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Shot-Noise Processes and the Minimal Martingale Measure

Thorsten Schmidt, Department of Mathematics, University of Leipzig, Germany and

Winfried Stute, Department of Mathematics, University of Giessen, Germany1

February 20, 2007

Abstract

This article proposes a model for stock prices which incorporates shot-noise effects.

This means, that sudden jumps in the stock price are allowed, but their effect may

decline as time passes by. Our model is general enough to capture arbitrary effects

of this type. Generalizing previous approaches to shot-noise we in particular allow

the decay to be stochastic. This model describes an incomplete market, so that the

martingale measure is not unique. We derive the minimal martingale measure via

continuous time methods.

Keywords: Minimal martingale measure; shot-noise process; jump diffusion

1 Introduction

In financial markets information often comes as a surprise. This usually leads to a jump

in stock prices, may it be upward or downward. Quite often this is an over-reaction and

the effect partially vanishes as time passes by.

A by now classical approach to incorporate jumps in a stock price model is via so-called

jump-diffusion, which originated from the work of Merton (1973). In a jump-diffusion

model the stock prices may jump to a new level and then follow a geometric Brownian
1Winfried Stute, Department of Mathematics, University of Giessen, Arndtstr. 2, D-35392 Giessen,

Germany. Email: Winfried.Stute@math.uni-giessen.de
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motion. This means that the jump effect persists in the model. In reality this need not

be the case since, e.g., an upward jump may lead to profit taking. As a result, the jump

effect may partially fade away.

In Arai (2004) a multidimensional jump-diffusion model has been considered and the

minimal martingale measure was computed. This paper generalizes the one-dimensional

case to shot-noise models in several aspects.

The setup of the paper is as follows. In section two we extend the model of Altmann,

Schmidt and Stute (2006) by considering a general model for shot-noise processes. We

analyze the model in continuous time and derive the minimal martingale measure. Mar-

tingale measures are important for pricing derivatives of financial assets. Actually, these

prices may be obtained as expectations of the payoffs at maturity w.r.t. a martingale

measure. Finally we give conditions which ensure that the minimal martingale measure

is indeed a probability measure. A small simulation study will exhibit typical features of

the model.

2 Setup

Consider a sequence of iid random variables (rv) ηi, i = 1, 2, . . . with values in Rd and

a sequence of independent Brownian motions Bi, i = 1, 2, . . . . Let (λt)t≥0 be a positive

hazard process, such that P(
∫ T
0 λtdt < ∞) = 1 for a fixed horizon T . Finally, let Ñ be

a standard Poisson process independent of all ηi, Bi and λ. Define Λt :=
∫ t
0 λsds and set

Nt := ÑΛt . Then N is a Cox process with intensity λ. Denote its jump times by τi.

Let a : R+ × R × Rd 7→ R, b : R+ × R × Rd 7→ R+ be smooth functions, and let

the processes J i, i = 1, 2, . . . be given by the unique strong solutions of the stochastic
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differential equations (SDE)

J i(t) = J i(0) +

t∫

0

a(s, J i(s), ηi) ds +

t∫

0

b(s, J i(s), ηi) dBi(s), (1)

where J i(0) are i.i.d. real valued rv. Then we call

Yt :=
Nt∑

i=1

J i(t− τi) (2)

a general shot-noise process. To shorten notation, we write ai
t := a(t−τi, J

i(t−τi), ηi) and

bi
t := b(t−τi, J

i(t−τi), ηi). Note that we do not require that J i(0) and ηi are independent.

It will turn out to be useful at some time to have η equal to J i(0).

We first mention some important special cases of (1):

1. The processes J i are of the form Ui ·h(t), with iid Ui and a deterministic differentiable

function h. We assume h(0) = 1. Then

J i(t) = Ui +

t∫

0

Uih
′(s) ds.

Indeed, this is a special case of (1) with b ≡ 0, ηi = Ui = J i(0) and a(s, J, ηi) =

ηih′(s). An important special example for h is h(t) = e−at, in which case the process

is Markovian.

2. In the previous example the decay parameter a was fixed. As an extension, we may

want a to be random. For this, consider a differentiable function h : R+ × R 7→ R,

with h(0) = 1 and J i(t) = Ui · h(t, η̃i), with iid η̃i. Assume J i equals

J i(t) = Ui +

t∫

0

Uih
′(s, η̃i) ds.

This time we take ηi = (Ui, η̃
i) and the choice of a, b is obvious. We would typically

assume that the investor observes ηi at the ith jump τi of N . The decline is random,

but if the jump occurs, the future decay is known. Some kind of regime-switching

could be incorporated by letting h(t, x) = 1{t∈[0,x]}. In this case the above setting
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would imply that at the upward-jump it is also immediately known, when the process

jumps down again.

3. Up to now, b was always 0. In the next example we consider a stochastic noise

effect. For example, if some unexpected event occurs investors may overreact due to

various reasons. As time passes by, further information my arise so that the market

comes back to more reasonable levels. To incorporate this effect we assume a mean

reversion of the noise effect. Let J i be equal to

J i(t) = J i(0) +

t∫

0

κ
(
η̃i − J i(s)

)
ds +

t∫

0

σdBi(s).

Intuitively, this means that the process Y jumps up by J i(0) at τi and then diffuses

to the level Y (τi−)+ηi. Also the volatility after the jump will decline exponentially

such that the effect of coming back is captured. Other examples are immediately

found: if J i is required to be nonnegative, one may set b(t, J, η) = σ
√

J so that

dJ i(t) = κ(θ − J i(t))dt + σ
√

J i(t)dBi(t). (3)

The process specified by (3) is a so-called Cox, Ingersoll and Ross (1985) process.

For more details we refer to Björk (2003).

The main tool for obtaining the minimal martingale measure is the semimartingale

representation of Y . The increment of Y equals

Yt+∆ − Yt =
Nt∑

i=1

(
J i(t + ∆− τi)− J i(t− τi)

)
+

Nt+∆∑

i=Nt+1

(
J i(t + ∆− τi)− J i(t− τi)

)
.

Letting ∆ go to zero one obtains that

dYt =
Nt−∑

i=1

dJ i(t− τi) + d
( Nt∑

i=1

J i(0)
)
.
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Denoting m1 := E(J1(0)) we obtain the semimartingale decomposition:

dYt =
( Nt−∑

i=1

ai
t

)
dt +

Nt−∑

i=1

bi
tdBi

t + d
( Nt∑

i=1

J i(0)
)

(4)

=
( Nt−∑

i=1

ai
t + λtm1

)
dt +

Nt−∑

i=1

bi
tdBi

t + d
( Nt∑

i=1

J i(0)−
t∫

0

λsm1 ds
)
,

where the last two terms are local martingales.

3 The Model

In this section we consider a model for stock prices which utilizes the previously introduced

general shot-noise process. First we show how to add shot-noise effects to a standard model

for stock prices. Assume that S̃ is a stochastic process for stock prices. For example, S̃

could be a geometric Brownian motion. Set

St = S̃t · exp
(
Yt

)
. (5)

– insert figure 1 here –

We give some examples in Figure 1. Both simulations start from the model given by

(5). The left graph uses a shot-noise component of the form J i(t) = U i exp(−at). After

the jumps (at t = 0.5 and t = 0.9) the model tends towards the pre-jump level. The

right plot incorporates a shot-noise specification with a stochastic mean-reversion effect

according to (3), where κ = 2, θ = 0.1 and σ = 0.4. After the jumps the process shows an

increasing volatility which decreases after some time. This is due to the non-zero volatility

of J i after the jumps.

Remark 3.1. The model presented in Altmann, Schmidt and Stute (2006) assumes

St = S0 exp
[(

µ− σ2

2
)
t− σBt

] Nt∏

i=1

(1 + Uih(t− τi))

= S0 exp
[(

µ− σ2

2
)
t− σBt

]
exp

( Nt∑

i=1

ln(1 + Uih(t− τi))
)
.
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This is a special case of (5), with J i chosen as

J i(t) = ln(1 + Ui) +

t∫

0

Uih
′(s)

1 + Uih(s)
ds

and ãt ≡ µ + σ2/2, b̃t ≡ σ.

A special case: exponential decay. The shot-noise process considered so far has a

quite general behaviour which typically leads to non-Markovian processes. Considering

J i(t) = Uih(t) there are important special cases where the process is Markovian. For

example, the classical jump-diffusion is obtained setting h ≡ 1. More interestingly, the

process is also Markovian if h(x + y) = h(x)h(y), i.e., h has the form e−ax. The main

reason for this is that the shot-noise process then takes on the following form

St =
Nt∑

i=1

Uih(t− τi) = h(t)
Nt∑

i=1

Uih(−τi).

This process behaves deterministically between the jump times, with velocity h′ and jumps

at τi. Moreover, as has been shown in Gaspar and Schmidt (2005), the only h for which

Markovianity holds, is h(t) = e−at.

4 The minimal martingale measure

We assume for simplicity that the market interest rate is zero. The minimal martingale

measure Q̂ as proposed in Föllmer and Schweizer (1990) can be described by its density

LT , where dQ̂ := LT dP and P is the objective measure. The density is determined as

follows. Assume that S has the semimartingale representation St = At + Mt with a local

martingale M and an increasing process A of bounded variation. Furthermore, assume

there exists a process λ̂ which satisfies

At =

t∫

0

λ̂s− d〈M〉s. (6)
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Then the minimal martingale density is given by

LT = E
(
−

·∫

0

λ̂s− dMs

)
T
, (7)

where E(·)t denotes the Doléans-Dade exponential (see, for example, Protter (2004)).

Recall that St = S̃t exp(Yt). Consider a Brownian motion B which is independent of Y

and two positive processes (ãt)t≥0 and (b̃t)t≥0 which are adapted to the natural filtration

of B. We assume that S̃t is the strong solution of

dSt = St(ãtdt + b̃tdBt).

Proposition 4.1. Set me := E[exp(J1(0))−1] and m2 := E[(exp(J i(0))−1)2] and assume

both are finite. The minimal martingale measure is given by the density LT in (7), where

λ̂t =
1

St−
· ãt +

∑Nt−
i=1 ai

t + λtme + 1
2

∑Nt−
i=1 (bi

t)
2

(b̃t)2 +
∑Nt−

i=1 (bi
t)2 + λtm2

.

Proof. First, we compute the semimartingale representation of S using Itô’s formula. See

Protter (2004) for a suitable version. From

d(exp(Yt)) = exp(Yt−)
{

dY c
t +

1
2
d〈Y c〉t + d

[ Nt∑

i=1

(
exp(J i(0))− 1

)]}

we obtain by (4) and the independence of S̃ and Y :

dSt = exp(Yt−)S̃t

(
ãtdt + b̃tdBt

)

+ S̃t exp(Yt−)
[ Nt−∑

i=1

ai
tdt +

Nt−∑

i=1

bi
tdBi

t +
1
2

Nt−∑

i=1

(bi
t)

2dt + d
[ Nt∑

i=1

(
exp(J i(0))− 1

)]]

= St−

[(
ãt +

Nt−∑

i=1

ai
t + λtme +

1
2

Nt−∑

i=1

(bi
t)

2
)
dt (8)

+ b̃tdBt +
Nt−∑

i=1

bi
tdBi

t + d
[ Nt∑

i=1

(
exp(J i(0))− 1

)
−

t∫

0

λsme ds
]]

.

With the semimartingale representation St = At + Mt at hand we now compute 〈M〉.

Using the independence of B and Bi we obtain that

d〈M〉t = S2
t−

[
(b̃t)2 +

Nt−∑

i=1

(bi
t)

2 + λtm2

]
dt. (9)

Using (8) and (9) in (6) we get the stated representation of λ̂. ¥
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Once λ̂ is obtained the density follows immediately:

LT =
Nt∏

i=1

(
1− λτi∆Mτi

)
exp

(
. . .

)
=

Nt∏

i=1

(
1− λτiSτi−

(
eJi(0) − 1

))
exp

(
. . .

)

=
Nt∏

i=1

(
1− lτi

(
eJi(0) − 1

))
exp

(
. . .

)
, (10)

where we set

lt :=
ãt +

∑Nt−
i=1

(
ai

t + 1
2(bi

t)
2
)

+ λtme

(b̃t)2 +
∑Nt−

i=1 (bi
t)2 + λtm2

. (11)

Conditions for Q̂ to be a probability measure. It is well known, that the minimal

martingale measure need not be a probability measure. It will turn out that this is often the

case for the considered model. On the other side, there are special cases which guarantee

that the minimal martingale measure is a probability measure. Note that the denominator

in (11) is always positive. For example, consider J i
t = Ui, i.e., the case of a jump diffusion.

In this case the numerator equals ãt + λtme and so Q̂ is a probability measure if

ãt + λtme

(b̃t)2 + λtm2

(
eJi(0) − 1

)
< 1. (12)

This condition corresponds to Assumption 3.1 from Arai (2004). One possibility to guar-

antee positivity of L in a jump-diffusion model is therefore to assume that J i < J̄ and

choose the parameters such that the above inequality (12) is satisfied.

In the general case we have the following result.

Proposition 4.2. Assume that J i(0) ≤ J̄ with J̄ > 0 and set K := 1/(exp(J̄)− 1). Then

LT > 0 a.s., if the following inequalities are satisfied for all i ≥ 1 and t ∈ [0, T ]:

ai
t +

(bi
t)

2

2
≥ 0, ãt + λtme ≥ 0 (13)

ai
t + (bi

t)
2

(
1
2
−K

)
< 0 (14)

ãt + λtme −K
(
b̃t + λtm2

)
< 0. (15)
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Proof. First, K > 0. It follows from (14) that

Nt−∑

i=1

(
ai

t + (bi
t)

2

(
1
2
−K

))
< 0.

From (15) we obtain that

K
(
b̃t + λtm2

)− ãt − λtme > 0 >

Nt−∑

i=1

(
ai

t + (bi
t)

2

(
1
2
−K

))

and therefore

ãt + λtme +
Nt−∑

i=1

(
ai

t +
(bi

t)
2

2

)
< K

(
b̃t + λtm2 +

Nt−∑

i=1

(bi
t)

2
)
.

Comparing the above inequality with (11), we obtain lt < K. Hence, if J i(0) ≥ 0 we have

that

lτi

(
exp(J i(0))− 1

)
< 1. (16)

On the other side, consider the case J i(0) < 0. First, (13) ensures that lt ≥ 0. Together

with exp(J i(0))− 1 < 0 we have that lτi

(
exp(J i(0))− 1

) ≤ 0 < 1.

Inserting (16) in (10) guarantees that LT > 0, and the proof is completed. ¥

Stochastic noise This paragraph describes an example with stochastic noise effect, i.e.,

bi
t is not zero. Furthermore the model is constructed such that the minimal martingale

measure is an equivalent probability measure. Assume that J i
t = ηi − Ii

t , where each Ii

follows a Cox-Ingersoll-Ross process with mean reversion level zero:

dIi(t) = −κIi(t)dt + σ
√

Ii(t)dBi
t (17)

where κ, σ > 0 and random positive Ii(0). This means that the process J jumps up at τi

by ηi + Ii(0) and then comes down to the level ηi in a random way. We then have the

following result.

Proposition 4.3. Assume that (15) as well as ãt + λtme ≥ 0 holds and, furthermore,

κ + σ2

(
1
2
−K

)
< 0. (18)
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Then LT > 1 with probability 1.

Proof. First, it is well-known that zero is a reflecting boundary for Ii. Second, observe

that ai
τi+t = κ(ηi − J i

t ) ≥ 0 and (bi
τi+t)

2 = σ2(ηi − J i
t ). Hence (13) holds. From (18) it

follows that (14) holds. Applying Proposition 4.2 shows the assertion. ¥

Example 4.4. Consider a Black-Scholes model for S̃t, i.e., ãt = µ ≥ 0, and assume that

λt ≡ λ > 0. Then K(σ + λm2) > µ + λme implies (15). If additionally µ + λme ≥ 0 and

(18) holds, then Q̂ is a probability measure.

Example 4.5. For σ = 0 and ηi ≡ 0 we obtain the classical shot-noise process with negative

jumps as a special case, in which J i
t = ηi − Ii

0 exp(−κt) = −Ii
0 exp(−κt).
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Figure 1: Two simulations of shot-noise processes according to (5). S̃ is a geometric

Brownian motion starting in 100 with σ = 0.4. Left: shot-noise model with J i(t) =

U i exp(−2t) with jumps at 0.4 and 0.9; right: shot-noise model with J i(t) according to

(3).
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