Philip J Boland

Nóra Ní Chuív

Optimal Times for Software Release when Repair is Imperfect

Keywords: primary 90B25, secondary 68M20; 68N30 Software Testing, Software Reliability, Optimal Release Time, Birth Processes, Cost Models, Imperfect Repair

The determination of the optimal release time for a new piece of software is of primary importance in the process of software development. We study a model where initially there are N faults in the software each with failure detection rate λ(t), but where the probability of a perfect repair of a fault when found is p (in general repair is not perfect). We investigate various cost models for this situation and give some insight into how the optimal release times and costs for the software vary with p and λ(t).

Introduction

Software reliability is a crucial concern in our rapidly developing information technology world.

It is often defined as the probability of failure free operation of a computer programme in a specified environment for a specified period of time. For many years statisticians and software engineers have been developing models for failures and breakdowns in computer software (Farr, 1999;[START_REF] Musa | Software Reliability: Measurement, Prediction, Application[END_REF]Okumoto, 1987, Singpurwalla and[START_REF] Singpurwalla | Statistical Methods in Software Engineering: Reliability and Risk[END_REF][START_REF] Xie | Software Reliability Models -Past, Present and Future[END_REF][START_REF] Boland | Determining the Optimal Release Time for Software in the Geometric Poisson Reliability Model[END_REF].

A c c e p t e d m a n u s c r i p t

One may (broadly speaking) break the software life-cycle into the four stages of: requirements and specification, design, coding, and testing. Although the time spent in the different stages clearly varies with products and customers, it is not unreasonable to expect testing to take in the region of 30% of the development time. Failures in software are not physical in nature and usually result as a consequence of errors in logic. They can lead to results inconsistent with performance specifications and expectations, and hence knowledge about them often influences important economic decisions concerning software release. Software is tested in order to detect faults and consequently reduce the chances of failures occurring during its post release operation.

If software is tested for too little time it will involve high costs of customer dissatisfaction, while if it is tested for too long it will involve large costs of testing and opportunity lost as a result of releasing the software at a later stage.

Software reliability models may be broken into two broad categories (In this paper we will restrict our attention to some generalizations of the Jelinski Moranda model. In this classic model one assumes there are a finite number of faults N in the software and that each fault has an equal and independent failure (discovery) rate of λ. Here one assumes that once a fault is discovered it is perfectly repaired and the new failure rate for the software is reduced by λ, and also that the time between the i th and (i + 1) st observed failures are exponentially distributed with parameter (N -i)λ. The total number of faults M (t) detected by time t is a birth process and letting

P n (t) = P (M (t) = n), it follows that P n (t) = N n e -λ(N -n)t (1-e -λt) n and E(M (t)) = N (1 -e -λt).
Imperfect Repair may occur in attempting to remove a fault from software. The Irish software testing company Lionbridge Technologies suggests that typically in the region of 15% of faults are not correctly repaired. We consider a modification of the Jelinski Moranda model to take account of imperfect repair and let p represent the probability that a fault which is discovered or detected is perfectly repaired. In extending earlier work of Boland and Ní Chuív (2001), we also assume that the detection (failure) rate of a fault is a function of time λ(t) which is not

Numbers of Faults Detected and Removed in Software Testing

We shall assume that initially there are N faults in the software each with failure rate λ(t),

resulting in an initial failure rate for the system of N λ(0). We let Λ(t) = t 0 λ(s) ds for t > 0, and in particular we will consider the fault detection rate functions λ(t) = be -bt and λ(t) = b/(1+bt), in addition to the standard λ(t) = b. When a fault is detected in the software at time t, we assume it is perfectly repaired with probability p, in which case the number of faults in the software is reduced by 1 (and consequently the failure rate is reduced by λ(t)). Otherwise the number of faults in the software (and the failure rate for the software) remains the same.

The probability density function for the time x k+1 that the (k + 1) th fault is successfully removed, given the time x k of removal of the k th fault, is given by

f (x k+1 |x k) = p(N -k) λ(x k+1) e -(N -k)p [Λ(x k+1)-Λ(x k)] (1)
Moreover the probability density function for the time x k of the k th fault to be removed is given by

f (x k) = N ! (N -k)!(k -1)! p λ(x k) e -pΛ(x k)(N -k+1) 1 -e -p Λ(x k) k-1 = N ! (N -k)!(k -1)! e -p Λ(x k)(N -k) 1 -e -p Λ(x k) k-1 d -e -p Λ(x k)
Note that this is the density of the k th order statistic, where the failures of each of the faults are independently identically distributed with failure rate λ(t).

For any interval of time (0, t], we let M (t) be the total number of faults detected or met by time t, and R(t) be the number of faults which have been removed (that is detected and perfectly repaired) by time t. The number of unsuccessful repairs in the interval (0, t] will be denoted by

U (t) = M (t) -R(t).
In our model the times between removals of faults are still independent (in the classic Jelinski Moranda model where λ(t) = b they are exponentially distributed with different parameters). For any integers u and r (where 0 ≤ r ≤ N) we let P r (t) = P (R(t) = r)

and P u,r (t) = P (U (t) = u, R(t) = r). We derive useful expressions for these quantities in terms of t, Λ(t), and the parameters N and p. Using a standard differential equations approach, it may be established that for any

1 ≤ r ≤ N P r (t) = -(N -r) λ(t) p P r (t) + (N -r + 1) λ(t) p P r-1 (t). (2)

A c c e p t e d m a n u s c r i p t

With the initial conditions that P r (0) = 0 for 1 ≤ r ≤ N and P 0 (t) = e -N pΛ(t) for t ≥ 0, one may establish (by induction or otherwise) that

P r (t) = N r e -p(N -r) Λ(t) (1 -e -pΛ(t)) r . (3
)
Note that R(t) is a binomial birth process (R(t) is Bin(N, 1 -e -ptΛ(t)) for any t > 0), and when p = 1 (perfect repair) and λ(t) = b we obtain the standard Jelinski Moranda model.

We now derive an expression for P u,r (t) using an integral approach. We let

x 1 ≤ x 2 ≤ • • • ≤ x r
be the occurrence times of the r faults which are detected and successfully removed in the time interval (0, t], and u 0 , u 1 , . . . , u r be the number of faults which are encountered but not removed in the time intervals (0, x 1], (x 1 , x 2], . . . , (x r , t]. For convenience we will furthermore set x 0 = 0 and x r+1 = t. Letting x = (x 0 , x 1 , x 2 , . . . , x r), u = (u 0 , u 1 , . . . , u r), and u = Σ r i=0 u i , we have that the joint density function for x and u is given by

f (x, u) = p r r i=0 [(N -i)(Λ(x i+1) -Λ(x i))] u i u i ! e -(N -i)(Λ(x i+1)-Λ(x i)) (1 -p) u i r-1 i=0 (N -i)λ(x i) = p r (1 -p) r i=0 u i N ! (N -r)! (e -r i=0 (N -i)(Λ(x i+1)-Λ(x i))) r i=1 λ(x i) • r i=0 [(N -i)(Λ(x i+1) -Λ(x i)] u i u i ! = p r (1 -p) u N r r! (e [-(N -r)Λ(t)-Λ(x r)-•••-Λ(x 1)]) • r i=1 λ(x i) r i=0 [(N -i)(Λ(x i+1) -Λ(x i))] u i u i ! .
On integration it follows that

P u,r (t) = u 0 +•••+u r =u t 0 xr 0 • • • x 2 0 f (x, u) dx 1 . . . dx r = N r r!p r (1 -p) u t 0 x r 0 • • • x 2 0 e -[(N -r)Λ(t)+Λ(x r)+•••+Λ(x 1)] r i=1 λ(x i) • 1 u! u 0 +•••+u r =u r i=0 u![(N -i)(Λ(x i+1 -Λ(x i))] u i u i ! dx 1 . . . dx r .
Using the multinomial expansion

u 0 +•••+ur=u r i=0 u![(N -i)(Λ(x i+1) -Λ(x i))] u i u i ! = r i=0 (N -i)(Λ(x i+1) -Λ(x i))
u the expression for P u,r (t) simplifies to

P u,r (t) = N r p r (1 -p) u r! t 0 x r 0 • • • x 2 0 [(N -r)Λ(t) + Λ(x r) + • • • + Λ(x 1)] u u! •e -[(N -r)Λ(t)+Λ(xr)+•••+Λ(x 1)] r i=1 λ(x i) dx 1 • • • dx r .

A c c e p t e d m a n u s c r i p t

Hence

P r (t) = ∞ u=0 P u,r (t) = ∞ u=0 N r p r (1 -p) u r! • t 0 xr 0 • • • x 2 0 [(N -r)Λ(t) + Λ(x r) + • • • + Λ(x 1)] u u! e -[(N -r)Λ(t)+Λ(x r)+•••+Λ(x 1)] r i=1 λ(x i) dx 1 • • • dx r . = N r p r r! t 0 x r 0 • • • x 2 0 ∞ u=0 [(1 -p)[(N -r)Λ(t) + Λ(x r) + • • • + Λ(x 1)] u u! e -[(N -r)Λ(t)+Λ(xr)+•••+Λ(x 1)] r i=1 λ(x i) dx 1 • • • dx r . = N r p r r! t 0 xr 0 • • • x 2 0 e (1-p)[(N -r)Λ(t)+Λ(x r)+•••+Λ(x 1)] e -[(N -r)Λ(t)+Λ(x r)+•••+Λ(x 1)] r i=1 λ(x i) dx 1 • • • dx r . = N r p r r! t 0 x r 0 • • • x 2 0 e -p[(N -r)Λ(t)+Λ(x r)+•••+Λ(x 1)] r i=1 λ(x i) dx 1 • • • dx r . = N r p r r!e -p(N -r)Λ(t) t 0 xr 0 • • • x 2 0 e -pΛ(xr) λ(x r) • • • e -pΛ(x 1) λ(x 1) dx 1 • • • dx r = N r p r r! e -p(N -r)Λ(t) (1 -e -pΛ(t)) r 1 p r r! = N r e -pΛ(t)(N -r) (1 -e -pΛ(t)) r

This is the same expression as (3). It follows immediately that E[R(t)]

= N (1 -e -pΛ(t)).

Similarly

E[U (t)] = N r=0 ∞ u=0 uP u,r (t) = N r=0 N r p r r! t 0 x r 0 • • • x 2 0 ∞ u=0 u (1 -p) u [(N -r)Λ(t) + Λ(x r) + • • • + Λ(x 1)] u u! •e [-(N -r)Λ(t)-Λ(x r)-•••-Λ(x 1)] r i=1 λ(x i) dx 1 • • • dx r = N r=0 N r p r r! t 0 x r 0 • • • x 2 0 (1 -p)[(N -r)Λ(t) + Λ(x r) + • • • + Λ(x 1)] e -p[(N -r)Λ(t)+Λ(xr)•••+Λ(x 1)] r i=1 λ(x i) dx 1 • • • dx r = N r=0 N r p r r! t 0 x r 0 • • • x 2 0 (1 -p) -∂ ∂p e -p[(N -r)Λ(t)+Λ(x r)+•••+Λ(x 1)] r i=1 λ(x i) dx 1 • • • dx r

A c c e p t e d m a n u s c r i p t

= - N r=0 N r p r r! (1 -p) ∂ ∂p t 0 x r 0 • • • x 2 0 e -p[(N -r)Λ(t)+Λ(xr)+•••+Λ(x 1)] r i=1 λ(x i) dx 1 • • • dx r = -(1 -p) N r=0 N r p r r! ∂ ∂p {e -p(N -r)Λ(t) (1 -e -pΛ(t)) r 1 p r r! } = -(1 -p) N r=0 N r p r r! 1 p r r! ∂ ∂p {e -p(N -r)Λ(t) (1 -e -pΛ(t)) r } - r p r+1 r! {e -p(N -r)Λ(t) (1 -e -pΛ(t)) r } = -(1 -p) (4) ∂ ∂p { N r=0 N r e -p(N -r)Λ(t) (1 -e -pΛ(t)) r } - N r=0 N r r p {e -p(N -r)Λ(t) (1 -e -pΛ(t)) r } = N (1 -p) p (1 -e -pΛ(t)) N -1 r-1=0 N -1 r -1 e -pΛ(t)(N -1-(r-1)) (1 -e -pΛ(t)) r-1 = N (1 -p) p (1 -e -pΛ(t)). (5
)
Given that

M (t) = R(t) + U (t), it is clear therefore that E[M (t)] = (N/p)(1 -e -pΛ(t)).
3 Optimal Release Time for Testing Software.

In our cost models we will consider two distinct cases. In the first case we consider a fixed software life-cycle time t 0 where it is desired that if the software is released at time T , it functions well in the period (T, t 0]. In the second case we will want the software to function for some fixed mission time τ after release (that is to say, in the period (T, T + τ]). Let us use c 1 to be the cost associated with encountering a fault (whether successfully repaired or not) during the testing period (0, T], c 2 to be the cost of dealing with a fault encountered after the release

C(T) = c 1 M (T) + c 2 [M (g(T)) -M (T)] + c 3 T (6)
where g(T) = g 1 (T) = t 0 in case 1 (where we are considering a fixed life cycle time t 0), and g(T) = g 2 (T) = T + τ in case 2 (when we consider a fixed mission time τ). The total expected cost for releasing the software at time T therefore takes the form

E[C(T)] = c 1 E[M (T)] + c 2 (E[M (g(T))] -E[M (T)]) + c 3 T

A c c e p t e d m a n u s c r i p t

= c 2 N p (1 -e -pΛ(g(T))) -(c 2 -c 1) N p (1 -e -pΛ(T)) + c 3 T, (7)
and the objective is to find a T * which minimizes expected costs. Differentiating [START_REF] Goel | Software Error Detection model with applications[END_REF] with respect to T one finds critical points, and the T * minimizing expected costs is a solution of

λ(T) e -pΛ(T) = c 3 N (c 2 -c 1) , (8)
for case 1, while in case 2 it is a solution of

(c 2 -c 1) λ(T) e -pΛ(T) -c 2 λ(T + τ) e -pΛ(T +τ) = c 3 N . (9
)
If λ(t) (failure rate or discovery rate of faults) is non increasing and c 2 > c 1 , then any solution T 1 to equation (8) is unique. This gives a minimum cost for release if

λ(0)N [c 2 -c 1] > c 3 , and
otherwise the optimal value is T * = 0. Remember that in case 1 we must have T * ≤ g(T) = t 0 , thus, denoting the optimal choice of T by T * ,

T * = min (t 0 , max(0, T 1)) , (10
)
where T 1 is the solution of (8).

In the case of a fixed mission time τ, the critical point is given by the solution of

c 2 [λ(T) e -pΛ(T) -λ(T + τ) e -pΛ(T +τ)] -c 1 λ(T) e -pΛ(T) = c 3 N (11)
In the case of a non increasing failure rate λ(t) the solution gives a unique minimum if

1 - c 1 c 2 > p[λ(T + τ)] 2 -λ (T + τ) p[λ(T)] 2 -λ (T) e -p[Λ(T +τ)-Λ(T)] (12)

Numerical Examples

We now apply our general results to specific failure rate models. As our first example we take λ(t) = be -bt . Then Λ(t) = 1 -e -bt . We illustrate the example with values of N and b suggested by the failure data set DS1 discussed by [START_REF] Goel | Software Error Detection model with applications[END_REF]. This data gives rise to estimates of Table 1 gives the optimal testing time T * for different values of p (the probability of perfect fault repair), for the cases where the fixed life cycle time is t 0 = 100 and for the situation when we are interested in the software functioning well during a mission time of τ = 2, 5, 10, 20, 50, 100. For our second example we take λ(t) = b/(1 + bt). Then Λ(t) = log(1 + b t). For the case of a fixed life cycle time t 0 , the optimal testing time T * is given by min(t 0 , max(0, T 1)), where

T 1 = 1 b   N b(c 1 -c 2) c 3 1 1+p -1  
For the case of a fixed mission time τ, T * = max(0, T 2) where T 2 is given as the solution of

(c 2 -c 1)b (1 + bT) 1+p - c 2 b (1 + b(T + τ)) 1+p = c 3 N . (13
)
The optimal testing times T * and the corresponding minimal expected costs are given in Tables 3 and4.

p t 0 = 100 τ = 2 τ = 5 τ = 10 τ = 20 τ = 50 τ =

A c c e p t e d m a n u s c r i p t

 necessarily constant. A study is made of the resulting optimal release times for software under a cost structure for development.

time T , and c 3

 3 to be the cost of testing per unit time during the testing period. A common cost function model used for releasing the software at time T (see Okumoto and Goel (1980), McDaid and Wilson (2001), and Boland and Singh (2002)) takes the form

N

 = 1348 and b = 0.124. We also use the same cost parameters of c 1 = 1, c 2 = 5, c 3 = 100 suggested by Okumoto and Goel (1980) (and used by Boland and Singh (2002) and (2003)) in order to make comparisons with other studies.

Figure 1

 1 Figure 1 illustrates the behavior of T * as a function of p plotted for a number of values of τ .

A c c e p t e d m a n u s c r i p t p t 0

 0 = 100 τ = 2 τ = 5 τ = 10 τ = 20 τ = 50 τ = 100 0.

Figure 1 :Figure 2 :Figure 3 :A c c e p t e d m a n u s c r i p tA c c e p t e d m a n u s c r i p t

 123 Figure 1: Optimal Testing Times for 3 Models with t 0 = 100 and b = 0.124.

Table 1 :

 1 Optimal Testing Time T * when λ(t) = 0.124 e -0.124 tThe corresponding minimum expected costs are given in the following table:

	2	13.99	0	6.13	10.69	13.17	13.98	13.99
	0.4	12.76	0	5.94	9.80	12.01	12.74	12.76
	0.6	11.63	0	5.73	9.02	10.96	11.61	11.63
	0.8	10.60	0.61	5.53	8.34	10.02	10.59	10.60
	1.0	9.68	1.10	5.33	7.74	9.18	9.67	9.68
	p t 0 = 100 τ = 2 τ = 5 τ = 10 τ = 20 τ = 50 τ = 100
	0.2	3414	1448 2575	3068	3328	3412	3414
	0.4	3161	1417 2387	2835	3080	3159	3161
	0.6	2928	1387 2218	2624	2852	2927	2928
	0.8	2714	1351 2067	2433	2643	2712	2714
	1.0	2517	1306 1932	2261	2452	2516	2517

Table 2 :

 2 Minimum

Expected Cost when λ(t) = 0.124 e -0.124 t

Table 3 :

 3 Optimal Testing Time T

	100

* when λ(t) = 0.124/(1 + 0.124 t)

We compare these two examples with the results obtained in [START_REF] Boland | Cost Implications of Imperfect Repair in Software Reliability[END_REF]. In that case λ(t) = b. The results are tabulated in Tables 5 and6.