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This article proposes a model for stock prices which incorporates shot-noise effects. This means, that sudden jumps in the stock price are allowed, but their effect may decline as time passes by. Our model is general enough to capture arbitrary effects of this type. Generalizing previous approaches to shot-noise we in particular allow the decay to be stochastic. This model describes an incomplete market, so that the martingale measure is not unique. We derive the minimal martingale measure via continuous time methods.

Introduction

In financial markets information often comes as a surprise. This usually leads to a jump in stock prices, may it be upward or downward. Quite often this is an over-reaction and the effect partially vanishes as time passes by.

A by now classical approach to incorporate jumps in a stock price model is via so-called jump-diffusion, which originated from the work of Merton (1973). In a jump-diffusion model the stock prices may jump to a new level and then follow a geometric Brownian motion. This means that the jump effect persists in the model. In reality this need not be the case since, e.g., an upward jump may lead to profit taking. As a result, the jump effect may partially fade away.

In [START_REF] Arai | Minimal martingale measures for jump diffusion processes[END_REF] a multidimensional jump-diffusion model has been considered and the minimal martingale measure was computed. This paper generalizes the one-dimensional case to shot-noise models in several aspects.

The setup of the paper is as follows. In section two we extend the model of [START_REF] Altmann | A shot noise model for financial assets[END_REF] by considering a general model for shot-noise processes. We analyze the model in continuous time and derive the minimal martingale measure. Martingale measures are important for pricing derivatives of financial assets. Actually, these prices may be obtained as expectations of the payoffs at maturity w.r.t. a martingale measure. Finally we give conditions which ensure that the minimal martingale measure is indeed a probability measure. A small simulation study will exhibit typical features of the model.

Setup

Consider a sequence of iid random variables (rv) η i , i = 1, 2, . . . with values in R d and a sequence of independent Brownian motions B i , i = 1, 2, . . . . Let (λ t ) t≥0 be a positive hazard process, such that P( T 0 λ t dt < ∞) = 1 for a fixed horizon T . Finally, let Ñ be a standard Poisson process independent of all η i , B i and λ. Define Λ t := t 0 λ s ds and set

N t := ÑΛ t .
Then N is a Cox process with intensity λ. Denote its jump times by τ i .

Let a : R 

+ × R × R d → R, b : R + × R × R d → R + be
J i (t) = J i (0) + t 0 a(s, J i (s), η i ) ds + t 0 b(s, J i (s), η i ) dB i (s), (1) 
where J i (0) are i.i.d. real valued rv. Then we call

Y t := N t i=1 J i (t -τ i ) (2) 
a general shot-noise process. To shorten notation, we write a i t := a(t-τ i , J i (t-τ i ), η i ) and

b i t := b(t-τ i , J i (t -τ i ), η i
). Note that we do not require that J i (0) and η i are independent.

It will turn out to be useful at some time to have η equal to J i (0).

We first mention some important special cases of (1):

1. The processes J i are of the form U i •h(t), with iid U i and a deterministic differentiable function h. We assume h(0) = 1. Then

J i (t) = U i + t 0 U i h (s) ds.
Indeed, this is a special case of (1) with b ≡ 0, η i = U i = J i (0) and a(s, J, η i ) = η i h (s). An important special example for h is h(t) = e -at , in which case the process is Markovian.

2. In the previous example the decay parameter a was fixed. As an extension, we may want a to be random. For this, consider a differentiable function h :

R + × R → R, with h(0) = 1 and J i (t) = U i • h(t, ηi ), with iid ηi . Assume J i equals J i (t) = U i + t 0 U i h (s, ηi ) ds.
This time we take η i = (U i , ηi ) and the choice of a, b is obvious. We would typically assume that the investor observes η i at the ith jump τ i of N . The decline is random, but if the jump occurs, the future decay is known. Some kind of regime-switching could be incorporated by letting h(t, x) = 1 {t∈[0,x]} . In this case the above setting
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would imply that at the upward-jump it is also immediately known, when the process jumps down again.

3. Up to now, b was always 0. In the next example we consider a stochastic noise effect. For example, if some unexpected event occurs investors may overreact due to various reasons. As time passes by, further information my arise so that the market comes back to more reasonable levels. To incorporate this effect we assume a mean reversion of the noise effect. Let J i be equal to

J i (t) = J i (0) + t 0 κ ηi -J i (s) ds + t 0 σdB i (s).
Intuitively, this means that the process Y jumps up by J i (0) at τ i and then diffuses to the level Y (τ i -) + η i . Also the volatility after the jump will decline exponentially such that the effect of coming back is captured. Other examples are immediately found: if J i is required to be nonnegative, one may set b(t, J, η) = σ √ J so that

dJ i (t) = κ(θ -J i (t))dt + σ J i (t)dB i (t). ( 3 
)
The process specified by ( 3) is a so-called [START_REF] Cox | A theory of the term structure of interest rates[END_REF] process.

For more details we refer to [START_REF] Björk | Arbitrage Theory in Continuous Time[END_REF].

The main tool for obtaining the minimal martingale measure is the semimartingale

representation of Y . The increment of Y equals Y t+∆ -Y t = Nt i=1 J i (t + ∆ -τ i ) -J i (t -τ i ) + N t+∆ i=Nt+1 J i (t + ∆ -τ i ) -J i (t -τ i ) .
Letting ∆ go to zero one obtains that

dY t = N t- i=1 dJ i (t -τ i ) + d N t i=1 J i (0) .
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Denoting m 1 := E(J 1 (0)) we obtain the semimartingale decomposition:

dY t = N t- i=1 a i t dt + N t- i=1 b i t dB i t + d N t i=1 J i (0) (4) = N t- i=1 a i t + λ t m 1 dt + N t- i=1 b i t dB i t + d N t i=1 J i (0) - t 0 λ s m 1 ds ,
where the last two terms are local martingales.

The Model

In this section we consider a model for stock prices which utilizes the previously introduced general shot-noise process. First we show how to add shot-noise effects to a standard model for stock prices. Assume that S is a stochastic process for stock prices. For example, S could be a geometric Brownian motion. Set

S t = St • exp Y t . (5) 
-insert figure 1 here -

We give some examples in Figure 1. Both simulations start from the model given by (5). The left graph uses a shot-noise component of the form J i (t) = U i exp(-at). After the jumps (at t = 0.5 and t = 0.9) the model tends towards the pre-jump level. The right plot incorporates a shot-noise specification with a stochastic mean-reversion effect according to (3), where κ = 2, θ = 0.1 and σ = 0.4. After the jumps the process shows an increasing volatility which decreases after some time. This is due to the non-zero volatility of J i after the jumps.

Remark 3.1. The model presented in [START_REF] Altmann | A shot noise model for financial assets[END_REF] assumes

S t = S 0 exp µ - σ 2 2 t -σB t N t i=1 (1 + U i h(t -τ i )) = S 0 exp µ - σ 2 2 t -σB t exp Nt i=1 ln(1 + U i h(t -τ i )) .
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This is a special case of ( 5), with J i chosen as

J i (t) = ln(1 + U i ) + t 0 U i h (s) 1 + U i h(s)
ds

and ãt ≡ µ + σ 2 /2, bt ≡ σ.
A special case: exponential decay. The shot-noise process considered so far has a quite general behaviour which typically leads to non-Markovian processes. Considering

J i (t) = U i h(t)
there are important special cases where the process is Markovian. For example, the classical jump-diffusion is obtained setting h ≡ 1. More interestingly, the process is also Markovian if h(x + y) = h(x)h(y), i.e., h has the form e -ax . The main reason for this is that the shot-noise process then takes on the following form

S t = Nt i=1 U i h(t -τ i ) = h(t) Nt i=1 U i h(-τ i ).
This process behaves deterministically between the jump times, with velocity h and jumps at τ i . Moreover, as has been shown in [START_REF] Gaspar | Quadratic portfolio credit risk models with shot-noise effects[END_REF], the only h for which Markovianity holds, is h(t) = e -at .

The minimal martingale measure

We assume for simplicity that the market interest rate is zero. The minimal martingale measure Q as proposed in [START_REF] Föllmer | Hedging of contingent claims under incomplete information[END_REF] can be described by its density L T , where d Q := L T dP and P is the objective measure. The density is determined as follows. Assume that S has the semimartingale representation S t = A t + M t with a local martingale M and an increasing process A of bounded variation. Furthermore, assume there exists a process λ which satisfies

A t = t 0 λs-d M s . (6)
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Then the minimal martingale density is given by

L T = E - • 0 λs-dM s T , ( 7 
)
where E(•) t denotes the Doléans-Dade exponential (see, for example, Protter ( 2004)).

Recall that S t = St exp(Y t ). Consider a Brownian motion B which is independent of Y and two positive processes (ã t ) t≥0 and ( bt ) t≥0 which are adapted to the natural filtration of B. We assume that St is the strong solution of

dS t = S t (ã t dt + bt dB t ).
Proposition 4.1. Set m e := E[exp(J 1 (0))-1] and m 2 := E[(exp(J i (0))-1) 2 ] and assume both are finite. The minimal martingale measure is given by the density L T in (7), where

λt = 1 S t- • ãt + N t- i=1 a i t + λ t m e + 1 2 N t- i=1 (b i t ) 2 ( bt ) 2 + N t- i=1 (b i t ) 2 + λ t m 2 .
Proof. First, we compute the semimartingale representation of S using Itô's formula. See Protter ( 2004) for a suitable version. From

d(exp(Y t )) = exp(Y t-) dY c t + 1 2 d Y c t + d N t i=1 exp(J i (0)) -1
we obtain by (4) and the independence of S and Y :

dS t = exp(Y t-) St ãt dt + bt dB t + St exp(Y t-) N t- i=1 a i t dt + N t- i=1 b i t dB i t + 1 2 N t- i=1 (b i t ) 2 dt + d N t i=1 exp(J i (0)) -1 = S t-ãt + N t- i=1 a i t + λ t m e + 1 2 N t- i=1 (b i t ) 2 dt (8) + bt dB t + N t- i=1 b i t dB i t + d Nt i=1 exp(J i (0)) -1 - t 0 λ s m e ds .
With the semimartingale representation S t = A t + M t at hand we now compute M .

Using the independence of B and B i we obtain that

d M t = S 2 t-( bt ) 2 + N t- i=1 (b i t ) 2 + λ t m 2 dt. (9) 
Using ( 8) and ( 9) in ( 6) we get the stated representation of λ.
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Once λ is obtained the density follows immediately:

L T = N t i=1 1 -λ τ i ∆M τ i exp . . . = N t i=1 1 -λ τ i S τ i -e J i (0) -1 exp . . . = Nt i=1 1 -l τ i e J i (0) -1 exp . . . , (10) 
where we set

l t := ãt + N t- i=1 a i t + 1 2 (b i t ) 2 + λ t m e ( bt ) 2 + N t- i=1 (b i t ) 2 + λ t m 2 . ( 11 
)
Conditions for Q to be a probability measure. It is well known, that the minimal martingale measure need not be a probability measure. It will turn out that this is often the case for the considered model. On the other side, there are special cases which guarantee that the minimal martingale measure is a probability measure. Note that the denominator in ( 11) is always positive. For example, consider J i t = U i , i.e., the case of a jump diffusion.

In this case the numerator equals ãt + λ t m e and so Q is a probability measure if

ãt + λ t m e ( bt ) 2 + λ t m 2 e J i (0) -1 < 1. ( 12 
)
This condition corresponds to Assumption 3.1 from [START_REF] Arai | Minimal martingale measures for jump diffusion processes[END_REF]. One possibility to guarantee positivity of L in a jump-diffusion model is therefore to assume that J i < J and choose the parameters such that the above inequality ( 12) is satisfied.

In the general case we have the following result.

Proposition 4.2. Assume that J i (0) ≤ J with J > 0 and set K := 1/(exp( J) -1). Then L T > 0 a.s., if the following inequalities are satisfied for all i ≥ 1 and t ∈ [0, T ]:

a i t + (b i t ) 2 2 ≥ 0, ãt + λ t m e ≥ 0 ( 13 
)
a i t + (b i t ) 2 1 2 -K < 0 (14) ãt + λ t m e -K bt + λ t m 2 < 0. ( 15 
)
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Proof. First, K > 0. It follows from ( 14) that

N t- i=1 a i t + (b i t ) 2 1 2 -K < 0.
From ( 15) we obtain that

K bt + λ t m 2 -ãt -λ t m e > 0 > N t- i=1 a i t + (b i t ) 2 1 2 -K and therefore ãt + λ t m e + N t- i=1 a i t + (b i t ) 2 2 < K bt + λ t m 2 + N t- i=1 (b i t ) 2 .
Comparing the above inequality with (11), we obtain l t < K. Hence, if J i (0) ≥ 0 we have that

l τ i exp(J i (0)) -1 < 1. ( 16 
)
On the other side, consider the case J i (0) < 0. First, (13) ensures that l t ≥ 0. Together with exp(J i (0)) -1 < 0 we have that l τ i exp(J i (0)) -1 ≤ 0 < 1.

Inserting ( 16) in (10) guarantees that L T > 0, and the proof is completed.

Stochastic noise This paragraph describes an example with stochastic noise effect, i.e., b i t is not zero. Furthermore the model is constructed such that the minimal martingale measure is an equivalent probability measure. Assume that J i t = η i -I i t , where each I i follows a Cox-Ingersoll-Ross process with mean reversion level zero:

dI i (t) = -κI i (t)dt + σ I i (t)dB i t ( 17 
)
where κ, σ > 0 and random positive I i (0). This means that the process J jumps up at τ i by η i + I i (0) and then comes down to the level η i in a random way. We then have the following result.

Proposition 4.3. Assume that (15) as well as ãt + λ t m e ≥ 0 holds and, furthermore,

κ + σ 2 1 2 -K < 0. ( 18 
)
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Then L T > 1 with probability 1.

Proof. First, it is well-known that zero is a reflecting boundary for I i . Second, observe that a i τ i +t = κ(η i -J i t ) ≥ 0 and (b i τ i +t ) 2 = σ 2 (η i -J i t ). Hence (13) holds. From (18) it follows that ( 14) holds. Applying Proposition 4.2 shows the assertion.

Example 4.4. Consider a Black-Scholes model for St , i.e., ãt = µ ≥ 0, and assume that λ t ≡ λ > 0. Then K(σ + λm 2 ) > µ + λm e implies (15). If additionally µ + λm e ≥ 0 and (18) holds, then Q is a probability measure.

Example 4.5. For σ = 0 and η i ≡ 0 we obtain the classical shot-noise process with negative jumps as a special case, in which J i t = η i -I i 0 exp(-κt) = -I i 0 exp(-κt). U i exp(-2t) with jumps at 0.4 and 0.9; right: shot-noise model with J i (t) according to (3).
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 1 Figure 1: Two simulations of shot-noise processes according to (5). S is a geometric Brownian motion starting in 100 with σ = 0.4. Left: shot-noise model with J i (t) =