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1. Introduction     

The automotive industry faces the competing goals of producing better performing vehicles 
and keeping development time with low costs. It is crucial for the manufacturers to be able 
to produce fuel-economic vehicles, which respect pollutant emissions standards, and which 
meet the customers expectations.  Accordingly, the complexity of the engines responses we 
have to optimize and the number of the parameters to control during the design stage, have 
increased rapidly, in the later years. 
In order to deliver vehicles, which respond to these requirements, in a reasonable time scale. 
Companies use design of experiments (DOE) (Schimmerling et al., 1998)  in one side, and 
modelling, in the other side. DOE is a power tool, but the cost of the experiments and their 
duration, particularly in the field of pollutant emissions, can be a limit to their use in 
automotive industry.  

The engine developers use two main approaches to model engine behaviour. The first one is 
based on chemical and physical models, via differential system. This approach is not the 
subject of this article, because we have not such models. Furthermore, even when these 
models are available, generally, they are time-consuming, impractical for multi-objective 
optimisation routines, and fail to capture all the trends in the engine system described by 
measured data (like Zeldovich model). All this, is particularly true when the number of the 
control parameters is large and engine responses are complex.  

Statistical modelling based on carefully chosen measured data of engine performance, 
according to an experimental design is an important alternative technique.  
 
Strategies based on Lolimot (Castric et al., 2007) (Local Linear Model Tree) and Zeldovich 
mechanisms (Heywood, 1988) have been developed in order to predict emissions of NOx. In 
the first case, the corresponding model can lead to singular points, which reduces the 
precision of the results. In the second case, the results are not satisfactory enough.  
 
The literature presents several methods based on statistical trainings such as neural 
networks. This method gives good results, even in the nonlinear case. However, it is not 



Robotics, Automation and Control 

 

2 

adapted to our case, because it requires a great number of experiments to obtain a 
significant estimate of its parameters, and we are very limited by the small experiments 
number which the industrialist is able to realize. The techniques of the design of 
experiments (Cochran & Cox, 1957) were conceived to deal with this kind of problems. On 
the other hand, recent works (Sacks et al. 1989; Bates et al. 1996; Koehler & Owen, 1996) 
suggest that the polynomial models are not adapted to the numerical experiments. For 
example, a surface of response of order two is not enough flexible to model a surface 
admitting several extrema. 
 
The aim of this paper is to present the result that we have obtained in the field of pollutants 
emissions prediction. These results were obtained without the increase of the number of the 
experiments that the industrialist can do. We call upon a sophisticated statistical model 
resulting from the field from geostatistic named Kriging. 
 
We use this method, through two approaches, in order to improve the prediction of NOx 
(nitrogen oxide) emissions, and fuel consumption. 
In the first stage, we estimate the response directly from the controllable factors like main 
injection timing, pressure in common rail. This can be assimilated to a black box modelling.  
 
In the second stage we propose an innovative approach that allows us to predict the 
response from a functional data. More precisely we estimate the engine performance from 
signals like pressure and cylinder temperature, this signals are obtained from a model of 
combustion. The main advantage of the second approach is that it allows us to include a 
physical knowledge of combustion. This lack of knowledge is often criticized in the case of 
black boxes models.   
 
The Kriging method is very well adapted for the second approach which predicts engine 
responses from the state variables (signals) obtained from a physical model of combustion. 
This means that this method can be recommended in cases where we have a lot of variables 
decision with a small number of experiences; this is because the method is based on the 
study of the similarity of the response of interest in different sites in relation to the distance 
separating them. We recall that, Software such as R and Matlab contain a toolbox to use this 
method, but unfortunately the latter being restricted to less than 3 dimensions. Adapting the 
method to higher dimensions has been considered. 
 
To implement this second approach, a model reduction is needed; this reduction will be 
made in 
 two steps:  
  

1) Reducing the number of state variables from 10 to 2 by the study of correlations. 
2) Reducing the number of points in each signal using the theory of Fourier. 

 
Once the reduction is made, the Kriging can be applied to the model obtained.  
 
This paper is organized as follows:  In the second section, we describe the engine behaviour 
and recall the importance of controlling pollutant emissions. In the third section, the 
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ordinary Kriging techniques are recalled. In the fourth section, two different approaches for 
modelling our problem are proposed. An efficient reduction model strategy is considered in 
order to apply the Kriging method. Finally the Kriging method is applied to the reduced 
model. In the last section, numerical results are given followed by a short discussion. 
 

2. Engine calibration 

The engine calibration is a process which aims at defining the values of the engine control 
parameters. During the ten last years, the set of themes “engine calibration” took an 
important place in the process of the development of the internal combustion engines. 
Indeed, under the impulse of the standards more and more severe, the car manufacturers 
are brought to integrate more and more elaborated technologies in the power unit.  
Under these conditions, the principles of control used in the past (cartographic approach, 
buckles open…) are not enough sufficient. Indeed, the output variables (quantity injected, 
advances in lighting or in injection) were primarily given starting from two variables of 
entry (speed and load). Today the use of new technologies in the conception of engines, in 
order to reduce the pollutant emissions, as for example EGR (exhaust Gas Recirculation) 
(Pierpont et al. 1995), multiply the number of parameters to control, as we can see it in Fig.1. 
This figure shows the exponential evolution of number of setting parameters due to the 
hardware complexity increase. This makes the cartographic approach impracticable. 
Moreover, this kind of approach does not take into account the dynamic of system.  
The main drawback of this evolution is the increase of the difficulty to understand the 
engine behavior. To deals with all the parameters, we use a Kriging model which we define 
in the next section. 
 

 

 
Fig.1. Parameters to tune a diesel engine function of technologies 
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3. Ordinary Kriging Techniques 

Kriging methods are used frequently for spatial interpolation of soil properties (Krige, 1951; 
Matheron, 1963). Kriging is a linear least squares estimation algorithm. It is a tool for 
interpolation. The aim is to estimate the value of an unknown real function    at point  , 
given the values of function   at some other points  for each  . 

3.1 Ordinary Kriging 
 
The ordinary Kriging estimator   is defined by: 
 

                                     (1)      
 
Where n is the number of surrounding observations  and  is the weight of . The 
weights should sum to unity in order to make the estimator unbiased: 
 

                                             (2) 
 
The weights are also determined such that the following Kriging variance is minimal under 
the constraint given by the equation 2: 

  

  
This leads to a classical optimization problem with equality constraint. The Lagrange 
multiplier theory is used in order to work out this problem. This gives a linear system to be 
solved (Davis, 1986). 
 
3.2 Variogram 
  
The variogram is a function representing the spatial dependency. It is obtained from the 
stationarity definition. In fact, this stationarity hypothesis is an indispensable condition for 
the use of the Kriging method. 
In the case of ordinary Kriging the expression of the variogram is obtained from the 
following definition of intrinsic stationarity: 
 

1)   

2)  

 
More precisely the expression of theoretical variogram is deduced from the second 
condition of intrinsic stationarity. This condition means that the variation of a data set is 
only dependent on distance r between two locations, where the variables values are 

 and  with . 
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Note that the variogram, , is a function of the separation between points  and not a 
function of the specific location . This mathematical definition is a useful 
abstraction, but not easy to apply to observed values.  
Consider a set of n observed data:  where  is the location of 

observation  and  is the associated observed value. There are  unique pairs of 

observations. For each of these pairs we can calculate the associated separation distance: 
  

 
To infer the variogram from observed data we will then use the common formula for the 
experimental variogram (Cressie, 1993). 
 

                                     (3) 

 
Where: 

 
 

 is the pair number of  and ;  is the experimental variogram. 
 
3.3 Variogram Modeling 
 
The experimental variogram presented in equation 3, estimates the theoretical variogram, 
for only a finite number of distances. Moreover, it does not necessarily form a valid 
variogram. This means, that maybe, it does not concern a negative conditionally function. 
Indeed, this condition is necessary to ensure the positivity of the variance of a sum of 
random variables (Christakos, 1984). 
 The experimental variogram is then modeled by a function of negative conditional type and 
is defined for all distances. This modeling makes the Kriging possible. A variogram model 
should be fitted to such variogram. 
A model must be selected among the various forms of the variogram models, which exist in 
the literature and adjusted of experimental variogram (Arnaud & Emery, 2000 ). This means 
that the parameters of the model must be estimated. This adjustment can be done 
graphically, but it is usually done with an estimation method as the weighted least squares 
or maximum likelihood method.  
 
Once the variographic model is chosen, and its parameters are estimated. We compute the 
weights  which appear in (1) by solving the following system: 
 

, with 
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And 
 

 
 
Where  is the Lagrange multiplier. 

is the variogram  model used for adjusting the experimental variogram. 

The variance of the estimate   i.e. the square of the standard error at each point is obtained 
by the relationship: 
 

 
 
If we assume that the estimation errors are normally distributed around the true value, then 
the probability that the true value will be in  is 68 %, while the probability that the 
true value will be in  is 95 %, (Davis, 1986). 
 
3.4 Kriging Emulator Validation 

The true test of the quality of the fitted emulator model is its ability to predict the response 
at untried factor values. In order to maximally exploit the data to aid model fitting, the 
emulators are validated using leave-one-out cross validation. This process involves taking 
the fitted model and re-fitting it to a subset of non used experimental data. 
More precisely, for an experiment with d design factors , the set of n 
experimental design points  and responses , contain the 
information used to build the Kriging model. A cross validation involves predicting at each 
design point in turn when that point is left out of the predictor equations. Let  be the 
estimate of the based on all the design points expect . The prediction error (the 
estimated root mean square error, RMSE) is then calculated as: 
 

 
 
An index of the accuracy of the emulator is made by expressing as a percentage of the range 
of the response , 

 
 

4. Two approaches to model engine responses 

In this section we present two stage approaches based on Kriging method for the prediction 
of NOx (nitrogen oxide) emissions, and fuel consumption.  
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-In the first stage, we estimate the response directly from the controllable factor like main 
injection timing, pressure in common rail (black box).  
-In the second stage we propose an innovative approach that allows us to predict the engine 
response from signals like pressure and cylinder temperature (states variables of 
combustion chamber). 
 
4.1 First approach 

We recall that the first approach consists to build a Kriging model from the controllable 
parameters. Thus the Kriging was trained on about 300 input/ output sets of examples 
generated by using D-optimal design method. The training examples cover engine speeds 
from 1000 rpm to 5000 rpm in 250 rpm intervals, and load vary from 1 to 23 bar. The data 
was generated to cover the cycle point of the engine map in order to construct a global 
Kriging emulator. For this reason our model takes into account the engine speed among the 
following parameters control:  
- Prail :   rail pressure,                                          - Main:     Main injection quantity, 
- Mpil1:  pilot1 injection quantity,                      - Pmain:   Main injection timing, 
- Mpil2:  pilot2 injection quantity,                      - Ppil2:     pilot2 injection timing, 
- Ppil1:   pilot1 injection timing,                          -VNT:      turbine vane position, 
- VEGR: EGR valve position,                               - Volet:    position component of admission, 
 
4.2 Second approach 

4.2.1 Modelling 

In the second approach, we propose an innovative approach that allows us to predict the 
response from signals like pressure and cylinder temperature (states variables of 
combustion chamber).  
More precisely, we decompose the problem of estimate of the engine responses, into two 
steps sub problems (Fig.2): 
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Fig.2. Coupling of the pollutants and consumption models with the combustion model. 

1) The first step consists in simulating the various thermodynamic quantities from a 

physical model. In this work, we use the model developed by (Castric et al., 2007), 
which takes into account the input parameters. It leads to have a good 
representation of the experimental results. This model allows us to generate the 
following thermodynamic quantities: 

- The cylinder low pressure (the alone quantity that we can measure) 
- The temperature in the cylinder, 
- The temperature of the fresh gas in the cylinder 
- The temperature of the mixed gas in the cylinder, 
- The temperature of the burned gas in the cylinder, 
- The mass of the fresh gas in the cylinder, 
- The mass of the entrained gas in the cylinder, 
- The mass of the burned gas in the cylinder, 
- The turbulence in the motor, 
- The fuel vapor mass. 
We precise, that each signal is represented by a vector of 1334 components. 

2) The second step consists in building a statistical Kriging model, from the 11 
thermodynamics quantities generated by the model of combustion. 

It is true that the advantage of this procedure is that, it allows us to include a physical 
knowledge of combustion. But this approach requires a great time of computing. Indeed to 
build Kriging from 11 signals, can pose a serious problem in memory capacity and the 
computing time can be considerable. Thus, to be able to implement this procedure, a 
reduction of the model is essential. 

4.2.2 Model reduction 

The data of the first model can be directly used for the Kriging. It is not the case for the 
second one. In the last case the data have to be reduced.  
The reduction process begins by studying the different correlations between the state 
variables and their corresponding p-value. The chosen criterion consists in testing the p-
value: if it is less than to 0.05, the correlation is significant. This analysis allows us to retain 
only two state variables: the cylinder pressure  and the mixed gas temperature in the 
cylinder, Te.  
 
In the second step, the number of components of the two remaining signals is reduced. This 
is accomplished by using the discrete Fourier transform. The function fft of Matlab returns 
the discrete Fourier transform (DFT) of a vector, computed with a fast Fourier transform 
(FFT) algorithm. After calculating the coefficients a minimum number of these are retained. 
This allows us to reproduce the initial signal, with a relative error approximately less than 
0.02. 
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The reduction of the number of points of each signal is tantamount to minimizing the 
number of Fourier coefficients representing that signal. The two retained signals 
representing respectively the cylinder pressure and the temperature of the mixed gas in the 
cylinder, have been reduced to a 40 Fourier coefficients. Each signal has been reconstructed 
from the 40 kept coefficients, with an acceptable relative error. The following table.1 
presents the relative error committed, for the reconstruction of the two signals from the 40 
coefficients selected:   
 

Relative error =  
S: is the experimental signal  

is the reconstruction of the signal S using the fast Fourier transformation. 
is the Euclidian norm. 

  
 

Type of signal relative error 
the cylinder low pressure 0.01 

the temperature of the mixed gas in the cylinder 0.02 

Table1. Relative error committed for the reconstruction of two signals. 
 
 
Figure 3 shows the experimental signals, resulting from the combustion and their 
reconstruction by using the fft Matlab function. 
 
 

 
 

Fig.3 Rebuilding of the measured signals (red curve)  by using the discrete Fourier 
transform (blue curve) 

Pressure Temperature  
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Such reduction makes the Kriging possible, The  considered entries of the model are: 
 

  

 
Where: 
- i is the index that correspond to the ith operating point of engine. An operation point of the 
engine is defined by engine speed and engine torque  
- is the kept Fourier coefficient for the signal , which correspond to the ith operating 
point of engine. 

 
5. Application to the estimation of engine responses  

In the previous section, we have presented and explained the two approaches used in this 

work, in order to model a behavior of diesel engine. Then, this section will be devoted to 
present the results respectively obtained by each approach, for the estimation of each 
response. 
 
5.1 Numerical results using the first approach 

We recall that the construction and the modeling of the experimental variogram is the most 
important step in the Kriging method.  Thus, in this part, we will start by giving the chosen 
model.  

Variogram fitting: 
 
Variography modeling is a critical step and most difficult in the construction of a Kriging 
model. For this reason, several models were adjusted and then compared. It was difficult to 
select the better model graphically. The cross validation facilitates the work. It allows us to 
select the one, which minimizes the root mean square error. 

 
For the NOx, the retained model is a Gaussian model which is expressed by the equation: 
 

 
 
The value of the model parameters was founded using the least square method. So we 
obtain:                                =10.929, c=1.829, a=309.559. 
 
For the Consumption, the model used is an exponential model, given by the equation: 
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This leads to:                           =7.106, c=2.415, a=477.444. 
 
Where: 
- r is the distance 
-  is the Nugget effect 
-  is the sill correspond to the variance of  

-  and 3a are the range (the distance at which the variogram reaches the sill) for the 
Gaussian and exponential model respectively (Baillargeon et al., 2004). 
 
Figures 4 shows the experimental variogram (red points), and Gaussian model (blue curve) 
corresponding to NOx response. 
Figures 5 shows the experimental variogram (red points), and exponential model (blue 
curve) corresponding to consumption response. 
 
The variogram is a tool that quantifies the spatial correlation of the response of interest.  
It measures the variability of NOx and consumption as a function of distance, we notice 

that, when the distance reached the range  (Fig.4) and (Fig.5) the 
variation becomes stationary. This explains that we can have a similar behavior of 
consumption and NOx on two different operating points, thus with a pattern of different 
control parameters 
 

 

 
 
 
 

Fig. Experimental and model variogram 

Fig. 5 Experimental and   
exponential model variogram in 
the case of consumption 

Fig. 4 Experimental and Gaussian 
model variogram in the case of 
NOx 
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Figures 6 and 7 show the Cross-validation plots for the Kriging model, corresponding to the 
Gaussian and exponential variogram respectively. The plots contain the measured, the 

Kriging estimated value and a 10% errors bands. 
 
The accuracy of predictions was similar for both validation data. Accuracy was good for 
both of the responses and still within 10% for the majority of operating conditions.  
By against, graph 7 presents some observations which are poorly estimated. This is because 
they are far from the cloud of points used for the adjustment. On the other hand, this bad 
estimate is due to the experimental design used. The classical and optimal designs, in 
particular the D-optimal, are not suitable for Kriging, which is based on measuring 
similarity between sites. Indeed, the D-optimal design allows testing just a small number of 
levels for each variable and tend to generate points on the edges of the experimental field 
(Koehler & Owen, 1996) . This distribution of points, which is optimal to fit a polynomial 
model, cannot pick up any irregularities inside the experimental field and lead to some 
poorly estimated points. To address this problem, we recommend to use an appropriate 
designs for Kriging. Class ’space filling designs’, such as Latin hypercubes, provide a good 
spatial distribution of points and is well adapted for modeling by Kriging (Stein, 1987), 
(McKay et al., 2000). 
 
 

 

 

Fig.6. Measured and Kriging predicted NOx [ppm] with ± 10% error bands 
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Fig.7. Measured and Kriging predicted consumption [g/kWh] with ± 10% error bands 

 
The emulator model is fitted to each response in turn and the RMSE, percentage RMSE are 
recorded. These results are presented in Table2. The percentage RMSE results show that the 
model has a %RMSE less than 7% of the range of the response data. This indicates roughly, 
that if the emulator is used to predict the response at a new input setting, the error of 
prediction can be expected to be less than 7%, when compared with the true value. 
 
 

 NOx Consumption 
RMSE      61.4 40.63 

%RMSE      3.84 6.19 

Table2. Kriging RMSE end %RMSE for each response: first approach case 
 
 
5.2 Numerical results using the second approach 

This subsection is devoted to the presentation of the numerical results obtained in the case 
of the second modeling more precisely we give the mathematical model used to adjust the 
experimental variogram. 
 

Variogram fitting: 
 
At the same way in the first approach, we build the experimental variogram and the model 
which adjusts it for each engine response. 
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For the NOx, the model used is a Gaussian model given by equation: 
 

 
 
The value of parameters model was founded using the least square method: 
So,   c0=997.28, c=0.00018, a=1.52. 
In this case the variogram does not show a sill, this means that the variance does not exist. 
 
For the Consumption, the model used is an exponential model given by equation: 
 
 

 
 
So   =5193, c=0.0327 , a=5.9536   
 
Where: 
- r is the distance. 
-  is the Nugget effect. 
-  is the sill correspond to the variance of . 

- 3a are the range (the distance at which the variogram reaches the sill) for the exponential 

model (Baillargeon et al., 2004). 
 
Figures 8 shows the experimental variogram (red points), and power model (blue curve) 
corresponding to NOx response. 
Figures 9 shows the experimental variogram (red points), and exponential model (blue 
curve) corresponding to consumption response. 
 
We notice that when the distance reaches the range (Fig. 9) the variation 
becomes stationary. In other term, it means that there is not a correlation beyond the 
distance 3a. This explains that we have a similar behavior of consumption on two different 
operating points, thus with a pattern of different control parameters.  
On the other hand, for the variogram of NOx, we notice that it is a power kind, which 
explains that for two different configurations engine, we will have a behavior completely 
different of the NOx emissions. 
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Fig. Experimental and model variogram 
 
 
Figures 10 and 11 show the cross-validation plots for the Kriging model, corresponding to 
the power and exponential variogram respectively. The plots contain the measured, the 

Kriging estimated value and a 10% errors bands. 
 
As we can see it, the accuracy of the predictions is similar for both response and still within 
10% for the majority of operating conditions.  
 
On the other hand, we notice that in the second approach, the accuracy of the predictions is 
improved for the two responses, compared to the first approach. This improvement is very 
clear for the consumption estimation.  
 
We can explain this improvement, by the fact that in the second approach we include 
thermodynamic quantities such as the pressure for the prediction of the two responses. The 
inclusion of these quantities allows to bring back an additional knowledge for the prediction 
of the both responses. Indeed, this knowledge results from the fact, that these quantities 
represent the states variables of our system, and they characterize the behavior of 
combustion in the internal of the combustion chamber. 
 
 
 
 
 
 
 
 

Fig. 9 Experimental and   
exponential model variogram in 
the case of consumption 

Fig. 8 Experimental and power 
model variogram in the case of 
NOx 
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Fig.10. Measured and Kriging predicted NOx [ppm] with ± 10% error bands 
 
 
 

 

 

Fig.11. Measured and Kriging predicted consumption [g/kWh] with ± 10% error bands 
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The emulator model is fitted to each response in turn and the RMSE, percentage RMSE are 
recorded. These results are presented in Table3. The percentage RMSE results show that the 
model has a %RMSE less than 4% of the range of the response data. This indicates roughly, 
that if the emulator is used to predict the response at a new input setting, the error of 
prediction can be expected to be less than 4%, when compared with the true value. 
 

 NOx Consumption 
RMSE      40.51    19.99 

%RMSE      2.45    3.04 

Table3. Kriging RMSE end %RMSE for each response: second approach case 
 

6. Comparison and discussion 

We recall that in the section 4, we presented two different approaches, based on the Kriging 
model. In this section we will try to make a comparison between these two   approaches, 
and discuss the advantages and inconvenient of each approach. 

  

Case of NOx: 

A legitimates question, that we can pose in the case of the estimate of NOx is the following 
one: 

Why did we obtain a variogram Gaussian in the first approach, however in the second 
approaches the variogram is the power form, knowing that the pressure (observed) is 
obtained, from the same control parameters utilized in the first approach? 

In fact, the power variogram obtained in the second approach represents more the true 
behavior of the emissions of NOx. Indeed, the interpretation of the power variogram 
suggests that the variability of the response (in this box the NOx) increases with the distance 
between the points. This interpretation joins the opinion of the experts, who say that for two 
various engine configurations, the quantity of the corresponding NOx emissions will be also 
different.  

Obtaining a variogram Gaussian in the first approach, is explained by the fact that the speed 
parameter of the engine take a raised values compared to the other control parameters. For 
example, if we take the first and the second line of the table 5, which correspond to two 
speeds different engine. We notice that the behavior of NOx is similar, however the distance 
between these two points is very tall (caused by speed mode) what explains the sill on the 
variogram of the first approach. 

Fortunately, that this change in the behavior of variogram does not have an influence on the 
prediction of NOx. But the interpretation of the variogram in the first approach can lead us 
to make false conclusions. Indeed, in the case of the first approach, the variogram makes us 
believe that the quantity of the NOx emissions remains invariant when we consider very 
different configurations of control parameters. What does not reflect reality. In the case, 
where we wish to use the variogram, to understand how a response varies. We advise to 
check the values of the data, or to standardize the factors of the model. 
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N Prail Main Mpil1 Mpil2 Pmain Ppil1 Ppil2 VNT VEGR Volet NOx 

1000 407,70 5,91 1,0 1,09 -4,43 -18,72 -11,22 79,99 36,01 75,95 67,06 

2000 609,00 11,15 1,1 1,34 -5,99 -36,26 -15,22 67,49 34,51 75,93 64,15 

Table5. Example of control parameters configuration 

 

Case of consumption: 

To manage to highlight the contribution of the second approach in the improvement of the 
prediction of consumption we consider another representation of the results in figure 12. 

We note that for the first approach, the Kriging method could estimate with a good accuracy 
all the points which are close to the cloud used for the adjustment. On the other hand the 
prediction of the points which are far from the cloud was bad (an explanation was given in 
section 5.1). 

The use of the second approach brought back an improvement for the estimate of these 
points. This gives a force of extrapolation to the Kriging method. 

 

 

 

Fig.12. Comparison of consumption estimation for the two case approaches. (the + points 
are the experimental data and the red line is the model ) 
 
 
 
 
 
 

The second approach The first approach 
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7. Conclusion 
 
This paper deals with the problem of engine calibration, when the number of parameters of 
control is considerable. An efficient process of solving such problems falls into three 
successive steps: experimental design, statistical modeling and optimization. In this paper, 
we concentrate on the second step. And we demonstrated the important role of the 
experimental design on the quality of the prediction of the Kriging model in the case of 
consumption response. On the other hand the Kriging model was adapted to allow an 
estimate of the response in the case of higher dimensions.  It was applied to predict the two 
engine responses NOx and consumption through two approaches. The first approach gave 
acceptable results. These results were clearly improved in the second approaches especially 
in the case of consumption. We demonstrated that the resulting model can be used to 
predict the different responses of engine. It is easy to generalize for various diesel engine 
configurations and is also suitable for real time simulations. In the future, this model will be 
coupled with the evolutionary algorithms for multi-objective constrained optimization of 
calibration.  
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