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For order statistics X i,n , X j,n , X k,n with 1 ≤ i < j < k ≤ n, and

is established for uniform distributions as well as seen to be characteristic.

Introduction

Let X 1,n ≤ . . . ≤ X n,n be the order statistics based on a random sample of size n from a continuous distribution function F . These are denoted by U 1,n ≤ . . . ≤ U n,n , if the underlying distribution is uniform. * Email addresses: beutner@stochastik.rwth-aachen.de, kamps@stochastik.rwthaachen.de
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A c c e p t e d m a n u s c r i p t

The deterministic convex combination

(1 -c) • X i,n + c • X i+1,n , c ∈ (0, 1), (1) 
of order statistics appears in distribution-free confidence intervals for quantils (cf. [START_REF] David | Order Statistics[END_REF], Chapter 7.1).

Motivated by (1), [START_REF] Jones | On fractional uniform order statistics[END_REF] shows that some fractional order statistic Ũi+c,n , c ∈ (0, 1), (see [START_REF] Stigler | Fractional order statistics, with applications[END_REF]) in the uniform case may be represented by a random convex combination

(1 -C) • U i,n + C • U i+1,n , ( 2 
)
where C is beta distributed with parameters c and 1 -c, Beta(c, 1 -c) for short, and independent of the order statistics U i,n and

U i+1,n , 1 ≤ i ≤ n -1,
from the uniform distribution on (0, 1), denoted by U (0, 1).

By considering equation (2) the question arises, whether an (ordinary) order statistic U j,n from a uniform distribution can be represented by a random convex combination of its neighbours.

Random convex combinations

It is shown that the distributional equation

U j,n d = (1 -C) • U i,n + C • U k,n (3) 
holds true for uniform order statistics with 1 ≤ i < j < k ≤ n, where C is an appropriately chosen beta distributed random variable, independent [START_REF] Aggarwala | Progressive Censoring. Theory, Methods, and Applications[END_REF], p. 32). Hence,

It is well known that U r,n d = 1 - r l=1 B l , where B l ∼ Beta(n -l + 1, 1), 1 ≤ l ≤ n, (cf.
(1 -C) • U i,n + C • U k,n d = (1 -C) • 1 - i l=1 B l + C • 1 - k l=1 B l = 1 - i l=1 B l 1 -C • (1 - k l=i+1 B l ) . From k l=i+1 B l ∼ Beta(n-k +1, k -i) which implies (1- k l=i+1 B l ) ∼ Beta(k - i, n -k + 1), we have C • (1 - k l=i+1 B l ) ∼ Beta(j -i, n -j + 1). Therefore, (1 -C • (1 - k l=i+1 B l )) ∼ Beta(n -j + 1, j -i). Since i l=1 B l ∼ Beta(n -i + 1, i) we obtain that i l=1 B l • 1 -C • (1 - k l=i+1 B l ) ∼ Beta(n -j + 1, j)
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which implies the assertion because U j,n is beta distributed with parameters j and n -j + 1.

Due to relation (3), a random convex combination of order statistics may serve as an unbiased prediction of a missing observation of some order statistic U j,n .

By analogy with Theorem 1, a related result may also be stated for record values from an exponential distribution.

Remark 2 Let R i , R j and R k , 0 ≤ i < j < k, be records from the exponential distribution with parameter λ. Then, for n = 0, 1, 2, . . . , R n d

= 1 λ • n l=0 X l ,
where {X l , l ≥ 0} is a sequence of i.i.d. standard exponential distributed random variables (cf. [START_REF] Arnold | Records[END_REF], p. 20). Hence,

(1 -C) • R i + C • R k d = (1 -C) • λ -1 • i l=0 X l + C • λ -1 • k l=0 X l = λ -1 • i l=0 X l + C • λ -1 • k l=i+1 X l . ( 4 
)
The first summand in ( 4) is gamma distributed with parameters i + 1 and λ.

If C is independent of the records and beta distributed with parameters j -i and k-j , then the second term in (4) is gamma distributed with parameters j -i and λ. Therefore, (4) is gamma distributed with parameters j + 1 and

λ which implies R j d = (1 -C) • R i + C • R k .
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The following Theorems provide characterizations of uniform distributions based on the distributional equation (3).

Theorem 3 Let X j-1,n , X j,n , X j+1,n be order statistics from an absolutely continuous and strictly increasing distribution function F , and let C be independent of X j-1,n and X j+1,n . Furthermore, let the distribution of C be concentrated on (0, 1) with an absolutely continuous distribution function

F C . Then (X j-1,n , Z, X j+1,n ) d = (X j-1,n , X j,n , X j+1,n ) where Z = (1 -C) • X j-1,n + C • X j+1,n iff C ∼ U (0, 1) and F ≡ U (a, b), for some a < b.
Proof. Due to the assumed independence of C and X j-1,n , X j+1,n the joint distribution function f X j-1,n ,Z,X j+1,n of Z and X j-1,n , X j+1,n is

f X j-1,n ,Z,X j+1,n (x j-1 , z, x j+1 ) = 1 x j+1 -x j-1 f X j-1,n ,X j+1,n (x j-1 , x j+1 ) × f C z -x j-1 x j+1 -x j-1 I {x j-1 ≤z≤x j+1 } = 1 x j+1 -x j-1 • n! (j -2)!(n -j -1)! F j-2 (x j-1 )f (x j-1 )(F (x j+1 ) -F (x j-1 )) ×f (x j+1 )(1 -F (x j+1 ) n-j-1 f C z -x j-1 x j+1 -x j-1 I {x j-1 ≤z≤x j+1 } .
The joint density of X j-1,n , X j,n , X j+1,n is given by

f X j-1,n ,X j,n ,X j+1,n (x j-1 , z, x j+1 ) = n! (j -2)!(n -j -1)! F j-2 (x j-1 )f (x j-1 ) × f (z)(1 -F (x j+1 )) n-j-1 f (x j+1 ) • I {x j-1 ≤z≤x j+1 } .
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Equating the densities leads to

F (x j+1 ) -F (x j-1 ) x j+1 -x j-1 • f C z -x j-1 x j+1 -x j-1 = f (z), ∀ x j-1 ≤ z ≤ x j+1 . (5)
It is directly seen that ( 5) holds true for F ≡ U (a, b) and C ∼ U (0, 1), which proves the if-part.

To prove the only if-part we divide equation ( 5) by F (x j+1 )-F (x j-1 ), which is greater than zero due our assumption, and integrate both sides from x j-1 to u to obtain

F C (v) -F C (0) = F (ṽ) -F (x j-1 ) F (x j+1 ) -F (x j-1 ) , ∀ v ∈ (0, 1), ∀ x j-1 ≤ x j+1 , (6) if we put v = u-x j-1
x j+1 -x j-1 and ṽ = v(x j+1 -x j-1 ) + x j-1 .

By differentiating (6) with respect to x j+1 we find vf (ṽ)(F (x j+1 ) -F (x j-1 )) = (F (ṽ) -F (x j-1 ))f (x j+1 ), ∀ x j-1 ≤ x j+1 , which implies

F C (v) -F C (0) = v • f (v(x j+1 -x j-1 ) + x j-1 ) f (x j+1 ) , ∀ x j-1 ≤ x j+1 . ( 7 
)
Since the left hand side in ( 7) is independent of x j-1 , we obtain by differentiating (7) with respect to

x j-1 v f (x j+1 ) f (ṽ)(1 -v) = 0, ∀ x j-1 ≤ x j+1 , ∀ v ∈ (0, 1).
Hence, f must be constant, i.e., there exists a < b such that F ≡ U (a, b).

From ( 7) we now obtain that C ∼ U (0, 1).
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Theorem 4 Let X j-1,n , X j,n , X j+1,n be order statistics from an absolutely continuous distribution function F , which is assumed to be strictly increasing and convex or concave. Moreover, let C ∼ U (0, 1) and independent of X j-1,n and X j+1,n . Then

(1 -C) • X j-1,n + C • X j+1,n d = X j,n (8) 
iff F ≡ U (a, b), for some a < b.

Proof. Notice that

P ((1 -C) •X j-1,n + C • X j+1,n ≤ x) = P ((1 -C) • x j-1 + C • x j+1 ≤ x)dP X j-1,n ,X j+1,n (x j-1 , x j+1 ) = x -x j-1 x j+1 -x j-1 I {x j-1 ≤x≤x j+1 } dP X j-1,n ,X j+1,n (x j-1 , x j+1 ) and P (X j,n ≤ x) = P (X j,n ≤ x|X j-1,n = x j-1 , X j+1,n = x j+1 )dP X j-1
,n ,X j+1,n (x j-1 , x j+1 ) = F (x) -F (x j-1 ) F (x j+1 ) -F (x j-1 ) I {x j-1 ≤x≤x j+1 } dP X j-1,n ,X j+1,n (x j-1 , x j+1 ).

The distributional equation ( 8) now implies 0 = F (x) -F (x j-1 ) F (x j+1 ) -F (x j-1 ) -x -x j-1 x j+1 -x j-1 ×I {x j-1 ≤x≤x j+1 } dP X j-1,n ,X j+1,n (x j-1 , x j+1 ).
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Due to the fact that F is assumed to be strictly increasing as well as convex or concave (cf. [START_REF] Hewitt | Real and Abstract Analysis[END_REF], p. 272) we conclude F (x) -F (x j-1 ) F (x j+1 ) -F (x j-1 ) -x -x j-1 x j+1 -x j-1 = 0, ∀ x j-1 ≤ x ≤ x j+1 .

Hence, F is linear, i.e., there exists a < b such that F ≡ U (a, b).
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