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Abstract – Principal curves are nonlinear generalizations of the notion of first
principal component. Roughly, a principal curve is a parameterized curve in Rd

which passes through the “middle” of a data cloud drawn from some unknown
probability distribution. Depending on the definition, a principal curve relies
on some unknown parameters (number of segments, length, turn. . . ) which
have to be properly chosen to recover the shape of the data without interpo-
lating. In the present paper, we consider the principal curve problem from an
empirical risk minimization perspective and address the parameter selection
issue using the point of view of model selection via penalization. We offer ora-
cle inequalities and implement the proposed approaches to recover the hidden
structures in both simulated and real-life data.

Index terms – Principal curves, parameter selection, model selection, oracle inequality,
penalty calibration, slope heuristics.

2010 Mathematics Subject Classification: 62G08, 62G05.

1 Introduction

1.1 Principal curves

Statisticians use various methods in order to sum up information and represent the data
by simpler quantities. Among these methods, Principal Component Analysis (PCA) aims
at determining the maximal variance axes of a data cloud, as a means to represent the
observations in a compact manner revealing as well as possible their variability (see, e.g.,
Mardia, Kent and Bibby [32]). This technique, initiated at the beginning of the last
century by Pearson [35] and Spearman [38], and further developed by Hotelling [26], is
certainly one of the most famous and most widely used procedure of multivariate analysis.
Whether in the context of dimension reduction or feature extraction, PCA often provides
a first important insight in the data structure.

1Research partially supported by the French “Agence Nationale pour la Recherche” under grant ANR-

09-BLAN-0051-02 “CLARA”.
2Research carried out within the INRIA project “CLASSIC” hosted by Ecole Normale Supérieure and
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However, in a number of situations, it may be of interest to summarize information in a
nonlinear manner instead of representing the data by straight lines. This approach leads to
the notion of principal curve, which can be thought of as a nonlinear generalization of the
first principal component. Roughly, the purpose is to search for a curve passing through
the middle of the observations, as illustrated in Figure 1. Principal curves have a broad
range of applications in many different areas, such as physics (Hastie and Stuetzle [25],
Friedsam and Oren [22]), character and speech recognition (Kégl and Krzyzȧk [28], Rein-
hard and Niranjan [36]), mapping and geology (Brunsdon [10], Stanford and Raftery [39],
Banfield and Raftery [4], Einbeck, Tutz and Evers [19, 20]), natural sciences (De’ath [14],
Corkeron, Anthony and Martin [13], Einbeck, Tutz and Evers [19]) and medicine (Wong
and Chung [42], Caffo, Crainiceanu, Deng and Hendrix [11]).

The definition of a principal curve typically depends of the principal component property
one wants to generalize. Most of the time, this definition is first stated for an Rd-valued
random variable X = (X1, . . . , Xd) with known distribution, and then adapted to the
practical situation where one observes independent draws X1, . . . ,Xn distributed as X.

Figure 1: An example of principal curve.

The original definition of a principal curve goes back to Hastie and Stuetzle [25] and relies
on the self-consistency property of principal components. In words, a smooth (infinitely
differentiable) parameterized curve f(t) = (f1(t), . . . , fd(t)) is a principal curve for X if f
does not intersect itself, if it has finite length inside any bounded subset of Rd, and if it
is self-consistent. This last requirement means that

f(t) = E[X|tf (X) = t], (1)

where the so-called projection index tf (x) is the largest real number t minimizing the
squared Euclidean distance between x and f(t), as depicted in Figure 2. More formally,

tf (x) = sup
{

t : ‖x− f(t)‖ = inf
t′
‖x− f(t′)‖

}

.

The self-consistency property may be interpreted by saying that each point of the curve
f is the mean of the observations projecting on f around this point. Hastie and Stuetzle
discuss in [25] an iterative algorithm, alternating between a projection and a conditional
expectation step, which yields an approximate principal curve. As this approach exhibits
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Figure 2: The projection index tf . For all i, ti stands for tf (xi).

different types of bias, Banfield and Raftery [4] and Chang and Ghosh [12] propose a mod-
ification of the algorithm, whereas Tibshirani, tackling the model bias problem, adopts in
[40] a semiparametric strategy and defines principal curves in terms of a mixture model.
For more references on principal curves and related points of view, we refer the reader to
Verbeek, Vlassis and Kröse [41] (k-segments algorithm), Delicado [15] (principal curves
of oriented points), Einbeck, Tutz and Evers [20] (local principal curves) and Genovese,
Perone-Pacifico, Verdinelli and Wasserman [23], who recently discussed a closely related
approach, called nonparametric filament estimation.

In the present paper, we will adopt the principal curve definition of Kégl, Krzyżak, Linder
and Zeger [29], which is slightly different from the original one. The main advantage of
this definition, which is recalled in the next paragraph, is that it avoids the implicit
conditional expectation requirement (1) and, consequently, turns out to be more easily
amenable to mathematical analysis.

1.2 Constrained principal curves

In the definition of Kégl, Krzyżak, Linder and Zeger [29] (kklz hereafter), a principal
curve of length (at most) L for X is a parameterized curve minimizing the least-square
criterion

∆(f) = E

[

inf
t
‖X− f(t)‖2

]

over a collection FL of curves of length not larger than some prespecified positive L. We
note that, in this context, a principal curve always exists provided E‖X‖2 < ∞, but that
it may not necessarily be unique. In practice, as the distribution of X is unknown, ∆(f)
is replaced by its empirical counterpart

∆n(f) =
1

n

n
∑

i=1

inf
t
‖Xi − f(t)‖2

based on a sample X1, . . . ,Xn of independent random variables distributed as X. Con-
sidering the minimum f̂k,n of ∆n(f) over the subclass Fk,L ⊂ FL of all polygonal lines fk,n
with k segments and length not larger than L, Kégl, Krzyżak, Linder and Zeger [29] prove
that, whenever X is almost surely bounded, and for the choice k ∝ n1/3,

∆(f̂k,n)− min
f∈FL

∆(f) = O(n−1/3).
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As the task of finding a polygonal line with k segments and length at most L minimizing
∆n(f) is computationally difficult, kklz propose an approximate iterative algorithm that
they call the Polygonal Line Algorithm. This algorithm is initialized using the smallest
segment included in the first principal component containing all projected data points.
Then, at each step, a vertex—and thus, a segment—is added to the current polygonal
line, and the vertices are updated in a cyclic manner during an inner loop alternating
between a projection and an optimization step. Performing the projection step is similar
to constructing a Voronoi partition, with respect to both the vertices and segments. To
optimize a vertex, a local version of ∆n(f) is used, involving only the data projecting to
this vertex and to the adjacent segments. The criterion is penalized to avoid sharp angles,
which in turn amounts to penalizing the length of the curve.

Working out the angle penalty in the Polygonal Line Algorithm, Sandilya and Kulkarni
(sk hereafter) propose in [37] a closely related definition, by imposing a constraint on the
turn (Alexandrov and Reshetnyak [2]) of the curve f . This approach consists in replacing
the class FL by FK , where K stands for the maximal turn. Thus, denoting by Fk,K ⊂ FK

the subclass of all polygonal lines fk,n with k segments and turn not larger than K, sk

prove that, whenever X is almost surely bounded, and for the choice k ∝ n1/3,

∆(f̂k,n)− min
f∈FK

∆(f) = O(n−1/3).

Whether in the kklz definition or in the sk one, selecting the various smoothness pa-
rameters (the number k of segments, the curve length `, the turn κ) is an essential issue,
as illustrated in Figure 3. A good choice of these parameters is critical, since a princi-
pal curve obtained with a poor class will be too rough, whereas a class containing too
many curves may lead to severe interpolation problems. In practice, the Polygonal Line
Algorithm stops when k is larger than a certain threshold, chosen heuristically and tuned
after carrying out several experiments. The stopping condition involves the number n of
observations and the actual value of the criterion ∆n. However, to our knowledge, this
empirical procedure is not supported by any theoretical argument and leads to variable
results, depending on the data set.

[A] [B] [C]

Figure 3: Principal curves fitted with [A] a too small number k of segments, [B] a too large
k and [C] an appropriate one.

As far as we know, the issue of an automatic (i.e., data-dependent) choice of the pa-
rameters k, ` and κ has not been addressed in the literature. Thus, to fill the gap, we
propose in the present contribution to focus on this question both from a theoretical and
practical point of view. Our approach will strongly rely on the model selection theory by
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penalization introduced by Birgé and Massart [8] and Barron, Birgé and Massart [5], as
well as on a recent penalty calibration approach proposed by Birgé and Massart [9] and
Arlot and Massart [3].

The paper is organized as follows. First, we consider in Section 2 principal curves with
bounded length and show that the polygonal line obtained by minimizing some appro-
priate penalized criterion satisfies an oracle-type inequality. Section 3 provides a similar
result in the context of principal curves with bounded turn. Our theoretical findings are
illustrated on both simulated and real data sets in Section 4. For the sake of clarity,
proofs are collected in Section 5.

2 Principal curves with bounded length

Let ‖ · ‖ be the standard Euclidean norm over Rd. A parameterized curve in Rd is a
continuous function

f : I → Rd

t 7→ (f1, . . . , fd),

where I = [a, b] is a closed interval of the real line. The length of f is defined by

L (f) = sup
m
∑

j=1

‖f(tj)− f(tj−1)‖,

where the supremum is taken over all subdivisions a = t0 < t1 < · · · < tm = b, m ≥ 1
(see, e.g., Kolmogorov and Fomin [30]). Throughout the document, it is assumed that
E‖X‖2 < ∞ and that

P {X ∈ C} = 1, (2)

where C is a convex compact subset of Rd, with diameter δ. By Lemma 1 in Kégl [27],
the requirement (2) implies that, for any given positive length L, there exists a principal
curve for X with length at most L in C, that is a (non necessarily unique) parameterized
curve f

? with length not larger than L and support in C achieving the minimum of
E [inft∈I ‖X− f(t)‖2]. Consequently, in the sequel, we will restrict ourselves to curves
whose support is included in C and denote by F the set of all parameterized curves
f = (f1, . . . , fd) belonging to C.

Let X1, . . . ,Xn be a sample of independent random variables distributed as X, and con-
sider the contrast

∆(f ,x) = inf
t∈I

‖x− f(t)‖2, f ∈ F ,x ∈ Rd.

The associated empirical risk based on the sample X1, . . . Xn is defined as

∆n(f) =
1

n

n
∑

i=1

∆(f ,Xi) =
1

n

n
∑

i=1

inf
t∈I

‖Xi − f(t)‖2.

For some prespecified length L > 0, we set

f
? ∈ argmin

f∈F ,L (f)≤L

E[∆(f ,X)].
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Next, let L be a countable subset of ]0, L] and Q a grid over C. For every k ≥ 1 and
` ∈ L, the model Fk,` is defined as the collection of all polygonal lines with k segments,
with length at most `, and with vertices belonging to Q. We note that each model Fk,`

as well as the family of models {Fk,`}k≥1,`∈L are countable. For k ≥ 1 and ` ∈ L, let

f̂k,` ∈ argmin
f∈Fk,`

∆n(f)

be a curve achieving the minimum of the empirical criterion ∆n(f) over the polygonal line
class Fk,`.

At this stage of the procedure, we have at hand a family of estimates {f̂k,`}k≥1,`∈L and
our goal is to select the best principal curve f̃ among this collection. To this aim, we
make use of the model selection approach of Barron, Birgé and Massart [5], which allows
to assess the adjustment quality by controlling the loss

D(f?, f̃) = E[∆(f̃ ,X)−∆(f?,X)]

between the target f? and the selected curve f̃ . (For a comprehensive introduction to the
area of model selection, the reader is referred to the monograph of Massart [33].) More
formally, let pen : N∗ × L → R+ be some penalty function and denote by (k̂, ˆ̀) a pair of
minimizers of the criterion

crit(k, `) = ∆n(f̂k,`) + pen(k, `).

In order to obtain the desired principal curve f̃ = f̂k̂, ˆ̀, we have to design an adequate
penalty pen(k, `). This is done in the following theorem, which is an adaptation of a
general model selection result of Massart [33, Theorem 8.1]. However, for the sake of
completeness, it is proved in its full length in Section 5.

Theorem 2.1. Let {xk,`}k≥1,`∈L be a family of nonnegative weights such that

∑

k≥1,`∈L
e−xk,` = Σ < ∞,

and let f̃ = f̂k̂, ˆ̀. If there exists a penalty function pen : N∗ × L → R+ such that, for all

(k, `) ∈ N∗ × L,

pen(k, `) ≥ E

[

sup
f∈Fk,`

(

E[∆(f ,X)]−∆n(f)
)

]

+ δ2
√

xk,`

2n
,

then

E[D(f?, f̃)] ≤ inf
k≥1,`∈L

[

D(f?,Fk,`) + pen(k, `)
]

+
δ2Σ

23/2

√

π

n
,

where D(f?,Fk,`) = inff∈Fk,`
D(f?, f).

Theorem 2.1 offers a nonasymptotic bound, expressing the fact that the expected loss of
the final estimate f̃ is close to the minimal loss over all k ≥ 1 and ` ∈ L, up to a term
tending to 0. Thus, in order to apply this theorem to the principal curve problem, we
now have to find an upper bound on the quantity

E

[

sup
f∈Fk,`

(

E[∆(f ,X)]−∆n(f)
)

]

. (3)
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This is achieved by Proposition 2.1 below, which is proved by showing that the ex-
pected maximal deviation (3) may be bounded by a Rademacher average (see Bartlett,
Boucheron, and Lugosi [6] and Koltchinskii [31]) and by resorting to a Dudley integral
(Dudley [17]).

Proposition 2.1. Let Fk,` be the set of all polygonal lines with k segments, length at

most `, and vertices in a grid Q ⊂ C. Then there exist nonnegative constants a0, . . . , a3,
depending on the maximal length L, the dimension d and the diameter δ of the convex set

C, such that

E

[

sup
f∈Fk,`

(

E[∆(f ,X)]−∆n(f)
)

]

≤ 1√
n

[

a1
√
k + a2

√
`+ a3

`√
k
+ a0

]

.

Finally, by combining Theorem 2.1 and Proposition 2.1, we are in a position to state the
main result of this section.

Theorem 2.2. Consider a family of nonnegative weights {xk,`}k≥1,`∈L such that

∑

k≥1,`∈L
e−xk,` = Σ < ∞,

and a penalty function pen : N∗×L → R+. Let f̃ = f̂k̂, ˆ̀. There exist nonnegative constants

c0, . . . , c3, depending on the maximal length L, the dimension d and the diameter δ of the

convex set C, such that, for all (k, `) ∈ N∗ ×L,

pen(k, `) ≥ 1√
n

[

c1
√
k + c2

√
`+ c3

`√
k
+ c0

]

+ δ2
√

xk,`

2n
,

then

E[D(f?, f̃)] ≤ inf
k≥1,`∈L

[

D(f?,Fk,`) + pen(k, `)
]

+
δ2Σ

23/2

√

π

n
,

where D(f?,Fk,`) = inff∈Fk,`
D(f?, f).

Some comments are in order.

Firstly, we see that the penalty shape involves a term proportional to
√

k/n and a term

proportional to
√

`/n, as well as the quantity `/
√
kn. This penalty form, which vanishes

at the rate 1/
√
n, seems relevant insofar as the number k of segments and the length `

of the curves measure the complexity of the models. It is also noteworthy that the term
`/
√
kn is natural in some sense, since it reflects the mutual dependence between k and

`. In other words, whenever the length ` increases, more segments should be allowed in
order to keep a certain degree of smoothness.

Observe next that the proof of Proposition 2.1 provides possible values for the constants
c0, . . . , c3. However, these values are not very helpful since they are upper bounds which
are probably far from being tight. Nevertheless, the proof also reveals that c1 = c′1δ

2, c2 =
c′2δ

√
δ, c3 = c′3δ and c0 = c′0δ

2, where c′0, c
′
1, c

′
2 and c′3 are constants without dimension, so

that the penalty is in fact homogeneous to a squared length, just like the criterion ∆n(f)
is.
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Finally, an important practical issue is how to choose the weights {xk,`}k≥1,`∈L. These
weights should be large enough to ensure the finiteness of Σ, but not too large at the risk
of overpenalizing. If the cardinality of the collection of models is not larger than n2 (this
will be the case in all our practical examples), we may set xk,` = 2 lnn for every (k, `).
This choice does not affect the penalty shape, though modifying the rate, and leads to
Σ = 1 in the risk bound.

Remark 2.1. Clearly, when the length ` of polygonal lines is fixed, and the aim is to select
the number k of segments, the dominant term reflecting the complexity of the models in
the penalty is

√

k/n. In this particular context, the weights may be taken equal to lnn,
or, by analogy with the Gaussian linear model selection framework, proportional to k.
Indeed, in this framework, each model Sm, m ∈ M, has dimension Dm and an interesting
choice for xm is then xm = x(Dm), where x(D) = cD + ln |{m ∈ M : Dm = D}| and
c > 0. When there is no redundancy in the models dimension, this strategy amounts to
choosing xm proportional to Dm. In our problem, this means setting xk = ck for every
k, where the constant c > 0 ensures that

∑

k≥1 e
−ck = Σ < ∞. Thus, in this somewhat

restrictive situation, the penalty is of the order
√

k/n.

3 Principal curves with bounded turn

As it was already mentioned in the Introduction, Sandilya and Kulkarni [37] (sk) suggest
an alternative approach for principal curves, based on the control of the turn. Recall that
the turn K (f) of a curve f : I → Rd, I = [a, b], is given by

K (f) = sup

m−1
∑

j=1

f̂(tj),

where f̂(tj) denotes the angle between the vectors
−−−−−−−−→
f(tj−1)f(tj) and

−−−−−−−−→
f(tj)f(tj+1), and the

supremum is taken over all subdivisions a = t0 < t1 < · · · < tm = b, m ≥ 1 (Alexandrov
and Reshetnyak [2]). Thus, the turn of a polygonal line with vertices v1, . . . , vk+1 is just
the sum of the angles at v2, . . . , vk (see Figure 4 for an illustration).

φ2 φ3

b

v1

−→s1

b
v2

−→s2 b
v3

−→s3
b

v4

Figure 4: Denoting by −→sj the vector −−−→vjvj+1 for all j = 1, . . . , k, the angles involved in the
definition of the turn are defined by φj+1 = (−→sj ,−−→sj+1).

As a logical continuation to Section 2, we propose in the present section to analyse the
sk definition from a model selection point of view. To this aim, we use the fact that a
curve with bounded turn also has bounded length, as shown in Lemma 3.1 below.
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We still assume that P {X ∈ C} = 1, where C is a convex compact subset of Rd with diam-
eter δ. By Proposition 1 in sk, this requirement ensures the existence of a curve f

? with
bounded turn minimizing the criterion E[∆(f ,X)]. More formally, for some prespecified
turn K ≥ 0, we set

f
? ∈ argmin

f∈F ,K (f)≤K

E[∆(f ,X)],

where K (f) denotes the turn of f . Proceeding as in Section 2, we let K be a countable
subset of [0, K] and define a countable collection of models {Fk,κ}k≥1,κ∈K as follows. Each
Fk,κ consists of polygonal lines with k segments, with turn at most κ, and with vertices
belonging to some grid Q over C. For k ≥ 1 and κ ∈ K, define

f̂k,κ ∈ argmin
f∈Fk,κ

∆n(f)

to be a polygonal line minimizing the empirical criterion ∆n(f) over Fk,κ. We wish to
design an appropriate penalty function pen : N∗ ×K → R+ and minimize the criterion

crit(k, κ) = ∆n(f̂k,κ) + pen(k, κ)

in order to obtain a suitable principal curve. As before, we let f̃ = f̂k̂,κ̂, where (k̂, κ̂) is a

minimizer of the penalized criterion crit(k, κ), and intend to control the loss D(f?, f̃) =
E[∆(f̃ ,X)−∆(f?,X)].

To get a result of the form of Theorem 2.2, we already know that it suffices to find an
upper bound on the quantity

E

[

sup
f∈Fk,κ

(

E[∆(f ,X)]−∆n(f)
)

]

.

As a first step towards this direction, we will need the following lemma, which establishes
an interesting link between the length of a curve and its turn. For a proof of this result,
we refer the reader to Alexandrov and Reshetnyak [2, Chapter 5].

Lemma 3.1. Let f be a curve with turn κ and let δ be the diameter of C. Then L (f) ≤
δζ(κ), where the function ζ is defined by

ζ(x) =























1

cos(x/2)
if 0 ≤ x ≤ π

2

2 sin(x/2) if
π

2
≤ x ≤ 2π

3
x

2
− π

3
+
√
3 if x ≥ 2π

3
.

The graph of the function ζ is shown in Figure 5.
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Figure 5: Graph of the function ζ .

Thanks to this result, the approach developed in Section 2 adapts to the new context.
Proposition 3.1 below is the counterpart of Proposition 2.1.

Proposition 3.1. Let Fk,κ be the set of all polygonal lines with k segments, turn at most

κ, and vertices in a grid Q ⊂ C, and let δ be the diameter of the convex set C. Then there

exist nonnegative constants a0, . . . , a4, depending only on the dimension d, such that

E

[

sup
f∈Fk,κ

(

E[∆(f ,X)]−∆n(f)
)

]

≤ δ2
[

a1
√
k + a2

√

ζ(κ) + a3
ζ(κ)√

k
1{ ζ(κ)

3k
<1} + a4

√

k ln
ζ(κ)

k
1{ ζ(κ)

3k
≥1} + a0

]

.

Putting finally Theorem 2.1 and Proposition 3.1 together, we obtain:

Theorem 3.1. Consider a family of nonnegative weights {xk,κ}k≥1,κ∈K such that
∑

k≥1,κ∈K
e−xk,κ = Σ < ∞,

and a penalty function pen : N∗×K → R+. Let f̃ = f̂k̂,κ̂. There exist nonnegative constants

c0, . . . , c3, depending only on the dimension d, such that, for all (k, κ) ∈ N∗ ×K,

pen(k, κ) ≥ δ2√
n

[

c1
√
k + c2

√

ζ(κ) + c3max

(

ζ(κ)√
k
,

√

k ln
ζ(κ)

k

)

+ c0 +

√

xk,κ

2

]

,

then

E[D(f?, f̃)] ≤ inf
k≥1,κ∈K

[

D(f?,Fk,κ) + pen(k, κ)
]

+
δ2Σ

23/2

√

π

n
,

where D(f?,Fk,κ) = inff∈Fk,κ
D(f?, f).

The expression of the penalty shape involves a term of the order
√

k/n—just like in the
case of curves with bounded length—, whereas the term depending on the length of the
curve

√

`/n is replaced by
√

ζ(κ)/n, which is an increasing function of the turn κ. This
is relevant, since the number of segments k and the turn κ characterize the complexity

of the models. Moreover, the additive term max
[

ζ(κ)/
√
kn,

√

k ln ζ(κ)/kn
]

shows that

k and κ should be cleverly chosen relatively to each other in order to get a nice principal
curve. Roughly, a greater curvature implies more segments.
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4 Experimental results

This section presents some simulations and real data experiments, carried out with the
software MATLAB, to illustrate the model selection procedures suggested by Theorem
2.2 and Theorem 3.1. The penalty shapes in these theorems involve constants which
have to be practically determined. To this end, a possible route is to use the so-called
slope heuristics, introduced by Birgé and Massart [9] and further developed by Arlot and
Massart [3]. In short, this calibration method allows to tune a penalty known up to
some multiplicative constant. The slope heuristics assumes that the empirical contrast
decreases when the complexity of the models increases, which is clearly the case in our
principal curve context. The procedure is based on the fact that the graph of the empirical
contrast as a function of the penalty shape decreases strongly at the beginning and more
slowly later, with a linear trend. At the end, the heuristics specifies that the desired
constant is equal to twice the slope of this line.

From an algorithmic perspective, two different strategies were implemented, denoted here-
after by MS1 and MS2 (the acronym “MS” stands for “model selection”).

• The method MS1, which is the most closely related to the theory developed in
Section 2 and Section 3, is based on the simultaneous choice of the number k of
segments and the length ` of the curve. Precisely, for each number of segments
k = 1, . . . , 80 and for a range of values of the length ` (the maximal length L and
the step depend on the scale of the considered data set), we computed the criterion

∆n(f̂k,`) =
1

n

n
∑

i=1

∆(f̂k,`,Xi).

Then, considering for ease of computation a slightly suboptimal penalty of the form
c1
√
k+ c2`, we selected the constants c1 and c2 by implementing a bivariate version

of the slope heuristics. More precisely, it is assumed that for large values of k and
`, the criterion ∆n(f̂k,`) behaves like c1

√
k + c2`, and the constants ĉ1 and ĉ2 are

chosen thanks to a regression step.

• The second algorithm MS2 is an adaptation of the Polygonal Line Algorithm pro-
posed by kklz. In this procedure, the vertices of the principal curve are optimized
one after the other in a cyclic manner and the turn is controlled locally, at each
step. This is done by means of some local angle penalty, which we set according
to kklz recommendation in [29] and did not try to optimize. Thus, in this second
approach, we end up with a penalty of the form c

√

k/n. To calibrate the constant
c, we used a MATLAB package called CAPUSHE (CAlibrating Penalties Using the
Slope Heuristics), implemented by Baudry, Maugis and Michel in [7].

4.1 Simulated data

In this first series of experiments, we considered two-dimensional data distributed with
some noise around a reference curve. More formally, observations were generated from
the model

X = Y + ε,

where Y is uniformly distributed over some planar curve f and ε is a bivariate Gaussian
noise, independent of Y. Even if the generative curve f is not a principal curve stricto
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sensu—because of the model bias—, this Gaussian model is considered as a benchmark
for simulations in the literature on principal curves.

In a first example, we let f be a half-circle with radius 1. The noise variance is set to
0.004 and the number n of observations to 100 (see Figure 6).

Figure 6: 100 observations distributed around a half-circle with radius 1.

Recall that the algorithm MS1 computes the criterion ∆n(f̂k,`) for a table of values of√
k and ` and selects the best constant according to a bivariate slope heuristics. Figure 7

shows the surface ∆n(f̂k,`) as a function of
√
k and `.

Both algorithms were applied to the data set. The resulting selected principal curves are
visible in Figure 8. For comparison purposes, Figures 9 and 10 also show some curves
obtained by specifying other values for k and `.

[A] [B]

Figure 8: Selected principal curves for the half-circle data (n=100). [A] Method MS1: k̂ =
20, ˆ̀= 3. [B] Method MS2: k̂ = 9.

It can be noted that the outputs of both algorithms have approximately the same quality.
Indeed, the MS1 principal curve shows a few irregularities not visible on the MS2 result,
which on the other hand seems rougher, due to the relatively low value of k̂.
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`
√
k

∆n(f̂k,`)

√
k

`

∆n(f̂k,`)

`

√
k

∆n(f̂k,`)

Figure 7: Criterion ∆n(f̂k,`) as a function of
√
k and ` for the half-circle data (n=100).
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[A] [B]

[C] [D]

[E] [F]

Figure 9: Method MS1: Examples of principal curves for some prespecified values of k and
` (n=100). [A] k = 20, ` = 2.5. [B] k = 20, ` = 3.1. [C] k = 20, ` = 3.4. [D]
k = 25, ` = 3. [E] k = 30, ` = 3.1. [F] k = 35, ` = 4.
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[A] [B]

[C] [D]

[E] [F]

Figure 10: Method MS2: Examples of principal curves for some prespecified values of k
(n=100). [A] k = 3. [B] k = 6. [C] k = 14. [D] k = 20. [E] k = 26. [F] k = 35.

The methods MS1 and MS2 were also tested on a larger sample, shown in Figure 11.
The results for the half-circle data set with n = 250 are given in Figure 12. We observe
that both principal curves obtained with this sample size are very accurate.

Figure 11: 250 observations distributed around a half-circle with radius 1.
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[A] [B]

Figure 12: Selected principal curves for the half-circle data (n=250). [A] Method MS1:
k̂ = 12, ˆ̀= 3. [B] Method MS2: k̂ = 14.

In a second set of numerical examples, we took handwritten-type digits as generative
curves, with noise variance 0.04. As depicted in Figure 13, 150 observations were sampled
around the digit 2 and the digit 3 and 250 observations around the digit 5.

[A] [B] [C]

Figure 13: [A] 150 observations sampled around the digit 2. [B] 150 observations sampled
around the digit 3. [C] 250 observations sampled around the digit 5.

Figure 14 presents the results obtained for the digit 2 with the algorithms MS1 and
MS2, whereas Figure 15 and Figure 16 show curves corresponding to other choices of the
parameters.

[A] [B]

Figure 14: Selected principal curves for the digit 2 data (n=150). [A] Method MS1: k̂ = 27,
ˆ̀= 24. [B] Method MS2: k̂ = 12.

With respect to the digit 2 data, the MS1 principal curve follows the observations more
closely than what is expected. On the other hand, the MS2 output looks better, even if
a faintly larger k̂ could make the principal curve a bit smoother.
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[A] [B]

[C] [D]

[E] [F]

Figure 15: Method MS1: Examples of principal curves for some prespecified values of k and
` (n=150). [A] k = 12, ` = 14. [B] k = 20, ` = 18. [C] k = 20, ` = 26. [D]
k = 27, ` = 26. [E] k = 35, ` = 24. [F] k = 30, ` = 30.
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[A] [B]

[C] [D]

[E] [F]

Figure 16: Method MS2: Examples of principal curves for some prespecified values of k
(n=150). [A] k = 3. [B] k = 5. [C] k = 7. [D] k = 20. [E] k = 30. [F] k = 40.
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The principal curves fitted for the digits 3 and 5 are shown in Figure 17 and 18. For
the digit 3, we note again that the algorithm MS1 slightly overfits the data, whereas the
MS2 output looks a little rough. However, the resulting principal curves for the digit 5
are visually fully satisfactory. On this last example, both algorithms performed similarly
and, interestingly, selected almost the same value k̂.

[A] [B]

Figure 17: Selected principal curves for the digit 3 (n=150). [A] Method MS1: k̂ = 23,
ˆ̀= 23. [B] Method MS2: k̂ = 18.

[A] [B]

Figure 18: Selected principal curves for the digit 5 (n=250). [A] Method MS1: k̂ = 17,
ˆ̀= 21. [B] Method MS2: k̂ = 18.

This small simulation study reveals, as expected, that a good automatic choice of the
parameters k̂ and ˆ̀ is crucial to obtain a suitable principal curve. On the whole, the
visual quality of both algorithms is satisfactory, even if they sometimes lead to somewhat
different results. In fact, the principal curves fitted by algorithm MS1 often follow the
data quite closely, in particular when the sample size is not very large, whereas the MS2

outputs tend to be a bit angular due to the selection of a relatively small k̂. Besides, from
a computational point of view, MS1 is, by construction, more CPU–time consuming than
MS2, since the former algorithm involves the computation of the criterion ∆n(f̂k,`) for a
range of values of the length ` ≤ L.

Remark 4.1. A general observation regarding the slope heuristics in MS2 is that the graph
of the criterion ∆n as a function of k is not always smooth enough to obtain relevant
results in the software CAPUSHE. Indeed, by construction of the kklz Polygonal Line
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Algorithm, ∆n does not necessarily decrease from one step to another, which may disturb
the slope estimation. Two strategies have been tried to overcome this problem.

The first one consists in deleting all points in the graph of −∆n corresponding to the
values of k such that −∆n(fk) < −∆n(fk−1). The main drawback of this approach is that
it removes a substantial number of values of k. In particular, a whole range of values of
k around the right number of segments might be removed, so that selecting a suitable k
is practically impossible.

Another attempt is to perform several times the vertex optimization step, choosing at
random the order in which the vertices are successively updated, and keep the output
matching the lowest criterion. This approach effectively allows to smooth the criterion
∆n, but it induces some annoying variability: it was found that different principal curves
were obtained with the same number of segments, leading to more or less good results.

None of the two strategies described above does completely solve the problem. This
discussion is illustrated in Figure 19 with an example of output of the package CAPUSHE.

Figure 19: Example of CAPUSHE output for the half-circle data (n = 250): The slope heuris-
tics selects k̂ = 55. Left: Graph of the criterion −∆n(f̂k) as a function of

√

k/n.
Upper right: Successive estimated slope values versus the number of points used
for the slope estimation. Bottom right: Selected values of k̂ versus the number
of points used for the slope estimation.

4.2 Real data sets

4.2.1 NIST database digits

The first real-life data set used in this second series of experiments originated from NIST
Special Database 19 (http://www.nist.gov/srd/nistsd19.cfm), containing handwrit-
ten characters from 3600 writers. The data consists in binary images scanned at 11.8 dots
per millimeter (300 dpi), which uniformly fill the area corresponding to the thickness of
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the pen stroke. Determining the medial axis of such handwritten characters often con-
stitutes a preliminary step to perform character recognition (see, e.g., Deutsch [16] and
Alcorn and Hoggar [1]).

Algorithms MS1 and MS2 were applied to the three NIST database digits visible in
Figure 20. Figure 21 shows the surface corresponding to the criterion ∆n(f̂k,`) plotted as

a function of
√
k and `. Principal curves for this digit obtained with the two methods

are depicted in Figure 22, whereas Figure 23 and Figure 24 show some results for other
prespecified values of the parameters.

[A] [B] [C]

Figure 20: Three NIST database handwritten digits.

`
√
k

∆n(f̂k,`)

Figure 21: Criterion ∆n(f̂k,`) as a function of
√
k and ` for the NIST database digit 2 (n=458).

[A] [B]

Figure 22: Selected principal curves for the digit 2 (n=458). [A] Method MS1: k̂ = 23,
ˆ̀= 80. [B] Method MS2: k̂ = 17.
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We observe that both results for the digit 2 are quite similar, with a slight advantage to
MS1 however. Indeed, this algorithm yields a smoother curve which better recovers the
loop of the digit.

[A] [B]

[C] [D]

Figure 23: Method MS1: Examples of principal curves for some prespecified values of k and
`. [A] k = 6, ` = 80. [B] k = 10, ` = 80. [C] k = 25, ` = 84. [D] k = 30,
` = 90.

[A] [B]

[C] [D]

Figure 24: Method MS2: Examples of principal curves for some prespecified values of k. [A]
k = 8. [B] k = 13. [C] k = 20. [D] k = 30.
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Figure 25 and 26 show the outputs of the algorithms MS1 and MS2 for the NIST digits
5 and 7.

[A] [B]

Figure 25: Selected principal curves for the digit 5 (n=513). [A] Method MS1: k̂ = 38,
ˆ̀= 82. [B] Method MS2: k̂ = 14.

[A] [B]

Figure 26: Selected principal curves for the digit 7 (n=334). [A] Method MS1: k̂ = 15,
ˆ̀= 66. [B] Method MS2: k̂ = 6.

As a general conclusion on these NIST digit data sets, we found that both methods
perform quite well. Here, MS1 does not seem to overfit, probably because the sample
size is large enough. As in the simulated data examples, it nevertheless appears that the
curves estimated by the algorithm MS2 could be smoother with a slightly larger number
k̂ of segments.

4.2.2 Seismic data

Together with satellite images, the localization of earthquakes is an essential source of
information in geology for the study of seismic faults, whether in accretion or subduction
regions. As an illustration, Figure 27 depicts seismic impacts in the world—the map is
drawn using Miller’s projection—, as well as a world map from the USGS (United States
Geological Survey) showing the various lithospheric plates. The data set, which can
be downloaded on the USGS website (http://earthquake.usgs.gov/research/data/
centennial.php), is part of the “Centennial Catalog”, listing the major earthquakes reg-
istered since 1900 (Engdahl et Villaseñor [21]). In this subsection, we use algorithms MS1
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and MS2 as a means to recover the borders of lithospheric plates using the earthquake
localization data of Figure 27.

We decided to focus on two particularly representative seismic active zones. The first
one (Z1 hereafter) is located in the Atlantic Ocean, to the west of the African continent
(about 60◦S 50◦W to 40◦N 0◦), and the second one (Z2 hereafter) extends from the south
of Africa to the south of Australia (about 65◦S 0◦ to 25◦S 160◦E). The localization of
these two regions on the world map is visible in Figure 28. The results for Z1 are shown
in Figure 29 and for Z2 in Figure 30.

[A]

[B]

Figure 27: [A] Earthquake impacts and [B] lithospheric plate borders.

24



Figure 28: Localization of the two considered seismic zones Z1 (about 60◦S 50◦W to 40◦N
0◦) and Z2 (about 65◦S 0◦ to 25◦S 160◦E).

[A] [B]

Figure 29: Selected principal curves for the seismic zone Z1 (n=252). [A] Method MS1:
k̂ = 55, ˆ̀= 31. [B] Method MS2: k̂ = 30.
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[A] [B]

Figure 30: Selected principal curves for the seismic zone Z2 (n=322). [A] Method MS1:
k̂ = 22, ˆ̀= 38. [B] Method MS2: k̂ = 20.

In Figure 29, we see, for the seismic zone Z1, that the method MS1 again yields a
principal curve following the data points quite closely. On the contrary, the algorithm
MS2 provides a smoother curve, which at first sight seems a better result. However, the
border of the lithospheric plate is probably more likely to look like the more irregular
MS1 principal curve, as suggested by Figure 27 [B]. The same observation holds for Z2

(Figure 30). Moreover, in this case, the MS2 output does not recover the shape of the
plate border, which certainly passes through the most northern points and not several
degrees south. Apparently, the local penalty on the angles leads here to overpenalization.
Thus, on this seismic data set, MS1 results seem to be more relevant.

It is noteworthy that using this type of earthquake data to draw faults could be especially
useful to locate some faults which cannot be easily spotted and necessitate monitoring for
seismic risk prevention. With this respect, Harding and Berghoff [24], employing a method
based on airborne laser mapping, study for instance seismic hazards in a zone densely
covered by vegetation, located in the Puget Lowland of Washington State, USA. Using
a principal curve approach to solve this kind of problems is undoubtedly an interesting
project for future research.

5 Proofs

5.1 Proof of Theorem 2.1

Theorem 2.1 is an adaptation of Theorem 8.1 in Massart [33]. We first recall the following
lemma, which is a consequence of McDiarmid’s inequality [34] (see Massart [33, Theorem
5.3]).

Lemma 5.1. If X1, . . . ,Xn are independent random variables and G is a finite or count-

able class of real-valued functions such that a ≤ g ≤ b for every function g ∈ G, then,

setting Z = supg∈G
∑n

i=1 (g(Xi)− E[g(Xi)]), we have, for every ε ≥ 0,

P {Z − E[Z] ≥ ε} ≤ exp

(

− 2ε2

n(b− a)2

)

.
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Proof of the theorem. Let ∆̄n(f) = ∆n(f)− E[∆(f ,X)] denote the centered empirical
process. For all k ≥ 1 and ` ∈ L, for any fk,` ∈ Fk,`, we have, by definition of f̃ ,

∆n(f̃) + pen(k̂, ˆ̀) ≤ ∆n(fk,`) + pen(k, `).

Equivalently,
∆n(f̃)−∆n(fk,`) ≤ pen(k, `)− pen(k̂, ˆ̀).

Since ∆n(f̃) = E[∆(f̃ ,X)] + ∆̄n(f̃) and ∆n(fk,`) = E[∆(fk,`,X)] + ∆̄n(fk,`), this inequality
becomes

E[∆(f̃ ,X)]− E[∆(fk,`,X)] ≤ ∆̄n(fk,`)− ∆̄n(f̃) + pen(k, `)− pen(k̂, ˆ̀). (4)

Moreover, for every f ∈ F ,

D(f?, f) = E[∆(f ,X)−∆(f?,X)],

so that
E[∆(f̃ ,X)]− E[∆(fk,`,X)] = D(f?, f̃)−D(f?, fk,`). (5)

Therefore, combining (4) and (5),

D(f?, f̃) ≤ D(f?, fk,`) + ∆̄n(fk,`)− ∆̄n(f̃) + pen(k, `)− pen(k̂, ˆ̀). (6)

Consider now a family of nonnegative weights {xk,`}k≥1,`∈L such that

∑

k≥1,`∈L
e−xk,` = Σ < ∞,

and let z > 0. Applying Lemma 5.1, we get, for all k′ ≥ 1, `′ ∈ L and ε ≥ 0,

P

{

sup
f∈Fk′,`′

(−∆̄n(f)) ≥ E

[

sup
f∈Fk′,`′

(−∆̄n(f))

]

+ ε

}

≤ exp

(

−2nε2

δ4

)

.

This may be rewritten, for ε = δ2
√

xk′,`′+z

2n
,

P

{

sup
f∈Fk′,`′

(−∆̄n(f)) ≥ E

[

sup
f∈Fk′,`′

(−∆̄n(f))

]

+ δ2
√

xk′,`′ + z

2n

}

≤ e−xk′,`′−z.

Setting Ek′,`′ = E

[

supf∈Fk′,`′
(−∆̄n(f))

]

, we thus have, for all k′ ≥ 1 and `′ ∈ L,

sup
f∈Fk′,`′

(−∆̄n(f)) ≤ Ek′,`′ + δ2
√

xk′,`′ + z

2n
,

except on a set of probability not larger than Σe−z . Then, inequality (6) implies

D(f?, f̃) ≤ D(f?, fk,`) + ∆̄n(fk,`) + Ek̂, ˆ̀+ δ2
√

xk̂, ˆ̀+ z

2n
− pen(k̂, ˆ̀) + pen(k, `)

≤ D(f?, fk,`) + ∆̄n(fk,`) + Ek̂, ˆ̀+ δ2
√

xk̂, ˆ̀

2n
− pen(k̂, ˆ̀) + pen(k, `) + δ2

√

z

2n
,
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except on a set of probability not larger than Σe−z. Consequently, if for all k′ ≥ 1 and
`′ ∈ L,

pen(k′, `′) ≥ Ek′,`′ + δ2
√

xk′,`′

2n
,

then

D(f?, f̃) ≤ D(f?, fk,`) + ∆̄n(fk,`) + pen(k, `) + δ2
√

z

2n
,

except on a set of probability not larger than Σe−z . Put differently,

P

{

δ−2
√
2n[D(f?, f̃)−D(f?, fk,`) + ∆̄n(fk,`) + pen(k, `)] ≥ √

z
}

≤ Σe−z,

or, letting z = u2,

P

{

[δ−2
√
2n[D(f?, f̃)−D(f?, fk,`) + ∆̄n(fk,`) + pen(k, `)] ≥ u

}

≤ Σe−u2

.

Recalling that
∫∞
0

e−u2
du =

√
π
2

and letting g+ = max(g, 0), we obtain

E
[

(D(f?, f̃)−D(f?, fk,`) + ∆̄n(fk,`) + pen(k, `))+
]

≤ δ2Σ

23/2

√

π

n
.

Hence, as E[∆̄n(fk,`)] = 0,

E[D(f?, f̃)] ≤ D(f?, fk,`) + pen(k, `) +
δ2Σ

23/2

√

π

n
.

Since this is true for all k and `, we finally get

E[D(f?, f̃)] ≤ inf
k≥1,`∈L

[

D(f?,Fk,`) + pen(k, `)
]

+
δ2Σ

23/2

√

π

n
,

where D(f?,Fk,`) = inff∈Fk,`
D(f?, f). This concludes the proof of Theorem 2.1.

5.2 Proof of Proposition 2.1

The first step consists in proving that the quantity

E

[

sup
f∈Fk,`

(E[∆(f ,X)]−∆n(f))

]

may be upper bounded by means of the Rademacher average

E

[

sup
f∈Fk,`

1

n

n
∑

i=1

εi∆(f ,Xi)

]

,

where ε1, . . . , εn are independent Rademacher random variables, defined by P {εi = 1} =
P {εi = −1} = 1/2, independent of X1, . . . ,Xn. Let X′

1, . . . ,X
′
n be independent copies of
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X1, . . . ,Xn, also independent of ε1, . . . , εn. A symmetrization argument yields

E

[

sup
f∈Fk,`

(E[∆(f ,X)]−∆n(f))

]

= E

[

sup
f∈Fk,`

(

E

[ 1

n

n
∑

i=1

∆(f ,X′
i)
∣

∣X1, . . . ,Xn

]

− 1

n

n
∑

i=1

∆(f ,Xi)
)

]

≤ E

[

sup
f∈Fk,`

1

n

n
∑

i=1

(

∆(f ,X′
i)−∆(f ,Xi)

)

]

= E

[

sup
f∈Fk,`

1

n

n
∑

i=1

εi
(

∆(f ,X′
i)−∆(f ,Xi)

)

]

≤ E

[

sup
f∈Fk,`

1

n

n
∑

i=1

εi∆(f ,X′
i)

]

+ E

[

sup
f∈Fk,`

1

n

n
∑

i=1

(−εi)∆(f ,Xi)

]

= 2E

[

sup
f∈Fk,`

1

n

n
∑

i=1

εi∆(f ,Xi)

]

.

Next, the Rademacher average

E

[

sup
f∈Fk,`

1

n

n
∑

i=1

εi∆(f ,Xi)

]

may be bounded by resorting to a Dudley integral. More precisely, let

Sk,` = {∆(f , ·), f ∈ Fk,`}
be a subset of the continuous functions from C to R+, endowed with the sup-norm ‖ · ‖∞,
and denote by N (Sk,`, ‖ · ‖∞, ε) the covering number of Sk,`, i.e., the minimal number of
closed balls of radius ε needed to cover Sk,`. According to Dudley [18], there exists an
absolute constant c > 0 such that, for all X1, . . . ,Xn,

E

[

sup
f∈Fk,`

1

n

n
∑

i=1

εi∆(f ,Xi)

]

≤ c√
n

∫ ∞

0

√

lnN (Sk,`, ‖ · ‖∞, ε)dε.

To evaluate the covering number of Sk,`, we may use Lemma 2 in Kégl [27], which ensures
that

N (Sk,`, ‖ · ‖∞, ε) ≤ 2`δ/ε+3k+1V k+1
d

[

δ2
√
d

ε
+
√
d

]d[
`δ
√
d

kε
+ 3

√
d

]kd

,

where Vd denotes the volume of the d-dimensional unit ball. Observe that

lnN (Sk,`, ‖ · ‖∞, ε)

≤
(`δ

ε
+ 3k + 1

)

ln 2 + (k + 1) lnVd + d ln
(δ2

√
d

ε
+
√
d
)

+ kd ln
(`δ

√
d

kε
+ 3

√
d
)

=
`δ

ε
ln 2 + (3k + 1) ln 2 + (k + 1) lnVd + d(k + 1) ln

√
d+ d ln

(δ2

ε
+ 1

)

+ kd ln 3

+ kd ln
( `δ

3kε
+ 1

)

=
`δ

ε
ln 2 + d ln

(δ2

ε
+ 1

)

+ kd ln
( `δ

3kε
+ 1

)

+ kd ln 3 + (3k + 1) ln 2

+ (k + 1)(lnVd +
d

2
ln d).
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Hence, recalling that the support of f is included in a set C with diameter δ, we obtain

∫ ∞

0

√

lnN (Sk,`, ‖ · ‖∞, ε)dε =

∫ δ2

0

√

lnN (Sk,`, ‖ · ‖∞, ε)dε

≤
√
`δ ln 2I1 +

√
dI2 +

√
kdI3 + δ2A(k, d),

where I1 =

∫ δ2

0

1√
ε
dε, I2 =

∫ δ2

0

√

ln
(δ2

ε
+ 1

)

dε, I3 =

∫ δ2

0

√

ln
( `δ

3kε
+ 1

)

dε, and

A(k, d) =
[

kd ln 3 + (3k + 1) ln 2 + (k + 1)(lnVd +
d

2
ln d)

]1/2

.

Control of I1. Clearly,

I1 =

∫ δ2

0

1√
ε
dε = 2δ.

Control of I2. We have

I2 ≤
∫ δ2

0

√

ln
(2δ2

ε

)

dε

= 2δ2
∫ 1/2

0

√

ln
1

u
du

≤ δ2(
√
ln 2 +

√
π).

Control of I3. Let M = max(3k, L/δ). Clearly, for all ` ∈ L, δ ≥ `
M

, and then δ2 ≥ `δ
M

.
Let us cut up the integral I3 and write

I3 =

∫ δ2

0

√

ln
( `δ

3kε
+ 1

)

dε

=

∫ `δ/M

0

√

ln
( `δ

3kε
+ 1

)

dε+

∫ δ2

`δ/M

√

ln
( `δ

3kε
+ 1

)

dε. (7)

Observe, since ε ≤ `δ
M

, that `δ
3kε

≥ 1. Consequently,

∫ `δ/M

0

√

ln
( `δ

3kε
+ 1

)

dε ≤
∫ `δ/M

0

√

ln
( 2`δ

3kε

)

dε

=
2`δ

3k

∫ 3k/2M

0

√

ln
1

u
du

≤ `δ

M

(

√

ln
(2M

3k

)

+
√
π

)

.

The second integral in equality (7) may be bounded using the fact that the integrand is
a decreasing function of ε:

∫ δ2

`δ/M

√

ln
( `δ

3kε
+ 1

)

dε ≤
(

δ2 − `δ

M

)

√

ln
(M

3k
+ 1

)

≤
(

δ2 − `δ

M

)

√

ln
(2M

3k

)

.
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As a result,

I3 ≤ δ2
√

ln
(2M

3k

)

+
`δ

M

√
π.

Thus,

∫ ∞

0

√

lnN (Sk,`, ‖ · ‖∞, ε)dε

≤ 2δ
√
δ` ln 2 +

√
dδ2(

√
ln 2 +

√
π) +

`δ

M

√
kdπ + δ2

√

kd ln
(2M

3k

)

+ δ2A(k, d)

= 2δ
√
δ` ln 2 +

`δ

M

√
kdπ +

√
kδ2

[

d ln
(2M

3k

)

+ d ln 3 +
d

2
ln d+ lnVd + 3 ln 2

]1/2

+ a0,

where a0 is a nonnegative constant. Finally,

∫ ∞

0

√

lnN (Sk,`, ‖ · ‖∞, ε)dε ≤ a1
√
k + a2

√
`+ a3

`√
k
+ a0,

where the nonnegative constants a0, . . . , a3 only depend on the maximal length L, the
dimension d and the diameter δ of the convex set C.

5.3 Proof of Proposition 3.1

Let
Sk,κ = {∆(f , ·), f ∈ Fk,κ}

be a subset of the continuous functions from C to R+, endowed with the sup-norm ‖ · ‖∞.
Starting as in the proof of Proposition 2.1, we know that, for all X1, . . . ,Xn,

E

[

sup
f∈Fk,κ

(

E[∆(f ,X)]−∆n(f)
)

]

≤ c√
n

∫ ∞

0

√

lnN (Sk,κ, ‖ · ‖∞, ε)dε,

for some absolute constant c > 0. Now, according to Lemma 5 in Sandilya and Kulka-
rni [37], we may write, for each ε > 0,

lnN (Sk,κ, ‖ · ‖∞, ε)

≤
(ζ(κ)δ2

ε
+ 2k + 1

)

ln 2 + (k + 1) lnVd + d ln
(δ2

√
d

ε
+
√
d
)

+ kd ln
(ζ(κ)δ2

√
d

kε
+ 3

√
d
)

=
ζ(k)δ2

ε
ln 2 + (2k + 1) ln 2 + (k + 1) lnVd + d(k + 1) ln

√
d+ d ln

(δ2

ε
+ 1

)

+ kd ln 3 + kd ln
(ζ(κ)δ2

3kε
+ 1

)

=
ζ(k)δ2

ε
ln 2 + d ln

(δ2

ε
+ 1

)

+ kd ln
(ζ(κ)δ2

3kε
+ 1

)

+ kd ln 3 + (2k + 1) ln 2

+ (k + 1)(lnVd +
d

2
ln d).
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Consequently,

∫ ∞

0

√

lnN (Sk,`, ‖ · ‖∞, ε)dε =

∫ δ2

0

√

lnN (Sk,`, ‖ · ‖∞, ε)dε

≤ δ
√

ζ(κ) ln 2I1 +
√
dI2 +

√
kdI3 + δ2A(k, d),

where I1 =

∫ δ2

0

1√
ε
dε, I2 =

∫ δ2

0

√

ln
(δ2

ε
+ 1

)

dε, I3 =

∫ δ2

0

√

ln
(ζ(κ)δ2

3kε
+ 1

)

dε, and

A(k, d) = δ2
[

kd ln 3 + (2k + 1) ln 2 + (k + 1)(lnVd +
d

2
ln d)

]1/2

.

Control of I1. We clearly have

I1 =

∫ δ2

0

1√
ε
dε = 2δ.

Control of I2. We have

I2 ≤
∫ δ2

0

√

ln
(2δ2

ε

)

dε

= 2δ2
∫ 1/2

0

√

ln
1

u
du

≤ δ2(
√
ln 2 +

√
π).

Control of I3. Assume first that
ζ(κ)

3k
≥ 1. Then

I3 =

∫ δ2

0

√

ln
(ζ(κ)δ2

3kε
+ 1

)

dε

≤
∫ δ2

0

√

ln
(2ζ(κ)δ2

3kε

)

dε

=
2ζ(κ)δ2

3k

∫ 3k/2ζ(κ)

0

√

ln
1

u
du

≤ δ2
(

√

ln
2ζ(κ)

3k
+
√
π

)

.

On the other hand, if
ζ(κ)

3k
< 1, we cut up I3 into two pieces and write

I3 =

∫ δ2

0

√

ln
(ζ(κ)δ2

3kε
+ 1

)

dε

=

∫ ζ(κ)δ2/3k

0

√

ln
(ζ(κ)δ2

3kε
+ 1

)

dε+

∫ δ2

ζ(κ)δ2/3k

√

ln
(ζ(κ)δ2

3kε
+ 1

)

dε. (8)
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The first integral is bounded by using the inequality ζ(κ)δ2

3kε
≥ 1 for all ε ∈ ]0, ζ(κ)δ

2

3k
]. We

obtain

∫ ζ(κ)δ2/3k

0

√

ln
(ζ(κ)δ2

3kε
+ 1

)

dε ≤
∫ ζ(κ)δ2/3k

0

√

ln
(2ζ(κ)δ2

3kε

)

dε

=
2ζ(κ)δ2

3k

∫ 1/2

0

√

ln
1

u
du

≤ ζ(κ)δ2

3k
(
√
ln 2 +

√
π).

With respect to the second integral in (8), we note that the function under the integral
is decreasing in ε, so that

∫ δ2

ζ(κ)δ2/3k

√

ln
(ζ(κ)δ2

3kε
+ 1

)

dε ≤
(

δ2 − ζ(κ)δ2

3k

)√
ln 2.

Thus, we have

I3 ≤















δ2
(

√

ln
ζ(κ)

3k
+
√
π +

√
ln 2

)

if
ζ(κ)

3k
≥ 1

δ2
(

ζ(κ)

3k

√
π +

√
ln 2

)

if
ζ(κ)

3k
< 1.

Hence, collecting the different results,
∫ ∞

0

√

lnN (Sk,`, ‖ · ‖∞, ε)dε

≤ 2δ2
√

ζ(κ) ln 2 +
√
dδ2(

√
ln 2 +

√
π) + δ2

√
kd

(

√

ln
ζ(κ)

3k
+
√
π +

√
ln 2

)

1{ ζ(κ)
3k

≥1}

+ δ2
√
kd

(

ζ(κ)

3k

√
π +

√
ln 2

)

1{ ζ(κ)
3k

<1} + δ2A(k, d)

≤ δ2
(

2
√

ζ(κ) ln 2 +
ζ(κ)

3
√
k

√
πd1{ ζ(κ)

3k
<1} +

√

kd ln
ζ(κ)

3k
1{ ζ(κ)

3k
≥1}

+
√
k
[√

d(
√
π +

√
ln 2) +

(

d ln 3 +
d

2
ln d+ lnVd + 2 ln 2)1/2 + a0

])

,

where a0 is a nonnegative constant. Finally,
∫ ∞

0

√

lnN (Sk,`, ‖ · ‖∞, ε)dε

≤ δ2
(

a1
√
k + a2

√

ζ(κ) + a3
ζ(κ)√

k
1{ ζ(κ)

3k
<1} + a4

√

k ln
ζ(κ)

k
1{ ζ(κ)

3k
≥1} + a0

)

,

where the nonnegative constants a0, . . . , a4 only depend on the dimension d.
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