
HAL Id: hal-00565450
https://hal.science/hal-00565450

Submitted on 13 Feb 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal times for software release when repair is
imperfect

Philip J. Boland, Nóra Ní Chuív

To cite this version:
Philip J. Boland, Nóra Ní Chuív. Optimal times for software release when repair is imperfect. Statistics
and Probability Letters, 2009, 77 (12), pp.1176. �10.1016/j.spl.2007.03.004�. �hal-00565450�

https://hal.science/hal-00565450
https://hal.archives-ouvertes.fr

www.elsevier.com/locate/stapro

Author’s Accepted Manuscript

Optimal times for software release when repair is
imperfect

Philip J. Boland, Nóra Ní Chuív

PII: S0167-7152(07)00082-X
DOI: doi:10.1016/j.spl.2007.03.004
Reference: STAPRO 4603

To appear in: Statistics & Probability Letters

Cite this article as: Philip J. Boland and Nóra Ní Chuív, Optimal times for soft-
ware release when repair is imperfect, Statistics & Probability Letters (2007),
doi:10.1016/j.spl.2007.03.004

This is a PDF file of an unedited manuscript that has been accepted for publication. As
a service to our customers we are providing this early version of the manuscript. The
manuscript will undergo copyediting, typesetting, and review of the resulting galley proof
before it is published in its final citable form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply
to the journal pertain.

http://www.elsevier.com/locate/stapro
http://dx.doi.org/10.1016/j.spl.2007.03.004

Acc
ep

te
d m

an
usc

rip
t

Optimal Times for Software Release when Repair is Imperfect

Philip J. Boland ∗

Statistics and Actuarial Science National University of Ireland - Dublin,

Belfield, Dublin 4, Ireland

Nóra Nı́ Chúıv

Department of Mathematics and Statistics, University of New Brunswick,

Fredericton, New Brunswick, E3B 5A3, Canada

December 2006

MRC: primary 90B25, secondary 68M20; 68N30

KEY WORDS: Software Testing, Software Reliability, Optimal Release Time, Birth Processes,

Cost Models, Imperfect Repair.

Abstract

The determination of the optimal release time for a new piece of software is of primary

importance in the process of software development. We study a model where initially there

are N faults in the software each with failure detection rate λ(t), but where the probability

of a perfect repair of a fault when found is p (in general repair is not perfect). We investigate

various cost models for this situation and give some insight into how the optimal release

times and costs for the software vary with p and λ(t).

1 Introduction

Software reliability is a crucial concern in our rapidly developing information technology world.

It is often defined as the probability of failure free operation of a computer programme

in a specified environment for a specified period of time. For many years statisticians

and software engineers have been developing models for failures and breakdowns in computer

software (Farr, 1999; Musa, Iannino and Okumoto, 1987, Singpurwalla and Wilson, 1999; Xie,

2000; and Boland and Singh, 2002).
∗corresponding author.

1

Acc
ep

te
d m

an
usc

rip
t

One may (broadly speaking) break the software life-cycle into the four stages of: requirements

and specification, design, coding, and testing. Although the time spent in the different stages

clearly varies with products and customers, it is not unreasonable to expect testing to take in

the region of 30% of the development time. Failures in software are not physical in nature and

usually result as a consequence of errors in logic. They can lead to results inconsistent with

performance specifications and expectations, and hence knowledge about them often influences

important economic decisions concerning software release. Software is tested in order to detect

faults and consequently reduce the chances of failures occurring during its post release operation.

If software is tested for too little time it will involve high costs of customer dissatisfaction, while

if it is tested for too long it will involve large costs of testing and opportunity lost as a result of

releasing the software at a later stage.

Software reliability models may be broken into two broad categories (Singpurwalla and Wil-

son, 1999). The so called Type I models are developed by defining times between successive

software failures. Classic examples include the Jelinski Moranda model (1972) and the Moranda

de-Eutrophication model (Moranda, 1975; Boland and Singh, 2003). Type II models on the

other hand are concerned with modelling the cumulative number of failures up to any time t.

Two classic examples are the Goel Okumoto (1978) time dependent (NHPP) error detection

model, and the Musa Okumoto (Musa, Iannino, Okumoto, 1987) logarithmic Poisson execution

time model.

In this paper we will restrict our attention to some generalizations of the Jelinski Moranda

model. In this classic model one assumes there are a finite number of faults N in the software

and that each fault has an equal and independent failure (discovery) rate of λ. Here one assumes

that once a fault is discovered it is perfectly repaired and the new failure rate for the software is

reduced by λ, and also that the time between the ith and (i+1)st observed failures are exponen-

tially distributed with parameter (N−i)λ. The total number of faults M(t) detected by time t is

a birth process and letting Pn(t) = P (M(t) = n), it follows that Pn(t) =
(N

n

)
e−λ(N−n)t(1−e−λt)n

and E(M(t)) = N(1− e−λt).

Imperfect Repair may occur in attempting to remove a fault from software. The Irish software

testing company Lionbridge Technologies suggests that typically in the region of 15% of faults

are not correctly repaired. We consider a modification of the Jelinski Moranda model to take

account of imperfect repair and let p represent the probability that a fault which is discovered

or detected is perfectly repaired. In extending earlier work of Boland and Nı́ Chúıv (2001), we

also assume that the detection (failure) rate of a fault is a function of time λ(t) which is not

2

Acc
ep

te
d m

an
usc

rip
t

necessarily constant. A study is made of the resulting optimal release times for software under

a cost structure for development.

2 Numbers of Faults Detected and Removed in Software Testing

We shall assume that initially there are N faults in the software each with failure rate λ(t),

resulting in an initial failure rate for the system of N λ(0). We let Λ(t) =
∫ t
0 λ(s) ds for t > 0, and

in particular we will consider the fault detection rate functions λ(t) = be−bt and λ(t) = b/(1+bt),

in addition to the standard λ(t) = b. When a fault is detected in the software at time t, we

assume it is perfectly repaired with probability p, in which case the number of faults in the

software is reduced by 1 (and consequently the failure rate is reduced by λ(t)). Otherwise the

number of faults in the software (and the failure rate for the software) remains the same.

The probability density function for the time xk+1 that the (k + 1)th fault is successfully

removed, given the time xk of removal of the kth fault, is given by

f(xk+1|xk) = p(N − k) λ(xk+1) e−(N−k)p [Λ(xk+1)−Λ(xk)] (1)

Moreover the probability density function for the time xk of the kth fault to be removed is given

by

f(xk) =
N !

(N − k)!(k − 1)!
p λ(xk) e−pΛ(xk)(N−k+1)

[
1− e−p Λ(xk)

]k−1

=
N !

(N − k)!(k − 1)!
e−p Λ(xk)(N−k)

[
1− e−p Λ(xk)

]k−1
d

(
−e−p Λ(xk)

)

Note that this is the density of the kth order statistic, where the failures of each of the faults

are independently identically distributed with failure rate λ(t).

For any interval of time (0, t], we let M(t) be the total number of faults detected or met by

time t, and R(t) be the number of faults which have been removed (that is detected and perfectly

repaired) by time t. The number of unsuccessful repairs in the interval (0, t] will be denoted by

U(t) = M(t) − R(t). In our model the times between removals of faults are still independent

(in the classic Jelinski Moranda model where λ(t) = b they are exponentially distributed with

different parameters). For any integers u and r (where 0 ≤ r ≤ N) we let Pr(t) = P (R(t) = r)

and Pu,r(t) = P (U(t) = u,R(t) = r). We derive useful expressions for these quantities in terms

of t, Λ(t), and the parameters N and p. Using a standard differential equations approach, it

may be established that for any 1 ≤ r ≤ N

P ′
r(t) = −(N − r) λ(t) pPr(t) + (N − r + 1)λ(t) pPr−1(t). (2)

3

Acc
ep

te
d m

an
usc

rip
t

With the initial conditions that Pr(0) = 0 for 1 ≤ r ≤ N and P0(t) = e−NpΛ(t) for t ≥ 0, one

may establish (by induction or otherwise) that

Pr(t) =

(
N

r

)
e−p(N−r) Λ(t) (1− e−pΛ(t))r. (3)

Note that R(t) is a binomial birth process (R(t) is Bin(N, 1−e−ptΛ(t)) for any t > 0), and when

p = 1 (perfect repair) and λ(t) = b we obtain the standard Jelinski Moranda model.

We now derive an expression for Pu,r(t) using an integral approach. We let x1 ≤ x2 ≤ · · · ≤ xr

be the occurrence times of the r faults which are detected and successfully removed in the time

interval (0, t], and u0, u1, . . . , ur be the number of faults which are encountered but not removed

in the time intervals (0, x1], (x1, x2], . . . , (xr, t]. For convenience we will furthermore set x0 = 0

and xr+1 = t. Letting x = (x0, x1, x2, . . . , xr), u = (u0, u1, . . . , ur), and u = Σr
i=0 ui, we have

that the joint density function for x and u is given by

f(x,u) = pr
r∏

i=0

{
[(N − i)(Λ(xi+1)− Λ(xi))]ui

ui!
e−(N−i)(Λ(xi+1)−Λ(xi))(1− p)ui

} r−1∏

i=0

(N − i)λ(xi)

= pr(1− p)
∑r

i=0
ui

N !
(N − r)!

(e−
∑r

i=0
(N−i)(Λ(xi+1)−Λ(xi)))

r∏

i=1

λ(xi)

·
{

r∏

i=0

[(N − i)(Λ(xi+1)− Λ(xi)]ui

ui!

}

= pr(1− p)u

(
N

r

)
r! (e[−(N−r)Λ(t)−Λ(xr)−···−Λ(x1)])

·
r∏

i=1

λ(xi)
r∏

i=0

[(N − i)(Λ(xi+1)− Λ(xi))]ui

ui!
.

On integration it follows that

Pu,r(t) =
∑

u0+···+ur=u

∫ t

0

∫ xr

0
· · ·

∫ x2

0
f(x,u) dx1 . . . dxr

=

(
N

r

)
r!pr(1− p)u

∫ t

0

∫ xr

0
· · ·

∫ x2

0
e−[(N−r)Λ(t)+Λ(xr)+···+Λ(x1)]

r∏

i=1

λ(xi)

·
{

1
u!

∑

u0+···+ur=u

r∏

i=0

u![(N − i)(Λ(xi+1 − Λ(xi))]ui

ui!

}
dx1 . . . dxr.

Using the multinomial expansion

∑

u0+···+ur=u

r∏

i=0

u![(N − i)(Λ(xi+1)− Λ(xi))]ui

ui!
=

[
r∑

i=0

(N − i)(Λ(xi+1)− Λ(xi))

]u

the expression for Pu,r(t) simplifies to

Pu,r(t) =

(
N

r

)
pr(1− p)ur!

∫ t

0

∫ xr

0
· · ·

∫ x2

0

[(N − r)Λ(t) + Λ(xr) + · · ·+ Λ(x1)]u

u!

·e−[(N−r)Λ(t)+Λ(xr)+···+Λ(x1)]
r∏

i=1

λ(xi) dx1 · · · dxr.

4

Acc
ep

te
d m

an
usc

rip
t

Hence

Pr(t) =
∞∑

u=0

Pu,r(t)

=
∞∑

u=0

(
N

r

)
pr(1− p)ur! ·

∫ t

0

∫ xr

0
· · ·

∫ x2

0

[(N − r)Λ(t) + Λ(xr) + · · ·+ Λ(x1)]u

u!

e−[(N−r)Λ(t)+Λ(xr)+···+Λ(x1)]
r∏

i=1

λ(xi) dx1 · · · dxr.

=

(
N

r

)
prr!

∫ t

0

∫ xr

0
· · ·

∫ x2

0

∞∑

u=0

[(1− p)[(N − r)Λ(t) + Λ(xr) + · · ·+ Λ(x1)]u

u!

e−[(N−r)Λ(t)+Λ(xr)+···+Λ(x1)]
r∏

i=1

λ(xi) dx1 · · · dxr.

=

(
N

r

)
prr!

∫ t

0

∫ xr

0
· · ·

∫ x2

0
e(1−p)[(N−r)Λ(t)+Λ(xr)+···+Λ(x1)]

e−[(N−r)Λ(t)+Λ(xr)+···+Λ(x1)]
r∏

i=1

λ(xi) dx1 · · · dxr.

=

(
N

r

)
prr!

∫ t

0

∫ xr

0
· · ·

∫ x2

0
e−p[(N−r)Λ(t)+Λ(xr)+···+Λ(x1)]

r∏

i=1

λ(xi) dx1 · · · dxr.

=

(
N

r

)
prr!e−p(N−r)Λ(t)

∫ t

0

∫ xr

0
· · ·

∫ x2

0
e−pΛ(xr)λ(xr) · · · e−pΛ(x1)λ(x1) dx1 · · · dxr

=

(
N

r

)
prr! e−p(N−r)Λ(t)(1− e−pΛ(t))r 1

prr!
=

(
N

r

)
e−pΛ(t)(N−r)(1− e−pΛ(t))r

This is the same expression as (3). It follows immediately that E[R(t)] = N(1 − e−pΛ(t)).

Similarly

E[U(t)] =
N∑

r=0

∞∑

u=0

uPu,r(t)

=
N∑

r=0

(
N

r

)
prr!

∫ t

0

∫ xr

0
· · ·

∫ x2

0

∞∑

u=0

u
(1− p)u[(N − r)Λ(t) + Λ(xr) + · · ·+ Λ(x1)]u

u!

·e[−(N−r)Λ(t)−Λ(xr)−···−Λ(x1)]
r∏

i=1

λ(xi) dx1 · · · dxr

=
N∑

r=0

(
N

r

)
prr!

∫ t

0

∫ xr

0
· · ·

∫ x2

0
(1− p)[(N − r)Λ(t) + Λ(xr) + · · ·+ Λ(x1)]

e−p[(N−r)Λ(t)+Λ(xr)···+Λ(x1)]
r∏

i=1

λ(xi) dx1 · · · dxr

=
N∑

r=0

(
N

r

)
prr!

∫ t

0

∫ xr

0
· · ·

∫ x2

0
(1− p)

[−∂

∂p
e−p[(N−r)Λ(t)+Λ(xr)+···+Λ(x1)]

] r∏

i=1

λ(xi) dx1 · · · dxr

5

Acc
ep

te
d m

an
usc

rip
t

= −
N∑

r=0

(
N

r

)
prr!

(1− p)
∂

∂p

∫ t

0

∫ xr

0
· · ·

∫ x2

0
e−p[(N−r)Λ(t)+Λ(xr)+···+Λ(x1)]

r∏

i=1

λ(xi) dx1 · · · dxr

= −(1− p)
N∑

r=0

(
N

r

)
prr!

∂

∂p
{e−p(N−r)Λ(t)(1− e−pΛ(t))r 1

prr!
}

= −(1− p)
N∑

r=0

(
N

r

)
prr!

[
1

prr!
∂

∂p
{e−p(N−r)Λ(t)(1− e−pΛ(t))r} − r

pr+1r!
{e−p(N−r)Λ(t)(1− e−pΛ(t))r}

]

= −(1− p) (4)
[

∂

∂p
{

N∑

r=0

(
N

r

)
e−p(N−r)Λ(t)(1− e−pΛ(t))r} −

N∑

r=0

(
N

r

)
r

p
{e−p(N−r)Λ(t)(1− e−pΛ(t))r}

]

=
N(1− p)

p
(1− e−pΛ(t))

N−1∑

r−1=0

(
N − 1
r − 1

)
e−pΛ(t)(N−1−(r−1))(1− e−pΛ(t))r−1

=
N(1− p)

p
(1− e−pΛ(t)). (5)

Given that M(t) = R(t) + U(t), it is clear therefore that E[M(t)] = (N/p)(1− e−pΛ(t)).

3 Optimal Release Time for Testing Software.

In our cost models we will consider two distinct cases. In the first case we consider a fixed

software life-cycle time t0 where it is desired that if the software is released at time T , it

functions well in the period (T, t0]. In the second case we will want the software to function for

some fixed mission time τ after release (that is to say, in the period (T, T + τ]). Let us use c1 to

be the cost associated with encountering a fault (whether successfully repaired or not) during

the testing period (0, T], c2 to be the cost of dealing with a fault encountered after the release

time T , and c3 to be the cost of testing per unit time during the testing period. A common

cost function model used for releasing the software at time T (see Okumoto and Goel (1980),

McDaid and Wilson (2001), and Boland and Singh (2002)) takes the form

C(T) = c1M(T) + c2[M(g(T))−M(T)] + c3T (6)

where g(T) = g1(T) = t0 in case 1 (where we are considering a fixed life cycle time t0), and

g(T) = g2(T) = T + τ in case 2 (when we consider a fixed mission time τ). The total expected

cost for releasing the software at time T therefore takes the form

E[C(T)] = c1E[M(T)] + c2(E[M(g(T))]− E[M(T)]) + c3T

6

Acc
ep

te
d m

an
usc

rip
t

= c2
N

p
(1− e−pΛ(g(T)))− (c2 − c1)

N

p
(1− e−pΛ(T)) + c3T, (7)

and the objective is to find a T ∗ which minimizes expected costs. Differentiating (7) with respect

to T one finds critical points, and the T ∗ minimizing expected costs is a solution of

λ(T) e−pΛ(T) =
c3

N(c2 − c1)
, (8)

for case 1, while in case 2 it is a solution of

(c2 − c1) λ(T) e−pΛ(T) − c2 λ(T + τ) e−pΛ(T+τ) =
c3

N
. (9)

If λ(t) (failure rate or discovery rate of faults) is non increasing and c2 > c1, then any solution

T1 to equation (8) is unique. This gives a minimum cost for release if λ(0)N [c2 − c1] > c3, and

otherwise the optimal value is T ∗ = 0. Remember that in case 1 we must have T ∗ ≤ g(T) = t0,

thus, denoting the optimal choice of T by T ∗,

T ∗ = min (t0,max(0, T1)) , (10)

where T1 is the solution of (8).

In the case of a fixed mission time τ, the critical point is given by the solution of

c2[λ(T) e−pΛ(T) − λ(T + τ) e−pΛ(T+τ)]− c1λ(T) e−pΛ(T) =
c3

N
(11)

In the case of a non increasing failure rate λ(t) the solution gives a unique minimum if

1− c1

c2
>

p[λ(T + τ)]2 − λ′(T + τ)
p[λ(T)]2 − λ′(T)

e−p[Λ(T+τ)−Λ(T)] (12)

4 Numerical Examples

We now apply our general results to specific failure rate models. As our first example we take

λ(t) = be−bt. Then Λ(t) = 1− e−bt. We illustrate the example with values of N and b suggested

by the failure data set DS1 discussed by Goel (1980). This data gives rise to estimates of

N = 1348 and b = 0.124. We also use the same cost parameters of c1 = 1, c2 = 5, c3 = 100

suggested by Okumoto and Goel (1980) (and used by Boland and Singh (2002) and (2003)) in

order to make comparisons with other studies.

Table 1 gives the optimal testing time T ∗ for different values of p (the probability of perfect

fault repair), for the cases where the fixed life cycle time is t0 = 100 and for the situation when

we are interested in the software functioning well during a mission time of τ = 2, 5, 10, 20, 50, 100.

Figure 1 illustrates the behavior of T ∗ as a function of p plotted for a number of values of τ .

7

Acc
ep

te
d m

an
usc

rip
t

p t0 = 100 τ = 2 τ = 5 τ = 10 τ = 20 τ = 50 τ = 100

0.2 13.99 0 6.13 10.69 13.17 13.98 13.99

0.4 12.76 0 5.94 9.80 12.01 12.74 12.76

0.6 11.63 0 5.73 9.02 10.96 11.61 11.63

0.8 10.60 0.61 5.53 8.34 10.02 10.59 10.60

1.0 9.68 1.10 5.33 7.74 9.18 9.67 9.68

Table 1: Optimal Testing Time T ∗ when λ(t) = 0.124 e−0.124 t

The corresponding minimum expected costs are given in the following table:

p t0 = 100 τ = 2 τ = 5 τ = 10 τ = 20 τ = 50 τ = 100

0.2 3414 1448 2575 3068 3328 3412 3414

0.4 3161 1417 2387 2835 3080 3159 3161

0.6 2928 1387 2218 2624 2852 2927 2928

0.8 2714 1351 2067 2433 2643 2712 2714

1.0 2517 1306 1932 2261 2452 2516 2517

Table 2: Minimum Expected Cost when λ(t) = 0.124 e−0.124 t

For our second example we take λ(t) = b/(1 + bt). Then Λ(t) = log(1 + b t). For the case of

a fixed life cycle time t0, the optimal testing time T ∗ is given by min(t0,max(0, T1)), where

T1 =
1
b




(
Nb(c1 − c2)

c3

) 1
1+p

− 1




For the case of a fixed mission time τ, T ∗ = max(0, T2) where T2 is given as the solution of

(c2 − c1)b
(1 + bT)1+p

− c2b

(1 + b(T + τ))1+p
=

c3

N
. (13)

The optimal testing times T ∗ and the corresponding minimal expected costs are given in Tables

3 and 4.

p t0 = 100 τ = 2 τ = 5 τ = 10 τ = 20 τ = 50 τ = 100

0.2 31.22 0 2.65 7.10 12.19 19.12 23.65

0.4 23.27 0 3.44 7.52 11.80 16.98 19.87

0.6 18.38 0 3.96 7.60 11.16 14.98 16.79

0.8 15.11 0.61 4.28 7.50 10.43 13.22 14.34

1.0 12.79 0.63 4.47 7.28 9.68 11.71 12.41

Table 3: Optimal Testing Time T ∗ when λ(t) = 0.124/(1 + 0.124 t)

8

Acc
ep

te
d m

an
usc

rip
t

p t0 = 100 τ = 2 τ = 5 τ = 10 τ = 20 τ = 50 τ = 100

0.2 9450 1461 2985 4371 5951 8345 10330

0.4 7563 1429 2755 3861 5057 6731 7981

0.6 6124 1398 2539 3432 4351 5537 6329

0.8 5036 1368 2342 3071 3785 4634 5139

1.0 4209 1330 2164 2765 3326 3939 4262

Table 4: Minimum Expected Cost when λ(t) = 0.124/(1 + 0.124 t)

We compare these two examples with the results obtained in Boland & Ni Chuiv (2001). In

that case λ(t) = b. The results are tabulated in Tables 5 and 6.

p t0 = 100 τ = 2 τ = 5 τ = 10 τ = 20 τ = 50 τ = 100

0.2 76.61 0 0 0 18.87 58.51 72.16

0.4 38.31 0 0 9.43 25.75 36.08 38.13

0.6 25.54 0 0 13.42 21.08 25.12 25.53

0.8 19.15 0 4.72 12.88 17.25 19.06 19.15

1.0 15.32 0 6.32 11.70 14.43 15.30 15.32

Table 5: Optimal Testing Time T ∗ when λ(t) = 0.124

p t0 = 100 τ = 2 τ = 5 τ = 10 τ = 20 τ = 50 τ = 100

0.2 15612 1631 3930 7402 12659 16623 17988

0.4 9099 1591 3701 6329 7961 8994 9199

0.6 6138 1553 3490 4933 5699 6103 6144

0.8 4608 1516 3165 3981 4418 4600 4608

1.0 3687 1480 2787 3325 3598 3685 3687

Table 6: Minimum Expected Cost when λ(t) = 0.124

One would naturally expect to observe some monotonic trends or relationships between T ∗,

p, either t0 or τ , and the function λ(t) for a given cost structure. Some interesting observations

may be made from our results. Note that each of our 3 detection (failure) rate functions start

at b, are decreasing, and moreover b e−b t ≤ b/(1 + b t) ≤ b for all t > 0. For case 1 (fixed life

cycle time t0 = 100), it appears that T ∗ is a decreasing function of p for any of these detection

9

Acc
ep

te
d m

an
usc

rip
t

0.2 0.4 0.6 0.8 1.0

2
0

4
0

6
0

8
0

1
0

0

p

O
p

ti
m

a
l
T

im
e

 T

λ (t) = b

λ (t) = b exp(−bt)

λ (t) = b/(1+bt)

Figure 1: Optimal Testing Times for 3 Models with t0 = 100 and b = 0.124.

10

Acc
ep

te
d m

an
usc

rip
t

0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
1

0
1

2

p

O
p

ti
m

a
l
T

im
e

 T

λ (t)=b

λ (t)=b exp(−bt)

λ (t)=b/(1+bt)

Figure 2: Optimal Testing Times for 3 Models with τ = 10 and b = 0.124.

11

Acc
ep

te
d m

an
usc

rip
t

0.2 0.4 0.6 0.8 1.0

2
0

4
0

6
0

8
0

1
0

0

p

O
p

ti
m

a
l
T

im
e

 T

λ (t) = b

λ (t) = b exp(−bt)

λ (t) = b/(1+bt)

Figure 3: Optimal Testing Times for 3 Models with τ = 100 and b = 0.124.

12

Acc
ep

te
d m

an
usc

rip
t

rate functions, and moreover for fixed p it increases with the failure rate function. For case 2

(mission time of τ), T ∗ appears to be an increasing function of the mission time τ for fixed p and

fixed detection rate function. However, somewhat surprisingly, it is not necessarily a decreasing

function of p for any fixed τ and given detection rate function.

References

[1] Boland, P.J. and Ni Chuiv N. (2001). ”Cost Implications of Imperfect Repair in Software

Reliability”, International Journal of Reliability and Applications, 2, 3, 147-160.

[2] Boland, P.J. and Singh, H. (2002). ”Determining the Optimal Release Time for Software

in the Geometric Poisson Reliability Model”, International Journal of Reliability, Quality

and Safety Engineering, 9, 3, 201-213.

[3] Boland, P.J. and Singh, H. (2003). ”A Birth Process approach to Moranda’s Geometric

software Reliability Model”, IEEE Transactions in Reliability, volume 52, 2, 168-174.

[4] Dalal, S. R. and Mallows, C. L. (1988). ”When to stop testing software”. Journal of Amer-

ican Statistical Association, 83, 872-879.

[5] Farr, W. (1996). Software Reliability Modeling Survey, Chapter 3 in Handbook of Soft-

ware Reliability Engineering, edited by M. R. Lyu, McGraw Hill.

[6] Finkelstein M.S. (1997). ”Imperfect repair models for systems subject to shocks”. Applied

Stochastic Models and Data Analysis. 13, 385-390.

[7] Goel, A.L. (1980). ”Software Error Detection model with applications”. The Journal of

Systems and Software, 1. 243-249.

[8] Goel, A.L. and Okumoto, K. (1978). ”An Analysis of Recurrent Software Failures on a

Real-Time Control System”. In Proceedings of the ACM Annual Technical Conference,

496-500.

[9] Jelinski, Z. and Moranda, P. (1972). ”Software Reliability Research”. Statistical Com-

puter Performance Evaluation, Ed. W. Freiberger, 465-84, New York, Academic.

[10] McDaid, K. and Wilson, S. (2001). ”Deciding how long to test software.” Journal of the

Royal Statistical Society, Series D, R-50. 117-134.

13

Acc
ep

te
d m

an
usc

rip
t

[11] Moranda, P.B. (1975). ”Prediction of Software Reliability Software During Debugging”.

Proceedings on the 1975 Annual Reliability and Maintainability Symposium, 327-32.

[12] Musa, J. D., Iannino, A. and Okumoto, K. (1987). Software Reliability: Measurement,

Prediction, Application, New York Wiley.

[13] Okumoto, K. and Goel, A. L. (1980). ”Optimum release time for software systems based

on reliability and cost criteria”. The Journal of Systems and Software, 1, 315-318.

[14] Singpurwalla, N. D. and Wilson, S. P. (1999). Statistical Methods in Software Engi-

neering: Reliability and Risk. Springer.

[15] Singpurwalla, N. D. (1991). ”Determining an optimal time interval for testing and debugging

software”. IEEE Transactions on Software Engineering, 17, 313-319.

[16] Xie, M. (2000) ”Software Reliability Models - Past, Present and Future”. in Recent Ad-

vances in Reliability Theory - Methodology, Practive and Inference. Eds Limnios,

N and Nikulin M., Birkhauser, 325-340.

14

