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 can be extended to general innovations, regardless of the existence of their δ-moments. We prove some general properties of these domains and analyze some cases particularly relevant in applications.

Power Garch models

The δ-power Garch(1, 1) model is a natural extension of the usual Garch(1, 1) model, described by the equations

X t = σ t ε t σ δ t = w + α |X t-1 | δ + βσ δ t-1 (1) 
with ω > 0, α ≥ 0, β ≥ 0, δ > 0 and ε t independent and identically distributed (i.i.d.). The case δ = 2 with ε t standard normal corresponds to the usual Garch(1, 1) model [START_REF] Bollerslev | Generalized autoregressive conditional heteroschedasticity[END_REF] while the case δ < 2 with ε t α-stable has been recently discussed in [START_REF] Mittnik | Stationarity of stable power-GARCH processes[END_REF], MP&R hereafter. The model [START_REF] Bellini | Domain and misspecification issues in fitting Garch(1, 1) models[END_REF] in its generality has been considered

A c c e p t e d m a n u s c r i p t amongst others in [START_REF] Ding | A long memory property of stock market returns and a new model[END_REF] and [START_REF] Liu | Maximum likelihood estimation of a Garch-stable model[END_REF]. The specification of a varying exponent δ has the merit of allowing "long memory" in the shocks of conditional variance (see [START_REF] Ding | A long memory property of stock market returns and a new model[END_REF], for a broad discussion).

As in the case of traditional Garch models, one general question is for which parameters' values we have a stationary solution (in the weak or strong sense) of the equations [START_REF] Bellini | Domain and misspecification issues in fitting Garch(1, 1) models[END_REF]. More precisely, we define the δSS domain in the (α, β) space as the region where a strictly stationary solution of (1) exists, while the δWS domain is the region where we have a weakly stationary (covariance-stationary) solution. For the usual case δ = 2 we will simply refer to 'SS domain' and 'WS domain'. For these models typically the δSS domain is bigger than the δWS domain, since for some parameters' values there are stationary solutions with infinite unconditional variance. This is in contrast with the situation of traditional (light-tailed) time series models, where strict stationarity usually implies weak stationarity.

Below we briefly review some classic and more recent results on stationarity domains. [START_REF] Nelson | Stationarity and persistence in the Garch(1,1) model[END_REF] in the case δ = 2 proved the following theorem (where ε is the common

distribution of ε t ). Theorem If ω > 0, if E[log(αε 2 + β)
] exists (possibly infinite) and ε 2 is non degenerate, then a necessary and sufficient condition for the strict stationarity of [START_REF] Bellini | Domain and misspecification issues in fitting Garch(1, 1) models[END_REF] is that

E[log(αε 2 + β)] < 0 (2)
Remark 1 For this characterization of the SS domain it is not necessary to assume that E[ε 2 ] < +∞; see for example the second part of Theorem 6 in [START_REF] Nelson | Stationarity and persistence in the Garch(1,1) model[END_REF] where ε has a Cauchy distribution.

Remark 2 If E[ε 2 ] = 1, a sufficient condition for (2) is α + β < 1 (3) since E[log(αε 2 + β)] ≤ E[(αε 2 + β -1)] = α + β -1 < 0.
As it is very well known since Bollerslev's seminal paper, [START_REF] Bollerslev | Generalized autoregressive conditional heteroschedasticity[END_REF], the condition (3) also identifies exactly the WS domain. Hence for the case δ = 2 with standard normal innovations the WS domain is strictly included in the SS domain.

A c c e p t e d m a n u s c r i p t

Remark 3 In [START_REF] Nelson | Stationarity and persistence in the Garch(1,1) model[END_REF] the SS domain has been explicitly computed for ε a standard normal or Cauchy distribution. See [START_REF] Bellini | Domain and misspecification issues in fitting Garch(1, 1) models[END_REF] and the discussion in Section 4 on the impact of the shape of the SS domain in the MLE.

In MP&R the following result has been proved (albeit in a more general form for Garch(p, q) models). We restate here Proposition 1 of MP&R for the Garch(1, 1) case.

Theorem If ε is α-stable with 1 < α S < 2 and δ < α S , then a necessary and sufficient condition for strict stationarity is

E[log(α |ε| δ + β)] < 0 ( 4 
)
Remark 4 In this case the sufficient condition for the δWS domain becomes (Proposition 2, MP&R)

αλ α S ,β S ,δ S + β < 1 (5) 
where λ α S ,β S ,δ S = E[|ε| δ ] < +∞, since δ < α S with α S , β S and δ S the characteristic exponent or tail index, the skewness and the location parameter of a stable distribution.

This condition follows immediately using the same argument as before:

E[log(α |ε| δ +β)] ≤ E[α |ε| δ + β -1] = αλ α S ,β S ,δ S + β -1 < 0.
We can think of this region as the natural counterpart of the WS region for the δ = 2 case.

Since the hypothesis of the Bougerol and Picard (1992a) theorem do not require integrability of the innovations but only of their logarithm, it seems natural to extend this theorem to a general δ-power Garch, by removing the two assumptions of MP&R that ε is α-stable and δ < α S . In the footpaths of MP&R we will find that in general the condition

E[log(α |ε| δ + β)] < 0
is necessary and sufficient for strict stationarity provided that the integral exists, while if the innovations have finite δ-moment E[|ε| δ ] < +∞ a sufficient condition is given by

αλ α S ,β S ,δ S + β -1 < 0
The rest of the paper is organized as follows: in Section 2 we will extend MP&R's results while in Section 3 we will show some properties of the general δSS together with some illustrative examples. Finally Section 4 will contain some concluding remarks and comments.

A c c e p t e d m a n u s c r i p t 2 The δSS domain for general δ-power Garch models

We follow the same strategy of Bougerol and Picard (1992b) and MP&R. The general δ-power Garch (p, q) model can be written as

X t = σ t ε t σ δ t = ω + p i=1 α i |X t-j | δ + q j=1 β j σ δ t-i (6) 
with ω > 0, α i ≥ 0, β j ≥ 0, and ε t i.i.d. with E[ε t ] = 0 while no additional assumptions on the existence of other moments of ε t are made. It is of course possible to add a timevarying mean µ t but we avoid it for notational simplicity. The equations ( 6) can be written in the following form

Y t+1 = A t Y t + B ( 7 
)
where

A t =            α 1 |ε| δ + β 1 1 0 ... 0 α 2 |ε| δ + β 2 0 1 ... 0 ... ... ... ... ... α m-1 |ε| δ + β m-1 0 0 ... 1 α m |ε| δ + β m 0 0 ... 0            , B =            ω 0 ... 0 0            (8) 
and m = min(p, q).

The advantages of this representation with respect to the original work of Bougerol and Picard (1992b) are described in MP&R. In this way the problem becomes the existence of the solution of a stochastic recurrence equation of the form

Y n+1 = A n Y n + B n where
A n and B n are i.i.d. random matrices. The basic result is the following (see Bougerol and Picard, 1992b). 

Theorem If E[log + A n ] < +∞, E[log + B n ] < +∞,
λ = inf n>0 1 n E[log A 1 A 2 • • • A n ] (9) 
A c c e p t e d m a n u s c r i p t is negative.

Remark 5 We define log + (x) = max(0, log x) and • any matrix norm on R d . The most important point for us is that only a logarithmic moment condition is required, that can be fulfilled also without other (power) moment conditions. In the δ-power Garch(1, 1) case, condition (9) simply becomes

λ = E[log(α |ε| δ + β)] < 0
Using this theorem it is easy to prove the following generalized form of Mittnik's result. 3 Some general properties of the δSS domain

In the previous Section we saw how it is possible to generalize Nelson's and Mittnik's results in order to cover cases of very heavy tails. In this Section we will analyze more deeply the δSS domains by means of some numerical simulations. In the following remarks we point out some general properties of the δSS domain for δ-power Garch(1, 1).

Remark 7 Scaling the innovations with a factor η > 0 has the effect of inflating the δSS domain along the α-axis by a factor η -δ . Hence in order to compare different domains it is necessary to fix a "scale parameter" for the innovations. When δ = 2 it is natural to set E[ε 2 ] = 1 but for other innovations it is not clear which is the best "normalization value". Theorem 2 If ω > 0, the δSS domain is a convex subset of the (α, β) space whose boundary is given by the axes and a decreasing function β(α) starting from (0, 1). If

E[|ε| δ ] < +∞, the boundary is tangent in (0, 1) to the δWS domain while if E[|ε| δ ] = +∞
it has vertical tangent in (0, 1). Finally, we have

β (α) = V ar[Y ] α 2 (E[Y ]) 3
where

Y = 1 α |X| δ + β
Proof The convexity follows immediately from the concavity of the logarithm. Since the boundary of the δSS domain is given by

G(α, β) = E[log(α |ε| δ + β)] = 0 we have β (α) = - G α G β = - E[ |ε| δ (α|ε| δ +β)] ] E[ 1 (α|ε| δ +β)] ] < 0 and β (0) = -E[|ε| δ ]
since β(0) = 1. From Dini's theorem we have

β (α) = - [1, β (α)]HG[1, β (α)] T G β
where

HG = -    E[ |ε| 2δ (α|ε| δ +β) 2 ] E[ |ε| δ (α|ε| δ +β) 2 ] E[ |ε| δ (α|ε| δ +β) 2 ] E[ 1 (α|ε| δ +β) 2 ]    By posing X = |ε| δ (α|ε| δ +β)
and Y = 1 (α|ε| δ +β) 2 and noting that αX + βY = 1, we get

β (α) = [1, -E[X ] E[Y ] ]   E[X 2 ] E[X Y ] E[X Y ] E[Y 2 ]   [1, -E[X ] E[Y ] ] T E[Y ]
with straightforward computations we get the result.

A c c e p t e d m a n u s c r i p t

Apart from a qualitative characterization of the δSS for a δ-power Garch(1, 1) process given by Theorem 2, it is neither straightforward to derive the analytic expression of the δSS nor the δWS. However using Monte Carlo integration it is easy to represent the shape of both domains for a wide range of distributions commonly used in practice.

The normal case

In the normal case it is possible to calculate analytically the integral in (2) (see [START_REF] Nelson | Stationarity and persistence in the Garch(1,1) model[END_REF]) although the resulting expression is quite complex. If ε ∼ N (0, 1), β > 0, then

E[log(αε 2 + β)] = log(2α) + ϕ( 1 2 ) + ( 2πβ α ) 1 2 Φ( 1 2 , 3 2 ; β 2α ) -( β α ) 2 F 2 (1, 1; 2, 3 2 ; β 2α )
where

Φ(a, b; z) = ∞ k=0 (a) k (b) k z k k! with (a) k = Γ(a + k) Γ(a)
is the increasing factorial. The 

The t-Student case

When ε has a normalized t-Student distribution with ν degrees of freedom it is in general not possible to compute analytically the integral in (2). Instead we computed SS domains for different values of ν using Monte Carlo integration with 100000 simulations from a t 3 , t 6 and t 9 . The results are showed in Fig. 2; the SS domain becomes bigger while the tail of the innovations become heavier, i.e. for smaller values of ν.

A c c e p t e d m a n u s c r i p t 3.3 The GED case

Another "classic" parametric family for Garch innovations is the Generalized Error Distribution (GED) with probability density function

f (x) = ν exp -1 2 x ν ν βΓ 1 ν 2 (1+ 1 ν ) with β = 2 -2 ν Γ 1 ν Γ 3 ν 1/2
where ν is a shape parameter; with ν = 2 we have a normal distributions, for ν < 2 the tails are heavier than the normal while for ν > 2 the tails are lighter. Again we used Monte Carlo integration with 100000 simulations from a GED distribution ν = 1.5, 3 and 5; the results are showed in Fig. 3. Again, the heavier the tails, the bigger the SS domain is. The following remark provides an heuristic explanation of this phenomenon.

Remark 9

We chose the t-Student family as a prototypical supergaussian family and the GED family as a prototypical subgaussian family. By visual comparing the various SS domains, we saw that in all cases the heavier the tails of the innovations, the bigger the SS domain is. A (quite crude) heuristic argument to motivate this behavior is as follows:

using the approximation log(1 + x) ∼ x -x 2 /2 in (2), it follows that

E[log(αZ 2 + β)] ∼ = α + β -1 - 1 2 (α + β -1) 2 - 1 2 α 2 E[Z 4 ] -1
showing that as E[Z 4 ] increases, the stationarity domain becomes bigger. However it is worth notice that this line of reasoning is valid only if the variance of the innovations is finite.

Remark 10 For all the distribution considered henceforth we have that E[ε 2 ] < +∞; it follows from Theorem 2 that the WS domain is tangent to the SS domain and strictly smaller.

The α-stable case

In this Subsection we consider the most important case for which E[ε 2 ] = +∞, the α-stable innovations. We use symmetric α-stable innovations with normalized scaling factor. More

A c c e p t e d m a n u s c r i p t

precisely, in the notations of [START_REF] Nolan | Stable Distributions -Models for Heavy Tailed Data[END_REF] we use the "0 parametrization" with different values of α S , β S = 0, γ S = 1 and δ S = 0, the characteristic exponent, the skewness, the scale and location parameter respectively. Also in this case the integral in (2) has been computed through Monte Carlo integration. The generation of stable variates has been performed with the STABLE package downloadable from the J. P. Nolan's homepage:

http://academic2.american.edu/∼jpnolan/stable/stable.html. As a special case, α S = 1, we have the Cauchy distribution; here it is easy to calculate analytically the SS domain (see [START_REF] Nelson | Stationarity and persistence in the Garch(1,1) model[END_REF] since if ε has a Cauchy distribution, then

E[log(αε 2 + β)] = 2 log( √ α + β)
Hence the boundary of the SS domain is given by the function

β(α) = 1 + α -2 √ α
It is easy to check that β (0) = -∞ as prescribed by Theorem 2.

For the sake of comparison the SS domains of stable innovations are plotted in Fig. 4 for α = 1 (Cauchy), α = 1.2, α S = 1.5, α S = 1.9 and α S = 2 (normal). It is interesting to note that in this case the SS domain becomes smaller when the tails of the innovations become heavier, i.e. when α S → 1 + . Hence the qualitative behavior is the opposite than in the case of finite variance innovations. This was argued in MP&R on the basis of the comparison of the corresponding δWS domains.

The case δ = 2

In the last Subsection we analyzed the shapes and the magnitudes of SS domains for usual Garch models, i.e. with δ = 2 in the "variance" equation, for general α-stable innovation with different values of the characteristic exponent α S . We found that there is a sharp distinction between the finite variance and the infinite variance case.

In this Subsection we want to investigate the situation for a generic δ. More precisely, for two fixed innovations, normal and α-stable with α S = 1.5, we compare the δSS domains for different values of δ. The results are shown in Fig. 5 for the normal case and in Fig. 6 for what concerns the 1.5-stable. In the normal case we have that as δ ↓ 1 the δSS region becomes significantly smaller, while in the stable case we have the opposite behavior. We we see that there is no qualitative change in the δSS domain, in agreement with the fact that the existence of the δ moment of the innovations is not important for the shape of the δSS domain.

Discussion

In this paper we showed that the strict stationarity condition for δ-power Garch models introduced by MP&R can be generalized to more general innovations, even with infinite δ moment. The two simplest examples of this behaviur are Cauchy innovations and α-stable innovations with α S < δ. In general, we saw that the δSS domain has a typical convex shape as provided by Theorem 2, with two possibilities according to the finiteness or not of the δ moment of the innovations.

In a previous paper, [START_REF] Bellini | Domain and misspecification issues in fitting Garch(1, 1) models[END_REF], we investigated the importance of the correct specification of the domain for the MLE. The usual practice is to consider only the δWS domain, whose shape doesn't depend on the density of the innovations but only on their δ moment. In the common case of δ = 2 this corresponds to the 'α 1 + β 1 < 1' constraint.

Our analysis shows two things:

• in the case of finite δ moment, the δSS domain can be much bigger than the δWS domain. Hence the choice of this boundary can affect the estimation process (for example giving rise to a spurious 'IGARCH' effect, see [START_REF] Bellini | Domain and misspecification issues in fitting Garch(1, 1) models[END_REF];

• this procedure is not applicable when the δ moment of the innovations is infinite. In this case there is no counterpart to the δWS region so it is necessary to determine numerically the δSS region, before performing MLE.

The same analysis should be extended to higher dimensions where to our knowledge the shape of SS domains is still not very well known even for normal innovations. for δ = 1, 1.5, 1.9 (blue) and 2 (red) from right to left.

A c c e p t e d m a n u s c r i p t Remark 8

 8 If |ε 2 | ≥ |ε 1 | a.s., then the δ SS domain of ε 1 is strictly bigger than that of ε 2 since E[log(α |ε 1 | δ + β)] < E[log(α |ε 2 | δ + β)] < 0 The general shape of the δSS domain in the two cases E[|ε| δ ] < +∞ and E[|ε| δ ] = +∞ is characterized in the following theorem.

function 2 F 2 F 2

 222 2 (a, b; c, d; z) is a generalized hypergeometric defined by (a, b; c, d; z) = ∞ k=0 (a) k (b) k (c) k (d) k z k k! while ϕ(z) is Euler 'psi' function with ϕ(1/2) = -1.96351. The SS and WS domains are shown in Fig. 1.

A c c e p t e d m a n u s c r i p t considered δ = 1

 1 , 1.5, 1.9, hence we have both situations E[|ε| δ ] < +∞ and E[|ε| δ ] = +∞;

Figure 1 :

 1 Figure 1: The SS domain (blue) and the WS domain (red) for standard normal innovations.

Figure 2 :

 2 Figure 2: The SS domains for a t-Student distribution with ν = 3, 6 and 9 degrees of freedom, from right to left, (black) compared with the normal SS domain (blue) and the WS domain (red).

Figure 3 :

 3 Figure 3: The SS domains for a GED distribution with ν = 1.5, 3 and 4, from left to right, (black) compared with the normal SS domain (blue) and the WS domain (red).

Figure 4 : 1 (

 41 Figure 4: The SS domains for α-stable innovations (black) with tail indexes α S = 1 (Cauchy), 1.2, 1.5, 1.9 and 2 (normal) (blue) from left to right.

Figure 5 :

 5 Figure 5: A comparison of SS domains for standard normal innovations for δ = 1, 1.5, 1.9 and 2, from left to right, (blue) and the WS domain (red).

Figure 6 :

 6 Figure 6: A comparison of SS domains for α-Stable innovations with tail index α S = 1.5
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