = κ∞ and the248

low frequency limitωτ1 << ωτ2 << 1 is the incompressibility deduced from the249

thickness of the phase loop,κ = κ0. The incompressibility variations occur within two250

frequency bands, one forωτ1 ∼ 1 (and thusωτ2 >> 1) in which we recover (12),251

κ ≃ κHF = κ∞ +
κi − κ∞

1 + iωτ1

, (18)252

where HF stands for high frequency and a second one forωτ2 ∼ 1 (andωτ1 << 1) in253

which we get254

κ ≃ κLF = κi +
κ0 − κi

1 + iωτ2

. (19)255

This is the low frequency approximation ofκ. The low frequency limit of the high256

frequency incompressibility,ω = 0 in (18), is κi which of course is also the high257

10
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frequency limit of the low frequency incompressibility,ω = +∞ in (19). In other258

words, the intermediate incompressibilityκi that we considered as relaxed with respect259

to the short time scale of phase change can in turn be seen as unrelaxed with respect to260

the large time scale of viscous flow.261

Using experiments of Kubo et al. (1998) on growth of wadsleyite from olivine at262

13.5 GPa and 1300 K, Morris (2002) suggests that the kinetic constant isC = 45 nm263

s−1 GPa−1. Although it is not obvious to derive a value ofC from the paper of Li264

and Weidner (2008), they mention reaction lengths of a fewµm, in∼1 h, for pressure265

offsets of∼ 0.1 GPa which, within one order of magnitude, corresponds to thesame266

range of kinetic constant. We choose a Maxwell time ofτM = 174 yr corresponding to267

a viscosity of 1021 Pa s, and a radiusRe corresponding to the average distance between268

grains equal to 1 mm.269

We show in Figure 2 the evolution of the time constantsτ1 to τ2 across the phase270

change. The volume ratio ofβ-phase across the loop varies more or less linearly with271

depth. The time constants are assumed symmetrical with respect to the vertical axis,272

S3 = 1/2 (we assume that the minor phase is always in the inner sphere;theβ-phase273

proportion is thusS3 until a proportion of 50%,1 − S3 after). They do not vary much274

across the phase transition except when a phase is in a very small proportion. The short275

time constants for incompressibility relaxationτ1 is lower than 48 s. The long time276

constantτ2 is larger than the Maxwell timeτM .277

Figure 3 depicts the evolution of the real and imaginary partof the incompressibil-278

ity in the middle of the phase loop,(S3 = 1/2). The kinetic laws (6) and (7) have been279

used for the results of Re(κ) depicted with thick and thin lines, respectively. The two280

curves are very similar for short periods where the elastic incompressibility is recov-281

ered. They differ at long periods where the equilibrium in the loop imposes a relation282

between density and pressure given by the incompressibility κ0. For intermediate pe-283

riods, the phase change is inhibited by the elastic stressescontrolled by the rigidity.284

The relaxation occurs in two steps over two different time ranges. During the high fre-285

quency relaxation, the reaction is limited by the elastic support that protects the minor286

phase. The reaction is controlled by diffusion and viscous relaxation at low frequency.287

11
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3. Pure shear deformation and complex rigidity288

The existence of a phase change has also an effect on the rigidity. When at uniform289

pressure, the stresses are not uniform, the high pressure phase grows in the direction290

of the maximum stress and the reverse reaction occurs in the perpendicular direction.291

This eases the deformation and therefore reduces the effective rigidity. Notice that it is292

only because the chemical potential in solids is related to the normal stress not to the293

pressure (uniform in a pure shear deformation) than reactions occur.294

An analytical expression can be obtained, although the derivation is more cumber-295

some and less rigourous than in the spherical case. Let us consider the deformation of a296

nucleus ofβ-phase surrounded by a shell ofα-phase when a pure shear deformation is297

applied to the external boundary. The pure shear deformation far from the central nu-298

cleus is in cartesian coordinatesuz = −γz, ux = γx/2 anduy = γy/2 (γ is the strain)299

and can be written in spherical coordinates after a standardchange of coordinates300

ur = −
1

2
γr(3 cos2 θ − 1), and uθ =

3

2
γr cos θ sin θ, (20)301

whereθ is the colatitude.302

In a pure shear experiment performed in a laboratory, the rigidity would be the303

ratio between the vertical stress applied on the surface of acore sample, at position304

z, and the vertical strain measured at the same position−zσzz(z)/2uz(z). In our305

analytical model, instead of imposing the deformation on surfaces of constant cartesian306

coordinates, they are imposed on the sphere or radiusRe. We consider that the effective307

rigidity can however be estimated by308

µ = −
σrr(Re, θ))Re

2ur(Re, θ)
. (21)309

We can solve for the deformation inside the two-phase aggregate by assuming that310

it keeps the same degree 2 geometry. As the radial stress and the radial deformation311

have the same geometry,µ is independent ofθ. In this case, the general solution of the312

12
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momentum balance yields313

ui
r =

(

ais + bis
3 +

ci

s2
+

di

s4

)

(3 cos2 θ − 1) (22)314

and315

ui
θ =

(

−3ais − bi

7µ + 5λ∞

λ∞

s3
− 6

µ∞

3λ∞ + 5µ

ci

s2
+ 2

di

s4

)

cos θ sin θ (23)316

wheres is again the normalized radiuss = r/Re, λ∞ = K∞ − 2µ∞/3 is an elastic317

Lamé parameter, andi stands forα or β.318

Using (22) and (23), the stress tensor can be computed in the inner sphere and in319

the outer shell (see Appendix B). The final resolution involves the determination of 6320

parametersaα, bα, cα, dα, aβ andbβ. They can be obtained by matching 6 boundary321

conditions; the continuity of shear stress, normal stresses and tangential deformation322

on the interface, the jump condition for the normal velocityon the interface, and the 2323

external boundary conditions (20) (see Appendix B). Noticethat no density variation324

occurs in the assemblage submitted to a pure shear and the kinetic law (6) is therefore325

appropriate. Similarly to what we obtain for the incompressibility, the effective rigidity326

deduced from the model can be written as327

µHF = µ∞ +
µi − µ∞

1 + iωτ3

. (24)328

where the intermediate rigidityµi is329

µi = µ∞ − µ∞F (S,
κ∞

µ∞

), (25)330

whereF is a cumbersome function ofS andκ∞/µ∞. We can choose for simplicity331

κ∞ = 5µ∞/3 which corresponds to a Poisson ratio of 1/4 (or to the equality of the332

two Lamé Parametersλ∞ andµ∞, (e.g. Malvern, 1969)) which is a common rule of333

thumb for elasticity of silicates. In this case, the function F is334

F (S,
κ∞

µ∞

=
5

3
) = 105S3

8 + S2

604 + 280S3 + 56S5 + 5S7
, (26)335
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and the relaxation timesτ3 is336

τ3 = 315
SRe

Cµ∞

1

604 + 280S3 + 56S5 + 5S7
. (27)337

The constantτ3 of shear modulus relaxation is also depicted in Figure 2 and its value338

is comparable to that appearing in the high frequency incompressibilityτ2.339

Like for the incompressibility, the intermediate rigidityµi that corresponds to the340

relaxed limit of the rigidity with respect to the short time scale of phase change can in341

turn be seen as an unrelaxed rigidity for periods larger thanτ3 but much smaller than342

the Maxwell time. Replacing directly in (24) and (25),µ∞ by µ∗, see (15), is straight-343

forward but leads to a very complex expression ofµ. We checked numerically that the344

behavior ofµ∗F (κ∞/µ∗) can be qualitatively approximated byµ∗F (κ∞/µ∞). For345

periods much larger thanτ3, the rigidity varies therefore as346

µ =

(

µ∞ +
µi − µ∞

1 + iωτ3

)

iωτM

1 + iωτM

. (28)347

As τ3 << τM , the expression of the rigidity at high frequency, whenωτM >> 1 is348

µ ≃ µHF . At low frequency, whenωτ3 << 1 we get349

µ ≃ µLF = µi −
µi

1 + iωτM

, (29)350

which reaches zero after complete relaxation whenω = 0, i.e., when the medium351

behaves viscously rather than elastically.352

The real and imaginary parts of the rigidity are plotted in Figure 3. Like for the353

incompressibility, two transitions are predicted. The lowfrequency transition only354

occurs when the elastic stresses in the surrounding shell relax and stop screening the355

inner nucleus from the outside stresses. At zero frequency (infinite period), the rigidity356

vanishes contrary to the incompressibility that remains finite.357
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4. Bulk and shear attenuations358

In the case of complex elastic parameters, the seismic wavespropagates with a359

frequency-dependent attenuation usually defined by the quality factors Qξ whereξ360

stands forκ or µ. These quality factors are defined by361

Qξ = −
Re(ξ)

Im(ξ)
=

ξR + ξUω2T 2

R

(ξU − ξR)ωTR

, (30)362

whereTR is the appropriate relaxation time, Re(ξ) and Im(ξ) the real and imaginary363

parts ofξ that varies between the relaxed and unrelaxed limits,ξR (for ω = 0) andξU
364

(for ω = +∞). Attenuation is maximum at the frequency365

ω0 =
1

TR

√

ξR

ξU
, (31)366

whereQξ reaches its minimum367

Q0

ξ = 2

√

ξRξU

ξU − ξR
. (32)368

Notice that in our model, each elastic parameter has low and high frequency modes.369

The bulk modulus can relax fromξU = κ to ξR = κi with the time constantτ1, then370

from ξU = κi to ξR = κ0 with the time constantτ2. Similarly, the rigidity relaxes371

from ξU = µ to ξR = µi with the time constantτ3, then fromξU = µi to ξR = 0 with372

the time constantτM .373

Figure 5 depicts the minimum quality factorQ0

κ andQ0

µ for the various relaxation374

times and across the two-phase loop. Like for Figure 2, we assume that our model is375

valid until S3 = 1/2, then swap the roles of the minor and major phases, which simply376

symetrises the results with respect to the middle of the loop. Values lower than 10 are377

predicted for the high frequency bands. The bulk attenuation in the coexistence loop378

observed by Li and Weidner (2008) is indeed found maximum when the two phases379

are in similar proportions, as predicted by our model. To compute the bulk attenuation,380

we use either aκ0 deduced from the thickness of the phase change (thick line, see eq.381

(7)) or κ0 = 0 (thin line, see (6)). This does not really change the predicted quality382
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factor. The low frequency bulk attenuation is very low but corresponds to very long383

time constants not relevant to seismology as seen on Figure 6.384

Figure 6 depicts the attenuation quality factorQκ andQµ computed at the center385

of the phase loop (S3 = 1/2) as a function of the period of the excitation. The solid386

lines correspond to the bulk attenuation, the dashed line tothe shear attenuation. A387

minimum of quality factors is predicted for frequencies between 0.27 and 16 mHz388

(periods between 1 mn and 1 h). At very low frequencies, when the mantle behaves389

viscously, the quality factors become also very low. Assuming a zeroκ0 or a finiteκ0390

is only visible at very long periods: the phase loop maintains a finite compressibility391

(thick line) in the latter case, but cannot resist compression (thin line) in the former392

case. The shear quality factor reaches zero at zero frequency where the mantle behaves393

viscously rather than elastically. The general behavior for the shear attenuation is that394

of a linear solid called a Burger body (see e.g. Karato and Spetzler, 1990). The bulk395

attenuation behaves differently as contrary to the Burger body, the quality factor does396

vanish at infinite periods.397

The fact that the bulk quality factor is lower than the shear quality factor is not a398

general result of our model. The differenceκi−κ∞ that controls the bulk attenuation is399

proportional toκ0 − κ∞ (see (12) and (13)). This difference tend to decrease when the400

loop thickness increases (see (3)). On the contrary the differenceµi − µ∞ controlling401

the shear attenuation is independent of the loop thickness (see (24)). The ratioQκ/Qµ402

decreases therefore with the loop thickness. Increasing the loop thickness over 50 km403

for the 410 km transition (keeping the other parameters unchanged) would lead toQµ404

lower thanQκ. In other words, a thin loop is mostly attenuating because ofits Qκ, a405

thick one because of itsQµ.406

5. Conclusions407

Our model of attenuation in coexistence loop is certainly simplified in particular in408

the description of the geometry of the two phases. However webelieve that various409

aspects of our model are very robust.410

We confirm that the phase loops, in agreement with Li and Weidner (2008) should411
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be the location of a significant attenuation for periods belonging to the low frequency412

seismic band (surface waves and seismic modes). However in their paper, only the bulk413

attenuation was taken into account whereas we have shown that the shear attenuation414

should be affected as well. Moreover, we found that the two attenuations and their415

relaxation times are independent of the amplitude of the seismic wave in agreement416

with the usual assumption of seismology. The attenuation bands are narrow because417

of our assumption of a unique grainsize across the coexistence loop. A distribution of418

grainsizes would probably broaden the frequency bands of attenuation.419

Another large difference between Li and Weidner (2008) and the present paper is420

that the transition between the elastic incompressibility, κ∞ and that deduced from421

PREMκ0 (very low incompressibility in coexistence loops) does notoccur in a single422

step but in two steps. This is summarized in Figure 7 where we plot as a function of423

depth the instantaneousκ∞, the intermediateκi and theκ0 bulk moduli. We derived424

a κ∞(r) that follows the PREM values outside the loop and varies linearly within the425

loop. We introduce the sameκ∞(r) in the computation ofκi, (13). These depth-426

dependent incompressibilities look more realistic, but truly our model assumes theκ∞427

is uniform within the loop. We predict that the transformation is first limited by the428

shielding of the external stresses by the elastic rigidity of the matrix. This behavior429

is in agreement with Morris (2002). This first ”fast” transition betweenκ∞ andκi430

(see Figure 7) occurs within minutes or hours. Therefore theincompressibility seen431

by seismology is somewhere between these two values. The final transformation (slow432

kinetics) corresponding to the transition betweenκi andκ0 occurs in a second step433

when the elastic stresses are released, and a new two-phase equilibrium is found after434

diffusion and reequilibration of the composition. A very similar figure could be drawn435

for the rigidity, but the totally relaxed rigidity would simply be zero.436

The minimum values ofQκ andQµ predicted for the olivine-wadsleyite loop are437

significantly lower than the typical range of attenuation oflow frequency seismologic438

models. This is true for the shear attenuation and even more for the bulk attenuation.439

In a recent review, Resovsky et al. (2005) propose for depthsaround 400 km aQµ440

roughly between 150 and 200 andQκ larger than 2000. These radial models have used441

a very simple parametrization of the attenuation in a limited range of layers (typically442
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larger than 200 km) and in layers than coincide with the seismic discontinuities. This443

parametrization is certainly an inappropriate choice to detect a narrow depth range of444

attenuation astride a velocity discontinuity.445

The Qκ andQµ quality factors seen by given seismic or tidal perturbations are446

not necessary the minimum values shown in Figures 5 or 6, but are functions of their447

frequencies, of the kinetic constantC and of the grain sizeRe. The exact frequency de-448

pendent expressions for incompressibility, rigidity and attenuation can be easily com-449

puted from (12), (24) and (30). The values ofC andRe are still uncertain for the450

olivine-wadsleyite phase change and mostly unknown for other mantle phase changes.451

The narrow depth range of the coexistence loop,∼ 10 km, may make this localized452

attenuation difficult to detect but may significantly bias the average determined over453

a large zone of sensibility. The presence of bulk attenuation in the upper mantle has454

indeed be proposed by various studies (Resovsky et al., 2005; Durek and Ekstrom,455

1996).456

The existence of a strong attenuation associated with seismic velocity jumps should457

also affect the reflection and transmission factors of shortperiod seismic waves hitting458

these interfaces. Notice however that body waves seem to have a too high frequency to459

be right on the attenuation maximum, but according to Figure6 might see an attenua-460

tion of order 10-100 (for frequencies between 1 Hz to 20 mHz).This could possibly be461

seen from S waves multiply reflected under the Earth surface and with a turning point462

below or above the 410 km discontinuity. At any rate, a betterestimate of attenuation463

in phase loops would constrain the kinetic behavior of thesephase changes (Chambat464

et al., 2009).465

We have discussed the attenuation due to the olivine-wadsleyite transition because466

this transition is simple and only involves two phases of similar composition. Other467

mantle transitions should behave similarly like the wadsleyite-ringwoodite loop around468

520 km deep (but, of course, with their appropriate kinetic laws that may not lead469

to characteristic times for the phase changes in tune with the seismic periods). The470

mantle transitions involving three phase like the ringwoodite to ferropericlase+perov-471

skite, should also lead to attenuation because of a large difference between the relaxed472

and unrelaxed properties. However because of the necessarylong distance motion of473
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atoms during the transformation, a model of kinetics seems yet difficult to propose.474

Appendix A. Radial deformation475

The deformation given by (8) corresponds to the radial stress476

σi
rr = 3κ

ai

Re

− 4µ
bi

Res3
. (A-1)477

The continuity of normal stress across the phase transitionboundary satisfies478

3κaα − 4µbα

1

s3
= 3κaβ, (A-2)479

while the application of an external pressure corresponds to480

3κ
aα

Re

− 4µ
bα

Re

= −δP. (A-3)481

The condition of jump of normal displacement where the phasechange occurs is482

iω(aαs +
bα

s2
− aβs) = C(3κ

aβ

Re

+
κ0

κv

δP ), . (A-4)483

The resolution of equations (A-2)-(A-4) leads to the unknowns aα, bα and aβ and484

therefore to the expression of the effective incompressibility (see (10))485

κ = −
Re

3(aα + bα)
δP. (A-5)486

Appendix B. Pure shear deformation487

From expressions (22)-(23), stresses can then be readily obtained,488

σi
rr =

µ

Re

(2ai − bis
2
− 2

9λ∞ + 10µ∞

3λ∞ + 5µ∞

ci

s3
− 8

di

s5
)(3 cos2 θ − 1), (B-1)489

490

σi
rθ = −2

µ

Re

(3ai +
8λ∞ + 7µ∞

λ∞

bis
2 + 3

3λ∞ + 2µ∞

3λ∞ + 5µ∞

ci

s3
+ 8

di

s5
) cos θ sin θ, (B-2)491

wherei stands forα or β.492
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To avoid unnecessary complexities, we assumeλ∞ = µ∞ or κ∞ = 5µ∞/3. This493

time, the boundary conditions on the outer shell imply494

aα + bα + cα + dα = −
γ

2
, (B-3)495

496

1

4
(−12aα − 48bα − 3cα + 8dα) =

3γ

2
, (B-4)497

the continuity of radial and shear stress at the phase-change interface implies498

(8aα − 4bαs2
− 19

cα

s3
− 32

dα

s5
) = (8aβ − 4bβs2), (B-5)499

500

−(24aα + 120bαs2 + 15
cα

s3
+ 64

dα

s5
) = −(24aβ + 120bβs2), (B-6)501

and the continuity ofθ-displacement502

1

4
(−12aαs − 48bαs3

− 3
cα

s2
+ 8

dα

s4
) =

1

4
(−12aβs − 48bβs3). (B-7)503

As there is no global volume change in this pure shear experiment the jump of radial504

displacement is given by (6)505

iω

(

(aαs + bαs3 +
cα

s2
+

dα

s4
) − (aβs + bβs3)

)

= C
1

4

µ∞

Re

(8aβ − 4bβs2). (B-8)506

The resolution of equations (B-3)-(B-8) leads to the unknownsaα, bα, cα, dα, aβ and507

bβ. At last, we estimate the effective shear modulus accordingto (21)508

µ =
µ∞

4

8aα − 4bα − 19cα − 32dα

aα + bα + cα + dα

(B-9)509
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Figure 1: The growingβ-phase is surrounded by the low pressureα-phase. The interface at radiusr moves
up or down depending of the applied external pressure that controls the reaction rate∆Γ. The external
diameter2Re will be interpreted as the average distance between grains.
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Figure 2: Relaxation times of incompressibility (τ1 andτ2) and shear modulus (τ3 and Maxwell timeτM )
across a phase loop. The two short relaxation times are in theseismic band of surface waves, for the bulk
attenuationτ1 and the shear attenuationτ3. The long bulk and shear relaxation timesτ2 andτM correspond
to viscoelastic behaviours occurring after at least one Maxwell time. The horizontal lines correspond to
periods of 1 h and 1 yr (frequencies of 0.27 mHz and 0.03µHz).
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Figure 3: Incompressibility and rigidity as functions of the period. The real part is depicted by lines, the
imaginary part by shadows. The thin line corresponds to the incompressibility computed using (6), the thick
line using (7). In the former case the incompressibility goes to zero at long period while in the latter, it
reaches the relaxed compressibilityκ0. The high frequency relaxation occurs for seismic and tidalperiods.
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Figure 4: To compute the shear attenuation, we submit the two-phase to a pure shear experiment. The
pressure remains constant, but the high pressureβ-phase starts growing in the direction of the maximum
stress, theα-phase in the direction of the lowest stress as the reaction rate is related to the normal stress on
interfaces.
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Figure 5: Evolution of the quality factor across the phase change. The volume proportion of the high pressure
phase varies more or less linearly with depth with across thephase change. The high frequency quality factor
for bothQ0

κ andQ0
µ are below 10 in the center of the loop. The exact value ofκ0 (7 109 GPa, thick solid

line, or 0, thin solid line) is not very important. The very low quality factor ofQ0
κ at low frequency does not

belong to the seismic or tidal domain.
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Figure 6: Quality factors at the middle of the phase loop, as afunction of the period of the exitation. Two
attenuation bands are predicted, one between 1 mn and 1 h (from 16 to 0.27 mHz) the other for times larger
than the Maxwell time. The minima correspond to the extrema depicted at the middle of the phase loop in
Figure 5. The thin line corresponds to the value ofQκ computed withκ0 = 0.

29



Page 30 of 30

Acc
ep

te
d 

M
an

us
cr

ip
t

380 390 400 410 420

Depth (km)
0

50

100

150

200

250

In
co

m
pr

es
si

bi
lit

y 
(G

P
a)

κ

κ
0

κ
i

Figure 7: Various incompressibilities have been defined in this paper within a two-phase coexisting zone.
The elastic incompressibilityκ, seen by high frequency body waves, the totally relaxed compressibility κ0

that can be deduced from the density jump and the thickness ofthe transition, and an intermediate incom-
pressibility κi, see equation (13). The transition betweenκ andκi and an associated attenuation should
occur for periods corresponding to surface waves. The transition betweenκi andκ0 should take a much
longer time (a Maxwell time larger than 100 yrs).
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