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Seismic attenuation in a phase change coexistence loop

Yanick Ricard, J. Matas and F. Chambat
Laboratoire des Sciences de la Terre, CNRS, Université/da,lBat Géode, 2 rue
Raphael Dubois, 69622, Villeurbanne, 07, Frahte.

Abstract

Most phase transformations in the mantle occur acrossme@bmulti-phase coexis-
tence. Inside these regions, the long term incompredgib#icomes very low because
the density can increase both by compression and by chapbesge. This difference
between long term and elastic incompressibilities is acgimituation where seismic
attenuation may happen. In this paper, we discuss the adiffierences between the
classical theory of sound attenuation in a reacting fluidtheccase of seismic propa-
gation in a two-phase loop. We derive a simple analytical@hotla two-phase loop to
show that the phase change should affect both the bulk arsh#sr attenuation and in
rather similar proportion. We show that attenuation ocoues two different frequency
ranges. For the olivine-wadsleyite phase change, the leguincy attenuation occurs
for periods larger than hundreds of years but the high frequband occurs between 1
mn and 1 h (from 16 to 0.27 mHz) in the domain of surface wavessaismic modes.
We predict both bulk and shear quality factors between Inlt@é middle of the 410
km phase loop.

Key words. Seismic attenuation, phase change

The response to stress changes of the mineral aggregattisitutes the man-
tle controls the velocity and dissipation of seismic wav&s.it is generally easier to
work with arrival times or velocities of seismic waves thaithvtheir amplitudes, the
seismologists have made more remarkable progress in napgdial or 3D velocity
structures than in mapping the attenuation. The scattefisgismic waves by small
scale heterogeneities and the focussing-defocussingefiéwave propagation in the

presence of 3D velocity structures are indeed difficult fpesate from intrinsic atten-
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uation. In spite of observational difficulties, severallizdbmodels of 1D attenuation
have however been published (e.g. Dziewonski and AndetkeBil; Widmer et al.,
1991; Durek and Ekstrom, 1996). The disagreement betwesan th however large
and often larger than the uncertainties suggested by edohdoal model (see e.g.,
Romanowicz and Mitchell, 2007, for a discussion). Threeatisional models are also
available but are still a challenge and only the structufeth® largest wavelengths
have been mapped (Gung and Romanowicz, 2004). A better kdgelof attenuation
is necessary to interpret the tomographic images and wavigver significantly im-
prove our knowledge of mantle temperature (Anderson an@ri¥982; Karato and
Karki, 2001; Matas and Bukowinski, 2007; Brodholt et al.0Z0Lekic et al., 2009).

In the last 40 years, (e.g., Jackson and Anderson, 1970;r800el976; Karato
and Spetzler, 1990), various attenuation mechanisms heee tiscussed including
those due to phase changes. The attenuation of sound in a onediergoing a phase
change is indeed a classical example of irreversible psottest leads to attenuation
(de Groot and Mazur, 1984). Recently Li and Weidner (2008taicceeded in the
very difficult laboratory measurement of attenuation th&ies place across the mantle
transition zone, due to the presence of phase changes. gdper assumes that the
phase change attenuation is only related to compress@anta. what seismologists
call the "bulk attenuation” (the quantity of energy lost thgr an oscillation of a pure
isotropic compression). This attenuation is accountedyothe quality factoi,, on
which seismologists have very little resolution. Seisngdts tend to ascribe most of
the attenuation to the "shear attenuation” accounted fahbyjuality factoi ..

In the laboratory, the pressure changes used to drive theepdtaange are at the
gigapascal level, while those due to seismic wave propaigatie much smaller, typi-
cally of order 107 GPa (e.g., Aki and Richards, 2002). To rescale their obtiens
Li and Weidner (2008) propose a qualitative model of attéonavhere the pressure
perturbationy P associated with the seismic wave would drive the phase &hainiipe
interface between two grains by a distance § P and this length should be compared
to the timet necessary for cation diffusion, withx d2. Their model suggests therefore
that the attenuation and the relaxation times are relatdtetamplitude of the seismic

perturbation. This non-linearity would invalidate varsoassumptions of seismology,
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like the principle of linear superposition or the abilitydescribe the wavefield obser-
vation of an instrument as a series of convolutions. It wanndly that seismic waves
from large earthquakes see a more attenuating mantle tbae from small ones.

The model of Li and Weidner (2008) is based on general cordidas that are
explained in more details in Jackson (2007). However, datk®007) warns us that
"no attempt has been made to model the time-dependent sirédss phase boundary
or the transformation kinetics, potentially strongly irghced by the rheology of the
surrounding medium”. This is what we do in this paper wherepnapose a micro-
mechanical model of a coexistence loop. We show that dissipaccurs in two dif-
ferent time periods and that the resulting attenuationsratependent of the seismic
wave amplitudes. We confirm that phase change loops may lettes of large atten-
uations. We show that they should affect rather similarly ¢tbmpressibility and the

shear modulus.

1. Reaction rates of phase changes

The mechanism of attenuation due to a phase change in théenf@nin a fluid) is
easy to understand (de Groot and Mazur, 1984). The changesssure due to a prop-
agating sound wave affect differently the chemical posdsibf the various coexisting
phases and thus modify locally the thermodynamic equiliti This drives a miner-
alogical phase change, a possible source of dissipationet#r, the theory of seismic
attenuation in the mantle cannot be directly derived froat tif sound attenuation in

fluids because the physics differs by at least four aspects.

e First, the propagation of elastic waves is related to thiditig.. (entirely for the
S waves, and partly for the P waves) which is not considereddand wave

attenuation in fluids.

e Second, contrary to gases or fluids that are usually usedtinaeks to illustrate
thermodynamics, the thermodynamic equilibrium in comdekd aggregates
is related to stresses, not to pressure. The pressure iscootiauous quantity

across the grain interfaces. According to Shimizu (199 €hemical potential
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tensor should be defined on interfaces and the reactionhatéddsalso depend
on the crystal orientation. We assume here that the equiibon an interface
only depends on the stresses normal to this interéacevhich is a continuous
variable (Paterson, 1973). In the absence of any visciekstsses, the normal
stress and the pressure can be identified and the usual tthgmaric rules are

recovered.

e Third, the rheology of the mantle is not only simply elastigt wiscoelastic.
Deviatoric stresses can relax for times larger than the Mdbime of the vis-

coelastic mantle, the ratio of viscosity to rigidity (seg.eRicard, 2007).

e Fourth, the phase transformations in the mantle are noadaivt. As mantle ma-

terials are solid solutions and involves various cations,ghase changes occur

across phase loops where two of more phases of various cdiopesoexist.
For example, around 410 km, an olivine with a Fe/Mg ratio ¢l of 1/10
(Ringwood, 1982), enters a phase loop where wadsleyitd, avlarger Fe/Mg
ratio, nucleates and then grows. This larger ratio is b&ldrxy a symmetrical
decrease of the Fe/Mg ratio in the remaining olivine. Acttbgsphase loop the
percentage of wadsleyite increases with depth and thislesdtishas a decreas-
ing Fe/Mg ratio until the ratio of 1/10 which correspondstte tisappearance of
the last grains of olivine. Notice that in a phase loop, the pliases are already
present and the nucleation of new grains should not corfitedkinetics of trans-
formation, contrary to what may happen when a single phasesihrough a

phase transition (Rubie and Ross, 1994).

The sound propagation theory shows that the attenuatiohimnsately related to
the difference between the elastic parameters at very maduéncy (the unrelaxed
parameters) and those at very low frequency (the relaxeahpeters) if the relaxation
occurs within the period of the sound wave. The time depenge&ssure variations
0P(t) due a a high frequency seismic body wave, and the associeteitylvariations
op(t) are related by

SP(t) = Koo——, (1)
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where k., is the elastic incompressibility (or elastic bulk modulugjhe subscript
oo indicates that this corresponds to the limit of infinite fuegcy,w = +o00. More
preciselyx., should be the isentropic incompressibility but we will not distinguish
in this paper between the isothermal and isentropic elast@mpressibilitiess and
kg, that are at any rate, equal within 1%.

At thermodynamic equilibrium, inside a multi-phase loopamhthe density jumps
by Ap over a depth ranga P, depth dependent pressure variations and depth depen-
dent density variations are roughly proportional and esldty

AP rkodp AP

The equilibrium relation (2) defines the relaxed bulk modututhe limit of zero fre-
quency.

If we take the example of the phase change around 410 km dsgitheen olivine
and wadsleyite, the unrelaxed incompressibility (elasti& modulus) is around,, =
180 GPa. With an average density of 3630 kg tnand a density jump 0f80 kg
m~—3 over a thickness of 10 km (this value is reasonable althostjimates ranging
from 5 to 30 km have been proposed (see e.g., Shearer, 200@jevaMeijde et al.,
2003; Ricard et al., 2005)), the relaxed incompressibiity,, = 7 GPa. Outside
a coexistence loop, the elastic incompressibility that can be measured by a time
dependent phenomenon (the propagation of elastic wavesyhanincompressibility
measured along a radial profikg are usually considered as equal (or at least very
close, see e.g., Bullen, 1940).

The numerical expression afy in eq. (2) can be expressed in a more physical
way that demonstrates thag is bounded by, (Li and Weidner, 2008). The density
jump across a phase chandg is due both to an intrinsic density jumfjyp, (the
density difference between the two phases at a given peasdrtemperature) and to
the compression of the material across the coexistence Inather term, the relaxed
compressibility in the phase loop/ o, is due both to the elastic compressibility .

and to an apparent compressibility to the density julyg, existing between the two
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phases so that

1 1 Apy 1 1
—_— - > 3
Ko Iioo+ p AP>f<aoo (3)

When the transition thickness becomes very lakge andxg become therefore equal.
The evolution of an interface interacting with an elastivgean be computed from
the mechanical properties of the two phases and the boundadijtions on the inter-
face. At the interface between grains, the total normabst(pressure plus deviatoric
stress) and shear stress are continuous. The boundaryioaridr the velocity across

the reacting interface is expressed by
pa(Va = V) = ps(vs — V)m = —AT, @)

wherep; andv; are the densities and the velocities of each phaske normal to the
interface of the two media, directed framto 3, V the interface velocity and\I" the
reaction rate of thee — 3 reaction (in kg T2 s=!). The velocity jump across the
interface is therefore

Ap

(Vo —Vg)n = o AT, (5)

whereAp stands fopg — pa.

Although the expression of the reaction rat&' might be very complex, it must
cancel when the two phases are at thermodynamic equilibrithne definition of the
thermodynamic equilibrium is however subtle in the two-gdh#op, and we discuss
here two possible equilibrium conditions. We show in théol@ing that the choice of
one or the other expression does not change our conclusiahg Geismic attenuation
within the two-phase loop.

When the material inside a phase loop is at equilibrium, #aetion rate is zero.
When the system is perturbed, for example by a change of thiefd pressure,
the normal stress on interfaces changes. The rules of isible thermodynamics
(de Groot and Mazur, 1984) suggests that the reaction rase ¢b equilibrium is pro-
portional to the distance to equilibrium, i.e. to the chaafjeffinity of the reaction.

The associated changes of chemical potentials are igitialated to the normal

stress perturbations on the grain interfaées. Therefore the reaction rate has often
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been chosen in previous modelling to be (e.g. Morris, 200#&rKand Fleitout, 2008)
AT o —dop, (6)

(the minus sign comes from the convention sign for normabkstropposite to pressure,
in fluid mechanics). For a very slow perturbation, howevee, équation (6) cannot
hold. On a time scale for which inter atomic diffusion ocgute Fe/Mg content of
each phase evolves, and as the chemical potentials araialstiohs of composition, a
new equilibrium is found. The reaction occurs until the ptes change and the density

change are related by the condition (2). This implies to skoo
Al' x —d0y, — Iio@. (7
P

This relation could be rigourously obtained by followingtmore formal derivation of
de Groot and Mazur (1984) provided the pressure replacaesotimeal stress. Asy is
very small, we will see that the difference in the attenuaficedictions between using
(6) or (7) is however only sensible at very long periods, idigtshe seismic frequency
band.

We now need to define the geometrical distribution of the gbasside the loop
and use (4) with (6) or (7) to be able to predict the effect oEsmic wave on the
interface and thus on the attenuation. We assume that inhedicbf a phase loop, the
minor phase is made of spherical grains surrounded by thermphase (Morris, 2002).
For example, in the shallower half of the 410 km depth trémsjtwe consider thg-
phase as surrounded by thematrix (see Figure 1). The outer radiis represents
the average distance between the grains with radii R. of the minor phase. In the
deepest part of the loop, the majdiphase is supposed to surround the last grains of
phase. This model will be used to describe the whole loohpaltjh it is obvious that
none of the two phases surrounds the other one in the midde dbop.

When the normal stress on an interface is increased, a nevofithe high pres-
sureS-phase grows at the expense of the low presadpbase. This reaction, associ-

ated with minor changes of volume, facilitates the deforomaidecreases the effective
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strength, dissipates the elastic energy and therefors leadttenuation. Notice that
with the low pressure changes involved during the propeagaif a seismic fronty
10~7 GPa, the thickness of the reacting film is only nanometri@id Weidner, 2008).

This very small perturbation is however a significant sowfodissipation.

2. Radial deformation and complex incompressibility

We assume for simplicity that the two phases have the samtogpaoperties with

bulk modulusx and rigidity . We neglect the difference of these parameters for the

two phases which is of the order of the jumps in incomprelisitaind rigidity, about
10% in PREM, at 410 km depth (Dziewonski and Anderson, 198%) introduce the
normalized radius = r/R. whereR, is the external radius and we uSéor the value
of s on the two-phase interface.

In the case of isotropic radial compression of the two medafrRigure 1, it is
straightforward to show that with spherical symmetry théiabdeformatioru,.(s) in
an elastic shell of compressibility,, and rigidity .« can be written

up = a;s + %, (8)
with i = « in the outer shell and = 3, inside 64 is obviously O to insure that? is

finite ats = 0). The change of density is

up(Re)

6p=—3p 9
p PR )

and the effective compressibility of the mediunxis
P _ Re 0P, (10)

" p% B _3UT(R6)

whereu,(R.) andd P are the radial displacement and the pressure perturbdttoe a
outer radiusk,..

By using the general expression of the jump of normal veyd&j and one of the
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kinetic laws (6) or (7), we can write

Vo —vg =C (50n(S) — 3&0%) , (11)

whereC is a kinetic factor in m s! Pa! (the factorC includes theAp/p.ps term
of (5)). By choosing a vanishingly smatl, or the ko deduced from the observed
thickness of the transition we will be in agreement with (6)vith (7).

If a sinusoidal pressure perturbation of frequency P exp(iwt), is applied on
the external rim, the deformations and therefore the caeffisa; andb;, will also
vary at the same frequency. From the general expressioreaféformation, (8), the
normal stress can be expressed (see Appendix A). By matthéngormal stresses
across the phase boundaryatnd using the normal velocity jump condition (11) with
Vo = iwug andvg = iwu?, the three constants,, b, andags can be found from which

the effective incompressibility (10) is readily obtainsgé¢ Appendix A).

We get
Ri — Reo

KHF = Koo + ma (12)

(HF stands for "high frequency” as it will be explained be)omhere

oo+ 4hoo/3
i = Fiog = 8% (oo — fig) o —E L= 13
Ki =K (k ﬁo)ﬂmsg+4um/3, (13)
and where the relaxation constamntis

4 RS Koo +4pso/3 (14)

T 3CHoo oo B + Ajoo /3

The use of the subscriptgor "intermediate” will soon be explained. The incompress-
ibility at infinite frequency which is usually called the efaxed incompressibility is
simply the elastic incompressibility,., while ; is the relaxed incompressibility ob-
tained forw = 0.

It might be surprising that the relaxed incompressibikifyin this model does not
correspond to the incompressibilityy (see (2)) obtained from a radial seismological

model. This is because in a purely elastic model, the deviastresses remain in the
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elastic matrix even at infinite time. To clarify this point Wwave to remember that at
large times, the Earth mantle does not behave as elasticmig@us. The rigidity in
the definition ofx;, is in fact the high frequency limit of a viscoelastic rhepjqsee
e.g., Ricard, 2007)

iWTM

= g ———, 15
H H 1+ iwry (15)

wherer,, is the Maxwell time, ratio of viscosity to rigidity (the realastic rigidity).
If we redo the same modeling using instead ofu., we get the same expressions
as (12) and (13) but wherg* replacesu... The new expression of the viscoelastic

incompressibility can be simplified and becomes after sdgebaa

Ri — Koo + Ko — Kq
14+iwr (1 +iwn)(1 +iwr)’

(16)

K= Koo +

with the long relaxation time,

kS%+4p/3

kS8 (A7)

To = TM
We can safely assume, at least for the olivine-wadsleydtesformation (see e.g., Li
and Weidner, 2008), that, << 7 ~ 7, i.e., that the reaction occurs in a time
shorter than the Maxwell time of a few hundred years. As issptally expected, the
high frequency limit, when << wr << wr is the elastic valu& = k., and the
low frequency limitwr; << wm << 1 is the incompressibility deduced from the
thickness of the phase loop= x¢. The incompressibility variations occur within two

frequency bands, one farr; ~ 1 (and thusvrs >> 1) in which we recover (12),

Ri — Roo

(18)

R>YRKRHF = Ro —+ m,
where HF stands for high frequency and a second ongfgr~ 1 (andwr; << 1)in
which we get

Ro — R4

(19)

K>KLF =K + —m.
"l 4w

This is the low frequency approximation ef The low frequency limit of the high

frequency incompressibilityy = 0 in (18), is x; which of course is also the high

10
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frequency limit of the low frequency incompressibility, = +oc in (19). In other
words, the intermediate incompressibilitythat we considered as relaxed with respect
to the short time scale of phase change can in turn be seemedaxed with respect to
the large time scale of viscous flow.

Using experiments of Kubo et al. (1998) on growth of wadskefiiom olivine at
13.5 GPa and 1300 K, Morris (2002) suggests that the kinetistant isC’ = 45 nm
s~ ! GPa!l. Although it is not obvious to derive a value 6f from the paper of Li
and Weidner (2008), they mention reaction lengths of ajew in ~1 h, for pressure
offsets of~ 0.1 GPa which, within one order of magnitude, corresponds tastme
range of kinetic constant. We choose a Maxwell time;pf= 174 yr corresponding to
aviscosity of 18' Pa s, and a radiug. corresponding to the average distance between
grains equal to 1 mm.

We show in Figure 2 the evolution of the time constantso 7 across the phase
change. The volume ratio gf-phase across the loop varies more or less linearly with
depth. The time constants are assumed symmetrical witlecesp the vertical axis,
S3 = 1/2 (we assume that the minor phase is always in the inner spiherg:phase
proportion is thusS® until a proportion of 50%] — S after). They do not vary much
across the phase transition except when a phase is in a vatlysoportion. The short
time constants for incompressibility relaxationis lower than 48 s. The long time
constantr, is larger than the Maxwell time, .

Figure 3 depicts the evolution of the real and imaginary pétte incompressibil-
ity in the middle of the phase loopS$® = 1/2). The kinetic laws (6) and (7) have been
used for the results of Re) depicted with thick and thin lines, respectively. The two
curves are very similar for short periods where the elastioipressibility is recov-
ered. They differ at long periods where the equilibrium ia khop imposes a relation
between density and pressure given by the incompresgikiit For intermediate pe-
riods, the phase change is inhibited by the elastic stress@solled by the rigidity.
The relaxation occurs in two steps over two different timegess. During the high fre-
quency relaxation, the reaction is limited by the elastjgpsart that protects the minor

phase. The reaction is controlled by diffusion and visc@lesation at low frequency.
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3. Pureshear deformation and complex rigidity

The existence of a phase change has also an effect on thigyrigfithen at uniform
pressure, the stresses are not uniform, the high pressase gfiows in the direction
of the maximum stress and the reverse reaction occurs ingtpeepdicular direction.
This eases the deformation and therefore reduces theiedfeicfidity. Notice that it is
only because the chemical potential in solids is relateti¢ontormal stress not to the
pressure (uniform in a pure shear deformation) than reestacur.

An analytical expression can be obtained, although thevaliwn is more cumber-
some and less rigourous than in the spherical case. Let sgdenithe deformation of a
nucleus of3-phase surrounded by a shell@fphase when a pure shear deformation is
applied to the external boundary. The pure shear deforméiofrom the central nu-
cleusis in cartesian coordinates = —vz, u, = yx/2 andu, = vy/2 (v is the strain)

and can be written in spherical coordinates after a standedge of coordinates
1 9 3 .
Uy = —577"(3 cos®f —1), and up = 27 cosfsin 6, (20)

whered is the colatitude.

In a pure shear experiment performed in a laboratory, thdityjgwould be the
ratio between the vertical stress applied on the surfaceaafra sample, at position
z, and the vertical strain measured at the same position. . (z)/2u.(z). In our
analytical model, instead of imposing the deformation affesies of constant cartesian
coordinates, they are imposed on the sphere or ragliusVe consider that the effective

rigidity can however be estimated by

Orr (R67 9))Re

b= T ou (R, 0) 1)

We can solve for the deformation inside the two-phase agdedsy assuming that
it keeps the same degree 2 geometry. As the radial streshanddial deformation

have the same geometypyijs independent of. In this case, the general solution of the

12
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momentum balance yields
i 3, G di 2
u, = (a;s+bis” + — + — ) (3cos™0 — 1) (22)
S S

and

; Ti =+ 5Aeo Poo  Ci di :
ul = (—3(11-3 —bim—— s° — D 1 Ens 25_4) cosfsing  (23)

wheres is again the normalized radius= r/R., A\oo = Koo — 2/i00/3 iS @n elastic
Lamé parameter, andstands forx or 3.

Using (22) and (23), the stress tensor can be computed imtiez sphere and in
the outer shell (see Appendix B). The final resolution ineslthe determination of 6
parameters,, bq, ¢, do, ag andbg. They can be obtained by matching 6 boundary
conditions; the continuity of shear stress, normal stiessel tangential deformation
on the interface, the jump condition for the normal veloaoitythe interface, and the 2
external boundary conditions (20) (see Appendix B). Notiw no density variation
occurs in the assemblage submitted to a pure shear and #teckaw (6) is therefore
appropriate. Similarly to what we obtain for the incompiietity, the effective rigidity

deduced from the model can be written as

Hi — oo
= oo + 24
MHF = foo + 1+ iwrs (24)

where the intermediate rigidity; is

B, (25)

oo

Hi = Hoo — /LOOF(S,

whereF is a cumbersome function of andr/poo. We can choose for simplicity
Koo = Dlieo/3 Which corresponds to a Poisson ratio of 1/4 (or to the equefithe
two Lamé Parameters,, and i, (€.g. Malvern, 1969)) which is a common rule of

thumb for elasticity of silicates. In this case, the funatio is

8 + 52
604 + 28053 + 5655 + 557’

K 5
F(S, =2 = ) =1059°
(S, . 3) 055

(26)
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and the relaxation times; is

SR, 1
5 .
Cliso 604 + 28053 + 565° 4+ 557

3 =31 (27)
The constant; of shear modulus relaxation is also depicted in Figure 2 endalue
is comparable to that appearing in the high frequency incesgibility .

Like for the incompressibility, the intermediate rigidity that corresponds to the
relaxed limit of the rigidity with respect to the short timeage of phase change can in
turn be seen as an unrelaxed rigidity for periods larger thasut much smaller than
the Maxwell time. Replacing directly in (24) and (2h),, by 11*, see (15), is straight-
forward but leads to a very complex expressiomotWe checked numerically that the
behavior ofu* F (ko /pt*) can be qualitatively approximated by F (ko0 /110 ). FOr
periods much larger tham, the rigidity varies therefore as

i — Moo TWTM
= o . 28
" <M * 1+in3) 1+ iwrs (28)

As 13 << T, the expression of the rigidity at high frequency, when, >> 1 is
w~ umr. Atlow frequency, whewrs << 1 we get

i
~ =l - —, 29
= prr H 1+ iwry ( )

which reaches zero after complete relaxation wher= 0, i.e., when the medium
behaves viscously rather than elastically.

The real and imaginary parts of the rigidity are plotted igute 3. Like for the
incompressibility, two transitions are predicted. The Ifrequency transition only
occurs when the elastic stresses in the surrounding sl aad stop screening the
inner nucleus from the outside stresses. At zero frequenfigi{e period), the rigidity

vanishes contrary to the incompressibility that remainisefin
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4. Bulk and shear attenuations

In the case of complex elastic parameters, the seismic wanagmgates with a
frequency-dependent attenuation usually defined by thétydactors ). where&
stands for or . These quality factors are defined by

Re(§) " +¢Yw’Tq

R T R G Q

whereT’, is the appropriate relaxation time, ¢ and Im(¢) the real and imaginary
parts of¢ that varies between the relaxed and unrelaxed lirgiftg(for w = 0) and¢?

(for w = +00). Attenuation is maximum at the frequency
1 [¢éR
wo = T_R f_U’ (31)

Re¢U
QL= 257%. 32)

whereQ), reaches its minimum

Notice that in our model, each elastic parameter has low &td frequency modes.
The bulk modulus can relax froft = « to ¢ = k; with the time constant;, then
from ¢V = k; to € = kg with the time constant,. Similarly, the rigidity relaxes
from¢eY = pto €7 = p,; with the time constants, then frome? = p; to £ = 0 with
the time constant,,.

Figure 5 depicts the minimum quality factQx anng for the various relaxation
times and across the two-phase loop. Like for Figure 2, wemasshat our model is
valid until $® = 1/2, then swap the roles of the minor and major phases, whichigimp
symetrises the results with respect to the middle of the.l&@jues lower than 10 are
predicted for the high frequency bands. The bulk attennatiche coexistence loop
observed by Li and Weidner (2008) is indeed found maximumnithe two phases
are in similar proportions, as predicted by our model. To pote the bulk attenuation,
we use either &, deduced from the thickness of the phase change (thick leeeeg.

(7)) or kp = 0 (thin line, see (6)). This does not really change the predicjuality
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factor. The low frequency bulk attenuation is very low butresponds to very long
time constants not relevant to seismology as seen on Figure 6

Figure 6 depicts the attenuation quality facfpr and@,, computed at the center
of the phase loopS® = 1/2) as a function of the period of the excitation. The solid
lines correspond to the bulk attenuation, the dashed lirthdshear attenuation. A
minimum of quality factors is predicted for frequenciesvibetn 0.27 and 16 mHz
(periods between 1 mn and 1 h). At very low frequencies, whemtantle behaves
viscously, the quality factors become also very low. As\gva zerasg or a finite g
is only visible at very long periods: the phase loop mairgairfinite compressibility
(thick line) in the latter case, but cannot resist compoeséihin line) in the former
case. The shear quality factor reaches zero at zero freguwdrare the mantle behaves
viscously rather than elastically. The general behaviotte shear attenuation is that
of a linear solid called a Burger body (see e.g. Karato andz8pe1990). The bulk
attenuation behaves differently as contrary to the Burgelybthe quality factor does
vanish at infinite periods.

The fact that the bulk quality factor is lower than the shaaalify factor is not a
general result of our model. The difference- k., that controls the bulk attenuation is
proportional toxy — ko (See (12) and (13)). This difference tend to decrease wteen th
loop thickness increases (see (3)). On the contrary therdifteu; — 1o, controlling
the shear attenuation is independent of the loop thickrsess(@4)). The rati@) . /Qu
decreases therefore with the loop thickness. Increasamtptip thickness over 50 km
for the 410 km transition (keeping the other parameters amgad) would lead t@),,
lower than@,. In other words, a thin loop is mostly attenuating becausésdd,, a

thick one because of itg,,.

5. Conclusions

Our model of attenuation in coexistence loop is certaintyddified in particular in
the description of the geometry of the two phases. Howevebslieve that various
aspects of our model are very robust.

We confirm that the phase loops, in agreement with Li and Wi¢2008) should
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be the location of a significant attenuation for periods bgiog to the low frequency
seismic band (surface waves and seismic modes). Howevgiirpaper, only the bulk
attenuation was taken into account whereas we have showththahear attenuation
should be affected as well. Moreover, we found that the twenaiations and their
relaxation times are independent of the amplitude of thensiei wave in agreement
with the usual assumption of seismology. The attenuatiodbare narrow because
of our assumption of a unique grainsize across the coexisteop. A distribution of
grainsizes would probably broaden the frequency bandgeriation.

Another large difference between Li and Weidner (2008) &edpresent paper is
that the transition between the elastic incompressibikity and that deduced from
PREM kg (very low incompressibility in coexistence loops) does @@tur in a single
step but in two steps. This is summarized in Figure 7 where lategs a function of
depth the instantaneous,, the intermediate; and thexy bulk moduli. We derived
a koo (1) that follows the PREM values outside the loop and varieslilyawithin the
loop. We introduce the same, (r) in the computation of;, (13). These depth-
dependent incompressibilities look more realistic, buliytour model assumes the,
is uniform within the loop. We predict that the transforroatis first limited by the
shielding of the external stresses by the elastic rigiditthe matrix. This behavior
is in agreement with Morris (2002). This first "fast” transit betweens., and x;
(see Figure 7) occurs within minutes or hours. Thereforarthempressibility seen
by seismology is somewhere between these two values. Théréinaformation (slow
kinetics) corresponding to the transition betwegrand ko occurs in a second step
when the elastic stresses are released, and a new two-phaberiim is found after
diffusion and reequilibration of the composition. A veryndar figure could be drawn
for the rigidity, but the totally relaxed rigidity would sioly be zero.

The minimum values of),. and@,, predicted for the olivine-wadsleyite loop are
significantly lower than the typical range of attenuationoef frequency seismologic
models. This is true for the shear attenuation and even noor&é bulk attenuation.
In a recent review, Resovsky et al. (2005) propose for deptbend 400 km &),
roughly between 150 and 200 a@x larger than 2000. These radial models have used

a very simple parametrization of the attenuation in a lichitenge of layers (typically
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larger than 200 km) and in layers than coincide with the sieistiscontinuities. This
parametrization is certainly an inappropriate choice tectea narrow depth range of
attenuation astride a velocity discontinuity.

The Q,, and @, quality factors seen by given seismic or tidal perturbatiare
not necessary the minimum values shown in Figures 5 or 6,reuuactions of their
frequencies, of the kinetic constaritand of the grain siz&.. The exact frequency de-
pendent expressions for incompressibility, rigidity att@rauation can be easily com-
puted from (12), (24) and (30). The values@fand R, are still uncertain for the
olivine-wadsleyite phase change and mostly unknown foemtiantle phase changes.
The narrow depth range of the coexistence loeplO km, may make this localized
attenuation difficult to detect but may significantly bias tiverage determined over
a large zone of sensibility. The presence of bulk attennatidhe upper mantle has
indeed be proposed by various studies (Resovsky et al.,; 200k and Ekstrom,
1996).

The existence of a strong attenuation associated with geigiocity jumps should
also affect the reflection and transmission factors of ghenibd seismic waves hitting
these interfaces. Notice however that body waves seem ®ago high frequency to
be right on the attenuation maximum, but according to Figungight see an attenua-
tion of order 10-100 (for frequencies between 1 Hz to 20 mHAh)s could possibly be
seen from S waves multiply reflected under the Earth surfadendgth a turning point
below or above the 410 km discontinuity. At any rate, a bedttimate of attenuation
in phase loops would constrain the kinetic behavior of thivsese changes (Chambat
etal., 2009).

We have discussed the attenuation due to the olivine-wgitksteansition because
this transition is simple and only involves two phases ofilsincomposition. Other
mantle transitions should behave similarly like the wayltderingwoodite loop around
520 km deep (but, of course, with their appropriate kinediwd that may not lead
to characteristic times for the phase changes in tune wéls#ismic periods). The
mantle transitions involving three phase like the ringwitetb ferropericlase+perov-
skite, should also lead to attenuation because of a larfgreliice between the relaxed

and unrelaxed properties. However because of the necdssargistance motion of
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atoms during the transformation, a model of kinetics seeshslijficult to propose.

Appendix A. Radial deformation

The deformation given by (8) corresponds to the radial stres

i
Opp

a; bl
=3k— — 4 .
"R, MR

(A-1)

The continuity of normal stress across the phase trandibamdary satisfies

1
3KGq — 4uba8—3 = 3Kag,

(A-2)

while the application of an external pressure correspomds t

3o du

ba

= —6P.
R, R,

(A-3)

The condition of jump of normal displacement where the plthssge occurs is

. ba
w(ans + 2 ags) =C(3

The resolution of equations (A-2)-(A-4) leads to the unknew,, b, andag and

€ K'/’U

n;z—ﬁ + 505py,. (A-4)

therefore to the expression of the effective incompreksilisee (10))

R

——— 6P
3(aa + ba)

Appendix B. Pure shear deformation

(A-5)

From expressions (22)-(23), stresses can then be readdinel,

Tr
€

aie = —2}%(3% +

€

wherei stands forx or 3.

ol = Rﬂ(Zai — b;s% —

Aos

2

8o + Tltso

9o + 10400 € d;

3o + Blics 5% —8%

bis? 4 3o Tl 4
S 3o + Blloo 2

19

)(3cos? 6 — 1), (B-1)

d;
+ 85) cosfsinf, (B-2)
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To avoid unnecessary complexities, we assWne= (o Of Koo = Hlio/3. This

time, the boundary conditions on the outer shell imply
_ "
aa+ba+ca+da—_§7 (B'3)

1 3
7 (~ 1200 — 48b, — 3cq + 8d) = 77 (B-4)

the continuity of radial and shear stress at the phase-ehiateyface implies

(6% dOé
(80 — 4bos? — 192—3 —32-2) = (8ag — 4bps”), (B-5)
(6% dOt
—(24aq + 120bys? + 152—3 +64-%) = —(24as + 120b55%),  (B-6)
and the continuity of-displacement
1 3 Ca de 1 3
Z(—12aas — 48bys° — 3§ + 88—4) = Z(—12a53 — 48bgs”). (B-7)

As there is no global volume change in this pure shear expatithe jump of radial

displacement is given by (6)

. 3, Ca | da 3y _ o~ Moo 2
iw ((aas + bas® + 2 + 5—4) — (ags + bgs )) = ZR—E(&Lﬁ —4bgs®). (B-8)

The resolution of equations (B-3)-(B-8) leads to the unknsw,, b,, ¢, do, ag and

bg. At last, we estimate the effective shear modulus accoriir{g1)

Moo 84 — 4bo — 19¢q — 32d,
T4 Qg + bo + o + da

(B-9)
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up or down depending of the applied external pressure thattale the reaction raté\I". The external

diameter2 R. will be interpreted as the average distance between grains.
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Figure 2: Relaxation times of incompressibility; (and2) and shear modulus- and Maxwell timer,;)
across a phase loop. The two short relaxation times are isdisenic band of surface waves, for the bulk
attenuationr; and the shear attenuatiep. The long bulk and shear relaxation timesandr,, correspond
to viscoelastic behaviours occurring after at least oneWddixtime. The horizontal lines correspond to
periods of 1 h and 1 yr (frequencies of 0.27 mHz and Q.Big).
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Figure 3: Incompressibility and rigidity as functions ottperiod. The real part is depicted by lines, the
imaginary part by shadows. The thin line corresponds tortbempressibility computed using (6), the thick
line using (7). In the former case the incompressibility 6@ zero at long period while in the latter, it

reaches the relaxed compressibility. The high frequency relaxation occurs for seismic and figaiods.
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Figure 4: To compute the shear attenuation, we submit theptvese to a pure shear experiment. The
pressure remains constant, but the high presSupbase starts growing in the direction of the maximum
stress, thex-phase in the direction of the lowest stress as the reacdianis related to the normal stress on
interfaces.
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Figure 5: Evolution of the quality factor across the phassnge. The volume proportion of the high pressure
phase varies more or less linearly with depth with acrosgltase change. The high frequency quality factor
for both QY andQY, are below 10 in the center of the loop. The exact valug®f7 10° GPa, thick solid
line, or 0, thin solid line) is not very important. The verylaguality factor ofQ% at low frequency does not
belong to the seismic or tidal domain.
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Figure 6: Quality factors at the middle of the phase loop, amation of the period of the exitation. Two
attenuation bands are predicted, one between 1 mn and 1nh {Bdo 0.27 mHz) the other for times larger
than the Maxwell time. The minima correspond to the extreeyaiaded at the middle of the phase loop in
Figure 5. The thin line corresponds to the valu&lf computed withxg = 0.
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Figure 7: Various incompressibilities have been definedis paper within a two-phase coexisting zone.

The elastic incompressibility, seen by high frequency body waves, the totally relaxed cessbility o

that can be deduced from the density jump and the thicknei®dfansition, and an intermediate incom-
pressibility x;, see equation (13). The transition betweeand x; and an associated attenuation should

occur for periods corresponding to surface waves. Theitrambetweens; and o should take a much

longer time (a Maxwell time larger than 100 yrs).
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