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Most phase transformations in the mantle occur across regions of multi-phase coexistence. Inside these regions, the long term incompressibility becomes very low because the density can increase both by compression and by changing phase. This difference between long term and elastic incompressibilities is a typical situation where seismic attenuation may happen. In this paper, we discuss the various differences between the classical theory of sound attenuation in a reacting fluid and the case of seismic propagation in a two-phase loop. We derive a simple analytical model of a two-phase loop to show that the phase change should affect both the bulk and the shear attenuation and in rather similar proportion. We show that attenuation occurs over two different frequency ranges. For the olivine-wadsleyite phase change, the low frequency attenuation occurs for periods larger than hundreds of years but the high frequency band occurs between 1 mn and 1 h (from 16 to 0.27 mHz) in the domain of surface waves and seismic modes.

We predict both bulk and shear quality factors between 1-10 in the middle of the 410 km phase loop.

A c c e p t e d M a n u s c r i p t uation. In spite of observational difficulties, several global models of 1D attenuation have however been published (e.g. [START_REF] Dziewonski | Preliminary reference earth model[END_REF]Widmer et al., 1991;[START_REF] Durek | A radial model of anelasticity consistent with long-period surface wave data[END_REF]. The disagreement between them is however large and often larger than the uncertainties suggested by each individual model (see e.g., Romanowicz and Mitchell, 2007, for a discussion). Three dimensional models are also available but are still a challenge and only the structures of the largest wavelengths have been mapped [START_REF] Gung | Q tomography of the upper mantle using threecomponent long-period waveforms[END_REF]. A better knowledge of attenuation is necessary to interpret the tomographic images and would however significantly improve our knowledge of mantle temperature [START_REF] Anderson | Absorption-band q model for the earth[END_REF][START_REF] Karato | Origin of lateral variation of seismic wave velocities 544 and density in the deep mantle[END_REF][START_REF] Matas | On the anelastic contribution to the temperature 556 dependence of lower mantle seismic velocities[END_REF][START_REF] Brodholt | Chemical versus thermal heterogeneity in the lower mantle: The most likely role of anelasticity[END_REF][START_REF] Lekic | Frequency dependence of 550 shear wave attenuation[END_REF].

In the last 40 years, (e.g., [START_REF] Jackson | Physical mechanisms of seismic-wave attenuation[END_REF][START_REF] Anderson | The earth as a seismic absorption band[END_REF][START_REF] Karato | Defect microdynamics in minerals and solid-state 541 mechanisms of seismic-wave attenuation and velocity dispersion in the mantle[END_REF], various attenuation mechanisms have been discussed including those due to phase changes. The attenuation of sound in a media undergoing a phase change is indeed a classical example of irreversible process that leads to attenuation [START_REF] De Groot | Non-Equilibrium Thermodynamics[END_REF]. Recently [START_REF] Li | Effect of phase transitions on compressional-wave veloci-552 ties in the earth's mantle[END_REF] have succeeded in the very difficult laboratory measurement of attenuation that takes place across the mantle transition zone, due to the presence of phase changes. Their paper assumes that the phase change attenuation is only related to compression, i.e., to what seismologists call the "bulk attenuation" (the quantity of energy lost during an oscillation of a pure isotropic compression). This attenuation is accounted for by the quality factor Q κ on which seismologists have very little resolution. Seismologists tend to ascribe most of the attenuation to the "shear attenuation" accounted for by the quality factor Q µ .

In the laboratory, the pressure changes used to drive the phase change are at the gigapascal level, while those due to seismic wave propagation are much smaller, typically of order 10 -7 GPa (e.g., [START_REF] Aki | Quantitative seismology[END_REF]. To rescale their observations, [START_REF] Li | Effect of phase transitions on compressional-wave veloci-552 ties in the earth's mantle[END_REF] propose a qualitative model of attenuation where the pressure perturbation δP associated with the seismic wave would drive the phase change at the interface between two grains by a distance d ∝ δP and this length should be compared to the time t necessary for cation diffusion, with t ∝ d 2 . Their model suggests therefore that the attenuation and the relaxation times are related to the amplitude of the seismic perturbation. This non-linearity would invalidate various assumptions of seismology, A c c e p t e d M a n u s c r i p t like the principle of linear superposition or the ability to describe the wavefield observation of an instrument as a series of convolutions. It would imply that seismic waves from large earthquakes see a more attenuating mantle than those from small ones.

The model of [START_REF] Li | Effect of phase transitions on compressional-wave veloci-552 ties in the earth's mantle[END_REF] is based on general considerations that are explained in more details in Jackson (2007). However, Jackson (2007) warns us that "no attempt has been made to model the time-dependent stress at the phase boundary or the transformation kinetics, potentially strongly influenced by the rheology of the surrounding medium". This is what we do in this paper where we propose a micromechanical model of a coexistence loop. We show that dissipation occurs in two different time periods and that the resulting attenuations are independent of the seismic wave amplitudes. We confirm that phase change loops may be the zones of large attenuations. We show that they should affect rather similarly the compressibility and the shear modulus.

Reaction rates of phase changes

The mechanism of attenuation due to a phase change in the mantle (or in a fluid) is easy to understand (de [START_REF] De Groot | Non-Equilibrium Thermodynamics[END_REF]. The changes of pressure due to a propagating sound wave affect differently the chemical potentials of the various coexisting phases and thus modify locally the thermodynamic equilibrium. This drives a mineralogical phase change, a possible source of dissipation. However, the theory of seismic attenuation in the mantle cannot be directly derived from that of sound attenuation in fluids because the physics differs by at least four aspects.

• First, the propagation of elastic waves is related to the rigidity µ (entirely for the S waves, and partly for the P waves) which is not considered for sound wave attenuation in fluids.

• Second, contrary to gases or fluids that are usually used in textbooks to illustrate thermodynamics, the thermodynamic equilibrium in complex solid aggregates is related to stresses, not to pressure. The pressure is not a continuous quantity across the grain interfaces. According to [START_REF] Shimizu | The non-equilibrium thermodynamics of intracrystalline diffusion under non-hydrostatic stress[END_REF], a chemical potential A c c e p t e d M a n u s c r i p t tensor should be defined on interfaces and the reaction rate should also depend on the crystal orientation. We assume here that the equilibrium on an interface only depends on the stresses normal to this interface σ n which is a continuous variable [START_REF] Paterson | Non hydrostatic thermodynamics and its geological applica-562 tions[END_REF]. In the absence of any viscoelastic stresses, the normal stress and the pressure can be identified and the usual thermodynamic rules are recovered.

• Third, the rheology of the mantle is not only simply elastic but viscoelastic.

Deviatoric stresses can relax for times larger than the Maxwell time of the viscoelastic mantle, the ratio of viscosity to rigidity (see e.g., [START_REF] Ricard | Physics of mantle convection[END_REF].

• Fourth, the phase transformations in the mantle are not univariant. As mantle materials are solid solutions and involves various cations, the phase changes occur across phase loops where two of more phases of various compositions coexist.

For example, around 410 km, an olivine with a Fe/Mg ratio typically of 1/10 [START_REF] Ringwood | Phase transformations and differentiation in subducted lithosphere: implications for mantle dynamics, basalt petrogenesis, and crustal evolution[END_REF], enters a phase loop where wadsleyite, with a larger Fe/Mg ratio, nucleates and then grows. This larger ratio is balanced by a symmetrical decrease of the Fe/Mg ratio in the remaining olivine. Across the phase loop the percentage of wadsleyite increases with depth and this wadsleyite has a decreasing Fe/Mg ratio until the ratio of 1/10 which corresponds to the disappearance of the last grains of olivine. Notice that in a phase loop, the two phases are already present and the nucleation of new grains should not control the kinetics of transformation, contrary to what may happen when a single phase moves through a phase transition [START_REF] Rubie | Kinetics of the olivine-spinel transformation in subducting lithosphere: experimental constraints and implications for deep slab processes[END_REF].

The sound propagation theory shows that the attenuation is ultimately related to the difference between the elastic parameters at very high frequency (the unrelaxed parameters) and those at very low frequency (the relaxed parameters) if the relaxation occurs within the period of the sound wave. The time dependent pressure variations δP (t) due a a high frequency seismic body wave, and the associated density variations δρ(t) are related by

δP (t) = κ ∞ δρ(t) ρ , (1) 
A c c e p t e d M a n u s c r i p t

where κ ∞ is the elastic incompressibility (or elastic bulk modulus). The subscript ∞ indicates that this corresponds to the limit of infinite frequency, ω = +∞. More precisely, κ ∞ should be the isentropic incompressibility κ S but we will not distinguish in this paper between the isothermal and isentropic elastic incompressibilities, κ T and κ S , that are at any rate, equal within 1%.

At thermodynamic equilibrium, inside a multi-phase loop where the density jumps by ∆ρ over a depth range ∆P , depth dependent pressure variations and depth dependent density variations are roughly proportional and related by

dP dr = κ 0 ρ dρ dr with κ 0 = ρ ∆P ∆ρ . (2) 
The equilibrium relation (2) defines the relaxed bulk modulus in the limit of zero frequency.

If we take the example of the phase change around 410 km depth, between olivine and wadsleyite, the unrelaxed incompressibility (elastic bulk modulus) is around κ ∞ = 180 GPa. With an average density of 3630 kg m -3 and a density jump of 180 kg m -3 over a thickness of 10 km (this value is reasonable although estimates ranging from 5 to 30 km have been proposed (see e.g., [START_REF] Shearer | Earth's Deep Interior: mineral physics and tomography from the atomic to the global scale[END_REF][START_REF] Van Der Meijde | Seismic evidence for water deep in earth's upper mantle[END_REF][START_REF] Ricard | Mineral physics in thermod-chemical mantle models[END_REF]), the relaxed incompressibility is κ 0 = 7 GPa. Outside a coexistence loop, the elastic incompressibility κ ∞ that can be measured by a time dependent phenomenon (the propagation of elastic waves) and the incompressibility measured along a radial profile κ 0 are usually considered as equal (or at least very close, see e.g., [START_REF] Bullen | The problem of the earth's density variation[END_REF].

The numerical expression of κ 0 in eq. ( 2) can be expressed in a more physical way that demonstrates that κ 0 is bounded by κ ∞ [START_REF] Li | Effect of phase transitions on compressional-wave veloci-552 ties in the earth's mantle[END_REF]. The density jump across a phase change ∆ρ is due both to an intrinsic density jump ∆ρ χ (the density difference between the two phases at a given pressure and temperature) and to the compression of the material across the coexistence loop. In other term, the relaxed compressibility in the phase loop, 1/κ 0 , is due both to the elastic compressibility 1/κ ∞ and to an apparent compressibility to the density jump ∆ρ χ existing between the two A c c e p t e d M a n u s c r i p t phases so that

1 κ 0 = 1 κ ∞ + ∆ρ χ ρ 1 ∆P > 1 κ ∞ . ( 3 
)
131

When the transition thickness becomes very large, κ ∞ and κ 0 become therefore equal.

132

The evolution of an interface interacting with an elastic wave can be computed from 

137 ρ α (v α -V).n = ρ β (v β -V).n = -∆Γ, (4) 
138 where ρ i and v i are the densities and the velocities of each phase, n the normal to the 139 interface of the two media, directed from α to β, V the interface velocity and ∆Γ the 140 reaction rate of the α → β reaction (in kg m -2 s -1 ). The velocity jump across the

141 interface is therefore 142 (v α -v β ).n = - ∆ρ ρ α ρ β ∆Γ, (5) 143 
where ∆ρ stands for ρ β -ρ α .

144

Although the expression of the reaction rate ∆Γ might be very complex, it must been chosen in previous modelling to be (e.g. [START_REF] Morris | Coupling of interface kinetics and transformation-induced strain 559 during pressure-induced solid-solid phase changes[END_REF][START_REF] Krien | The accomodation of volume changes in phase transition 546 zones: implications for mantle dynamics and metamorphism[END_REF])

∆Γ ∝ -δσ n , (6) 
(the minus sign comes from the convention sign for normal stress, opposite to pressure, in fluid mechanics). For a very slow perturbation, however, the equation ( 6) cannot hold. On a time scale for which inter atomic diffusion occurs, the Fe/Mg content of each phase evolves, and as the chemical potentials are also functions of composition, a new equilibrium is found. The reaction occurs until the pressure change and the density change are related by the condition (2). This implies to choose

∆Γ ∝ -δσ n -κ 0 δρ ρ . (7) 
This relation could be rigourously obtained by following the more formal derivation of de [START_REF] De Groot | Non-Equilibrium Thermodynamics[END_REF] provided the pressure replaces the normal stress. As κ 0 is very small, we will see that the difference in the attenuation predictions between using ( 6) or ( 7) is however only sensible at very long periods, outside the seismic frequency band.

We now need to define the geometrical distribution of the phases inside the loop and use ( 4) with ( 6) or ( 7) to be able to predict the effect of a seismic wave on the interface and thus on the attenuation. We assume that in each half of a phase loop, the minor phase is made of spherical grains surrounded by the major phase [START_REF] Morris | Coupling of interface kinetics and transformation-induced strain 559 during pressure-induced solid-solid phase changes[END_REF].

For example, in the shallower half of the 410 km depth transition, we consider the βphase as surrounded by the α matrix (see Figure 1). The outer radius R e represents the average distance between the grains with radii r ≤ R e of the minor phase. In the deepest part of the loop, the major β-phase is supposed to surround the last grains of α phase. This model will be used to describe the whole loop, although it is obvious that none of the two phases surrounds the other one in the middle of the loop.

When the normal stress on an interface is increased, a new film of the high pressure β-phase grows at the expense of the low pressure α-phase. This reaction, associated with minor changes of volume, facilitates the deformation, decreases the effective GPa, the thickness of the reacting film is only nanometric [START_REF] Li | Effect of phase transitions on compressional-wave veloci-552 ties in the earth's mantle[END_REF].

187

This very small perturbation is however a significant source of dissipation.

188

Radial deformation and complex incompressibility 189

We assume for simplicity that the two phases have the same elastic properties with 190 bulk modulus κ and rigidity µ. We neglect the difference of these parameters for the 191 two phases which is of the order of the jumps in incompressibility and rigidity, about 192 10% in PREM, at 410 km depth [START_REF] Dziewonski | Preliminary reference earth model[END_REF]. We introduce the an elastic shell of compressibility κ ∞ and rigidity µ can be written

198 u i r = a i s + b i s 2 , ( 8 
)
199 with i = α in the outer shell and i = β, inside (b β is obviously 0 to insure that u β r is 200 finite at s = 0). The change of density is

201 δρ = -3 ρ u r (R e ) R e , (9) 
202 and the effective compressibility of the medium is κ, 6) or ( 7), we can write

203 κ = ρ δP δρ = - R e 3u r (R e ) δP, (10) 
v α -v β = C δσ n (S) -3κ 0 u(R e ) R e , ( 11 
)
209
where C is a kinetic factor in m s -1 Pa -1 (the factor C includes the ∆ρ/ρ α ρ β term 210 of ( 5)). By choosing a vanishingly small κ 0 or the κ 0 deduced from the observed 211 thickness of the transition we will be in agreement with (6) or with (7). 

219

We get

220 κ HF = κ ∞ + κ i -κ ∞ 1 + iωτ 1 , (12) 221 
(HF stands for "high frequency" as it will be explained below) where

222 κ i = κ ∞ -S 3 (κ ∞ -κ 0 ) κ ∞ + 4µ ∞ /3 κ ∞ S 3 + 4µ ∞ /3 , ( 13 
)
223
and where the relaxation constant τ 1 is

224 τ 1 = R e S 3Cκ ∞ κ ∞ + 4µ ∞ /3 κ ∞ S 3 + 4µ ∞ /3 . ( 14 
)
225

The use of the subscripts i for "intermediate" will soon be explained. 

236 µ * = µ ∞ iωτ M 1 + iωτ M , ( 15 
)
237 where τ M is the Maxwell time, ratio of viscosity to rigidity (the real elastic rigidity).

238

If we redo the same modeling using µ * instead of µ ∞ we get the same expressions 239 as ( 12) and ( 13) but where µ * replaces µ ∞ . The new expression of the viscoelastic 240 incompressibility can be simplified and becomes after some algebra

241 κ = κ ∞ + κ i -κ ∞ 1 + iωτ 1 + κ 0 -κ i (1 + iωτ 1 )(1 + iωτ 2 ) , ( 16 
)
242
with the long relaxation time τ 2

243 τ 2 = τ M κS 3 + 4µ/3 κS 3 . ( 17 
)
244

We can safely assume, at least for the olivine-wadsleyite transformation (see e.g., Li 

251 κ ≃ κ HF = κ ∞ + κ i -κ ∞ 1 + iωτ 1 , ( 18 
)
252
where HF stands for high frequency and a second one for ωτ 2 ∼ 1 (and ωτ 1 << 1) in 253 which we get

254 κ ≃ κ LF = κ i + κ 0 -κ i 1 + iωτ 2 . ( 19 
)
255 This is the low frequency approximation of κ. The low frequency limit of the high 256 frequency incompressibility, ω = 0 in (18), is κ i which of course is also the high 

Pure shear deformation and complex rigidity

The existence of a phase change has also an effect on the rigidity. When at uniform pressure, the stresses are not uniform, the high pressure phase grows in the direction of the maximum stress and the reverse reaction occurs in the perpendicular direction.

This eases the deformation and therefore reduces the effective rigidity. Notice that it is only because the chemical potential in solids is related to the normal stress not to the pressure (uniform in a pure shear deformation) than reactions occur.

An analytical expression can be obtained, although the derivation is more cumbersome and less rigourous than in the spherical case. Let us consider the deformation of a nucleus of β-phase surrounded by a shell of α-phase when a pure shear deformation is applied to the external boundary. The pure shear deformation far from the central nucleus is in cartesian coordinates u z = -γz, u x = γx/2 and u y = γy/2 (γ is the strain)

and can be written in spherical coordinates after a standard change of coordinates

u r = - 1 2 γr(3 cos 2 θ -1), and u θ = 3 2 γr cos θ sin θ, (20) 
where θ is the colatitude.

In a pure shear experiment performed in a laboratory, the rigidity would be the ratio between the vertical stress applied on the surface of a core sample, at position z, and the vertical strain measured at the same position -zσ zz (z)/2u z (z). In our analytical model, instead of imposing the deformation on surfaces of constant cartesian coordinates, they are imposed on the sphere or radius R e . We consider that the effective rigidity can however be estimated by

µ = - σ rr (R e , θ))R e 2u r (R e , θ) . (21) 
We can solve for the deformation inside the two-phase aggregate by assuming that it keeps the same degree 2 geometry. As the radial stress and the radial deformation have the same geometry, µ is independent of θ. In this case, the general solution of the A c c e p t e d M a n u s c r i p t momentum balance yields

u i r = a i s + b i s 3 + c i s 2 + d i s 4 (3 cos 2 θ -1) (22) 
314 and 315

u i θ = -3a i s -b i 7µ + 5λ ∞ λ ∞ s 3 -6 µ ∞ 3λ ∞ + 5µ c i s 2 + 2 d i s 4 cos θ sin θ ( 23 
)
316
where s is again the normalized radius

s = r/R e , λ ∞ = K ∞ -2µ ∞ /3 is an elastic 317
Lamé parameter, and i stands for α or β.

318

Using ( 22) and ( 23), the stress tensor can be computed in the inner sphere and in 

327 µ HF = µ ∞ + µ i -µ ∞ 1 + iωτ 3 . ( 24 
)
328 where the intermediate rigidity µ i is

329 µ i = µ ∞ -µ ∞ F (S, κ ∞ µ ∞ ), ( 25 
)
330
where F is a cumbersome function of S and κ ∞ /µ ∞ . We can choose for simplicity and the relaxation times τ 3 is

331 κ ∞ = 5µ ∞ /3
F (S, κ ∞ µ ∞ = 5 3 ) = 105S 3 8 + S 2 604 + 280S 3 + 56S 5 + 5S 7 , ( 26 
)
τ 3 = 315 SR e Cµ ∞ 1 604 + 280S 3 + 56S 5 + 5S 7 . ( 27 
)
The constant τ 3 of shear modulus relaxation is also depicted in Figure 2 and its value is comparable to that appearing in the high frequency incompressibility τ 2 .

Like for the incompressibility, the intermediate rigidity µ i that corresponds to the relaxed limit of the rigidity with respect to the short time scale of phase change can in turn be seen as an unrelaxed rigidity for periods larger than τ 3 but much smaller than the Maxwell time. Replacing directly in ( 24) and ( 25), µ ∞ by µ * , see ( 15), is straightforward but leads to a very complex expression of µ. We checked numerically that the behavior of µ * F (κ ∞ /µ * ) can be qualitatively approximated by µ * F (κ ∞ /µ ∞ ). For periods much larger than τ 3 , the rigidity varies therefore as

µ = µ ∞ + µ i -µ ∞ 1 + iωτ 3 iωτ M 1 + iωτ M . ( 28 
)
As τ 3 << τ M , the expression of the rigidity at high frequency, when ωτ M >> 1 is µ ≃ µ HF . At low frequency, when ωτ 3 << 1 we get

µ ≃ µ LF = µ i - µ i 1 + iωτ M , ( 29 
)
which reaches zero after complete relaxation when ω = 0, i.e., when the medium behaves viscously rather than elastically.

The real and imaginary parts of the rigidity are plotted in Figure 3. Like for the incompressibility, two transitions are predicted. The low frequency transition only occurs when the elastic stresses in the surrounding shell relax and stop screening the inner nucleus from the outside stresses. At zero frequency (infinite period), the rigidity vanishes contrary to the incompressibility that remains finite.

A c c e p t e d M a n u s c r i p t

Bulk and shear attenuations

In the case of complex elastic parameters, the seismic waves propagates with a 359 frequency-dependent attenuation usually defined by the quality factors Q ξ where ξ 360 stands for κ or µ. These quality factors are defined by

361 Q ξ = - Re(ξ) Im(ξ) = ξ R + ξ U ω 2 T 2 R (ξ U -ξ R )ωT R , ( 30 
)
362
where T R is the appropriate relaxation time, Re(ξ) and Im(ξ) the real and imaginary 363 parts of ξ that varies between the relaxed and unrelaxed limits, ξ R (for ω = 0) and ξ U

364

(for ω = +∞). Attenuation is maximum at the frequency

365 ω 0 = 1 T R ξ R ξ U , ( 31 
)
366
where Q ξ reaches its minimum 367

Q 0 ξ = 2 ξ R ξ U ξ U -ξ R . ( 32 
)
368

Notice that in our model, each elastic parameter has low and high frequency modes.

369

The bulk modulus can relax from ξ U = κ to ξ R = κ i with the time constant τ 1 , then 370 from ξ U = κ i to ξ R = κ 0 with the time constant τ 2 . Similarly, the rigidity relaxes 371 from ξ U = µ to ξ R = µ i with the time constant τ 3 , then from ξ U = µ i to ξ R = 0 with viscously rather than elastically. The general behavior for the shear attenuation is that 394 of a linear solid called a Burger body (see e.g. [START_REF] Karato | Defect microdynamics in minerals and solid-state 541 mechanisms of seismic-wave attenuation and velocity dispersion in the mantle[END_REF]. The bulk 395 attenuation behaves differently as contrary to the Burger body, the quality factor does 396 vanish at infinite periods.

397

The fact that the bulk quality factor is lower than the shear quality factor is not a 398 general result of our model. The difference κ i -κ ∞ that controls the bulk attenuation is 399 proportional to κ 0 -κ ∞ (see ( 12) and ( 13)). This difference tend to decrease when the To avoid unnecessary complexities, we assume λ ∞ = µ ∞ or κ ∞ = 5µ ∞ /3. This time, the boundary conditions on the outer shell imply

a α + b α + c α + d α = - γ 2 , (B-3) 1 4 (-12a α -48b α -3c α + 8d α ) = 3γ 2 , (B-4)
the continuity of radial and shear stress at the phase-change interface implies

(8a α -4b α s 2 -19 c α s 3 -32 d α s 5 ) = (8a β -4b β s 2 ), (B-5) -(24a α + 120b α s 2 + 15 c α s 3 + 64 d α s 5 ) = -(24a β + 120b β s 2 ), (B-6)
and the continuity of θ-displacement

1 4 (-12a α s -48b α s 3 -3 c α s 2 + 8 d α s 4 ) = 1 4 (-12a β s -48b β s 3 ). (B-7)
As there is no global volume change in this pure shear experiment the jump of radial displacement is given by ( 6) Figure 3: Incompressibility and rigidity as functions of the period. The real part is depicted by lines, the imaginary part by shadows. The thin line corresponds to the incompressibility computed using (6), the thick line using (7). In the former case the incompressibility goes to zero at long period while in the latter, it reaches the relaxed compressibility κ 0 . The high frequency relaxation occurs for seismic and tidal periods.

iω (a α s + b α s 3 + c α s 2 + d α s 4 ) -(a β s + b β s 3 ) = C 1 4 µ ∞ R e ( 8a 
Page 27 of 30 The elastic incompressibility κ, seen by high frequency body waves, the totally relaxed compressibility κ 0 that can be deduced from the density jump and the thickness of the transition, and an intermediate incompressibility κ i , see equation ( 13). The transition between κ and κ i and an associated attenuation should occur for periods corresponding to surface waves. The transition between κ i and κ 0 should take a much longer time (a Maxwell time larger than 100 yrs).

133

  the mechanical properties of the two phases and the boundary conditions on the inter-134 face. At the interface between grains, the total normal stress (pressure plus deviatoric 135 stress) and shear stress are continuous. The boundary condition for the velocity across 136 the reacting interface is expressed by

145

  cancel when the two phases are at thermodynamic equilibrium. The definition of the 146 thermodynamic equilibrium is however subtle in the two-phase loop, and we discuss 147 here two possible equilibrium conditions. We show in the following that the choice of 148 one or the other expression does not change our conclusions on the seismic attenuation 149 within the two-phase loop.150When the material inside a phase loop is at equilibrium, the reaction rate is zero. 151 When the system is perturbed, for example by a change of the far-field pressure, 152 the normal stress on interfaces changes. The rules of irreversible thermodynamics 153 (de Groot and Mazur, 1984) suggests that the reaction rate close to equilibrium is pro-154 portional to the distance to equilibrium, i.e. to the change of affinity of the reaction. 155 The associated changes of chemical potentials are initially related to the normal 156 stress perturbations on the grain interfaces δσ n . Therefore the reaction rate has often

  the elastic energy and therefore leads to attenuation. Notice that 185 with the low pressure changes involved during the propagation of a seismic front, ∼ 186 10 -7

  193normalized radius s = r/R e where R e is the external radius and we use S for the value 194 of s on the two-phase interface.195In the case of isotropic radial compression of the two medium of Figure1, it is 196 straightforward to show that with spherical symmetry the radial deformation u r (s) in 197

  204where u r (R e ) and δP are the radial displacement and the pressure perturbation at the 205 outer radius R e .206 By using the general expression of the jump of normal velocity (5) and one of the 207 A c c e p t e d M a n u s c r i p t kinetic laws (

212

  If a sinusoidal pressure perturbation of frequency ω, δP exp(iωt), is applied on 213 the external rim, the deformations and therefore the coefficients a i and b i , will also 214 vary at the same frequency. From the general expression of the deformation, (8), the 215 normal stress can be expressed (see Appendix A). By matching the normal stresses 216 across the phase boundary at s and using the normal velocity jump condition (11) with 217 v α = iωu α r and v β = iωu β r , the three constants a α , b α and a β can be found from which 218 the effective incompressibility (10) is readily obtained (see Appendix A).

245

  and[START_REF] Li | Effect of phase transitions on compressional-wave veloci-552 ties in the earth's mantle[END_REF], that τ 1 << τ 2 ∼ τ M , i.e., that the reaction occurs in a time 246 shorter than the Maxwell time of a few hundred years. As is physically expected, the 247 high frequency limit, when 1 << ωτ 1 << ωτ 2 is the elastic value κ = κ ∞ and the 248 low frequency limit ωτ 1 << ωτ 2 << 1 is the incompressibility deduced from the 249 thickness of the phase loop, κ = κ 0 . The incompressibility variations occur within two 250 frequency bands, one for ωτ 1 ∼ 1 (and thus ωτ 2 >> 1) in which we recover (12),

Figure 3

 3 Figure 3 depicts the evolution of the real and imaginary part of the incompressibil-

  319 the outer shell (see Appendix B). The final resolution involves the determination of 6 320 parameters a α , b α , c α , d α , a β and b β . They can be obtained by matching 6 boundary 321 conditions; the continuity of shear stress, normal stresses and tangential deformation 322 on the interface, the jump condition for the normal velocity on the interface, and the 2 323 external boundary conditions (20) (see Appendix B). Notice that no density variation 324 occurs in the assemblage submitted to a pure shear and the kinetic law (6) is therefore 325 appropriate. Similarly to what we obtain for the incompressibility, the effective rigidity 326 deduced from the model can be written as

372 the time constant τ M . 373 Figure 5

 3735 Figure 5 depicts the minimum quality factor Q 0 κ and Q 0 µ for the various relaxation

Figure 6

 6 Figure 6 depicts the attenuation quality factor Q κ and Q µ computed at the center

400

  loop thickness increases (see (3)). On the contrary the difference µ i -µ ∞ controlling 401 the shear attenuation is independent of the loop thickness (see(24)). The ratio Q κ /Qµ 402 decreases therefore with the loop thickness. Increasing the loop thickness over 50 km 403 for the 410 km transition (keeping the other parameters unchanged) would lead to Q µ 404 lower than Q κ . In other words, a thin loop is mostly attenuating because of its Q κ , a 405 thick one because of its Q µ . attenuation in coexistence loop is certainly simplified in particular in 408 the description of the geometry of the two phases. However we believe that various 409 aspects of our model are very robust.410We confirm that the phase loops, in agreement with Li and Weidner (2008of a significant attenuation for periods belonging to the low frequency 412 seismic band (surface waves and seismic modes). However in their paper, only the bulk 413 attenuation was taken into account whereas we have shown that the shear attenuation 414 should be affected as well. Moreover, we found that the two attenuations and their 415 relaxation times are independent of the amplitude of the seismic wave in agreement 416 with the usual assumption of seismology. The attenuation bands are narrow because 417 of our assumption of a unique grainsize across the coexistence loop. A distribution of 418 grainsizes would probably broaden the frequency bands of attenuation.419Another large difference between[START_REF] Li | Effect of phase transitions on compressional-wave veloci-552 ties in the earth's mantle[END_REF] and the present paper is 420 that the transition between the elastic incompressibility, κ ∞ and that deduced from 421 PREM κ 0 (very low incompressibility in coexistence loops) does not occur in a single 422 step but in two steps. This is summarized in Figure7where we plot as a function of 423 depth the instantaneous κ ∞ , the intermediate κ i and the κ 0 bulk moduli. We derived 424 a κ ∞ (r) that follows the PREM values outside the loop and varies linearly within the 425 loop. We introduce the same κ ∞ (r) in the computation of κ i , (13). These depth-426 dependent incompressibilities look more realistic, but truly our model assumes the κ ∞ 427 is uniform within the loop. We predict that the transformation is first limited by the 428 shielding of the external stresses by the elastic rigidity of the matrix. This behavior 429 is in agreement with[START_REF] Morris | Coupling of interface kinetics and transformation-induced strain 559 during pressure-induced solid-solid phase changes[END_REF]. This first "fast" transition between κ ∞ and κ i 430 (see Figure7) occurs within minutes or hours. Therefore the incompressibility seen 431 by seismology is somewhere between these two values. The final transformation (slow 432 kinetics) corresponding to the transition between κ i and κ 0 occurs in a second step 433 when the elastic stresses are released, and a new two-phase equilibrium is found after 434 diffusion and reequilibration of the composition. A very similar figure could be drawn 435 for the rigidity, but the totally relaxed rigidity would simply be zero.436The minimum values of Q κ and Q µ predicted for the olivine-wadsleyite loop are 437 significantly lower than the typical range of attenuation of low frequency seismologic 438 models. This is true for the shear attenuation and even more for the bulk attenuation. 439 In a recent review, Resovsky et al. (2005) propose for depths around 400 km a Q µ 440 roughly between 150 and 200 and Q κ larger than 2000. These radial models have used 441 a very simple parametrization of the attenuation in a limited range of layers (typically 442 A c c e p t e d M a n u s c r i p t larger than 200 km) and in layers than coincide with the seismic discontinuities. This 443 parametrization is certainly an inappropriate choice to detect a narrow depth range of 444 attenuation astride a velocity discontinuity. 445 The Q κ and Q µ quality factors seen by given seismic or tidal perturbations are 446 not necessary the minimum values shown in Figures 5 or 6, but are functions of their 447 frequencies, of the kinetic constant C and of the grain size R e . The exact frequency de-448 pendent expressions for incompressibility, rigidity and attenuation can be easily com-449 puted from (12), (24) and (30). The values of C and R e are still uncertain for the 450 olivine-wadsleyite phase change and mostly unknown for other mantle phase changes.451The narrow depth range of the coexistence loop, ∼ 10 km, may make this localized 452 attenuation difficult to detect but may significantly bias the average determined over 453 a large zone of sensibility. The presence of bulk attenuation in the upper mantle has 454 indeed be proposed by various studies (Resovsky et al., 2005; Durek and Ekstrom, a strong attenuation associated with seismic velocity jumps should 457 also affect the reflection and transmission factors of short period seismic waves hitting 458 these interfaces. Notice however that body waves seem to have a too high frequency to 459 be right on the attenuation maximum, but according to Figure 6 might see an attenua-460 tion of order 10-100 (for frequencies between 1 Hz to 20 mHz). This could possibly be 461 seen from S waves multiply reflected under the Earth surface and with a turning point 462 below or above the 410 km discontinuity. At any rate, a better estimate of attenuation 463 in phase loops would constrain the kinetic behavior of these phase changes (Chambat 464 et al., 2009). 465 We have discussed the attenuation due to the olivine-wadsleyite transition because 466 this transition is simple and only involves two phases of similar composition. Other 467 mantle transitions should behave similarly like the wadsleyite-ringwoodite loop around 468 520 km deep (but, of course, with their appropriate kinetic laws that may not lead 469 to characteristic times for the phase changes in tune with the seismic periods). The 470 mantle transitions involving three phase like the ringwoodite to ferropericlase+perov-471 skite, should also lead to attenuation because of a large difference between the relaxed 472 and unrelaxed properties. However because of the necessary long distance motion of

Figure 1 :

 1 Figure1: The growing β-phase is surrounded by the low pressure α-phase. The interface at radius r moves up or down depending of the applied external pressure that controls the reaction rate ∆Γ. The external diameter 2Re will be interpreted as the average distance between grains.

Figure 2 :

 2 Figure2: Relaxation times of incompressibility (τ 1 and τ 2 ) and shear modulus (τ 3 and Maxwell time τ M ) across a phase loop. The two short relaxation times are in the seismic band of surface waves, for the bulk attenuation τ 1 and the shear attenuation τ 3 . The long bulk and shear relaxation times τ 2 and τ M correspond to viscoelastic behaviours occurring after at least one Maxwell time. The horizontal lines correspond to periods of 1 h and 1 yr (frequencies of 0.27 mHz and 0.03 µHz).

Figure 4 :Figure 6 :Figure 7 :

 467 Figure4: To compute the shear attenuation, we submit the two-phase to a pure shear experiment. The pressure remains constant, but the high pressure β-phase starts growing in the direction of the maximum stress, the α-phase in the direction of the lowest stress as the reaction rate is related to the normal stress on interfaces.

  elastic matrix even at infinite time. To clarify this point we have to remember that at 233 large times, the Earth mantle does not behave as elastic but as viscous. The rigidity in 234 the definition of κ i , is in fact the high frequency limit of a viscoelastic rheology (see

	235	
		e.g., Ricard, 2007)
		M a n u s c r i p t
	230 A c c e p t e d
	231	correspond to the incompressibility κ 0 (see (2)) obtained from a radial seismological
	232	model. This is because in a purely elastic model, the deviatoric stresses remain in the

The incompress-226 ibility at infinite frequency which is usually called the unrelaxed incompressibility is 227 simply the elastic incompressibility κ ∞ , while κ i is the relaxed incompressibility ob-228 tained for ω = 0. 229 It might be surprising that the relaxed incompressibility κ i in this model does not

  which corresponds to a Poisson ratio of 1/4 (or to the equality of the

332

two Lamé Parameters λ ∞ and µ ∞ , (e.g.

[START_REF] Malvern | Introduction to the mechanics of a continuum medium[END_REF]

) which is a common rule of 333 thumb for elasticity of silicates. In this case, the function F is 334
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Appendix A. Radial deformation

The deformation given by (8) corresponds to the radial stress

The continuity of normal stress across the phase transition boundary satisfies

while the application of an external pressure corresponds to

The condition of jump of normal displacement where the phase change occurs is

The resolution of equations (A-2)-(A-4) leads to the unknowns a α , b α and a β and therefore to the expression of the effective incompressibility (see ( 10))

δP.

(A-5)

Appendix B. Pure shear deformation

From expressions ( 22)-( 23), stresses can then be readily obtained,

where i stands for α or β. The high frequency quality factor for both Q 0 κ and Q 0 µ are below 10 in the center of the loop. The exact value of κ 0 (7 10 9 GPa, thick solid line, or 0, thin solid line) is not very important. The very low quality factor of Q 0 κ at low frequency does not belong to the seismic or tidal domain.