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In this paper two Kolmogorov inequalities are presented for the sample average of independent (but not necessarily identically distributed) Bernoulli random variables.

Introduction

For a sequence of independent and identically distributed Bernoulli random variables X 1 , X 2 , ..., with E(X 1 ) = p , [START_REF] Kolmogorov | On tables of random numbers[END_REF] provided the following inequality

P (sup k≥n | Xk -p| > ) ≤ 2e -2n 2 (1-) where Xk = 1 k k i=1 X i , > 0.
Improvements, extensions and related results can be found in [START_REF] Hoeffding | Probability inequalities for sums of bounded random variables[END_REF], [START_REF] Young | A note on a Kolmogorov inequality[END_REF], [START_REF] Turner | Improved Kolmogorov inequalities for the binomial distribution[END_REF], [START_REF] Young | A note on a Kolmogorov inequality for the Binomial distribution[END_REF], [START_REF] Christofides | Probability inequalities with exponential bounds for U-statistics[END_REF], [START_REF] Christofides | A Kolmogorov inequality for U-statistics based on Bernoulli kernels[END_REF], [START_REF] Kambo | On exponential bounds for binomial probabilities[END_REF] and [START_REF] Banjevic | On a Kolmogorov inequality[END_REF]. In this paper, two Kolmogorov inequalities are provided for the case of independent but not necessarily identically distributed Bernoulli random variables.

Preliminaries

The following results will be used:

Lemma 2.1

Let p 1 , ..., p n be positive real numbers and p = 1

n n i=1 p i . Then for t > 0 n i=1 (p i e t + 1 -p i ) ≤ (pe t + 1 -p) n .
Proof: From the arithmetic-geometric mean inequality, we have

n i=1 (p i e t + 1 -p i ) ≤ [ n i=1 1 n (p i e t + 1 -p i )] n = (pe t + 1 -p) n .
1

A c c e p t e d m a n u s c r i p t

The following result is due to [START_REF] Christofides | A Kolmogorov inequality for U-statistics based on Bernoulli kernels[END_REF].

Lemma 2.2

Let < 1 2 and

g(p, ) = (1 -p -)ln( 1 -p - 1 - p ) + (p + )ln( p + p ). Then for p + < 1 2 or 1 2 + 1 3 ≤ p ≤ 1 g(p, ) ≥ - 1 2 ln(1 -4 2 ). Lemma 2.3 Let x = 2(p + ) -1 and y = 1 -2p. Then, ∞ r=1 1 2r(2r -1) [x 2r + (2r -1)y 2r + 2rxy 2r-1 ] = g(p, )
where g(p, ) is the function defined in Lemma 2.2.

Proof: We have p + = x+1 2 and p = 1-y 2 . Then, g(p, ) from Lemma 2.2 is

g(p, ) = ( 1 -x 2 )ln( 1 -x 1 + y ) + ( 1 + x 2 )ln( 1 + x 1 -y ).
Using the Taylor series expansions

ln(1 + x) = ∞ r=1 (-1) r-1 x r r and ln(1 -x) = - ∞ r=1
x r r we have that

g(p, ) = (1 -x) 2 [- ∞ r=1 x r r - ∞ r=1 (-1) r-1 y r r ]+( 1 + x 2 )[ ∞ r=1 (-1) r-1 x r r + ∞ r=1 y r r ]

A c c e p t e d m a n u s c r i p t

and after algebraic manipulations we arrive at

g(p, ) = ∞ r=1 1 2r(2r -1) [x 2r + (2r -1)y 2r + 2rxy 2r-1 ]. Lemma 2.4
Let ν be a positive integer and x > 1. Then

2 2ν-2 (x 2ν-1 + 1) -(x + 1) 2ν-1 > 0. Proof: Let F (x) = 2 2ν-2 (x 2ν-1 + 1) -(x + 1) 2ν-1 . Then F (x) = 2 2ν-2 (2ν -1)x 2ν-2 -(2ν -1)(x + 1) 2ν-2 = (2ν -1)[2 2ν-2 x 2ν-2 -(x + 1) 2ν-2 ] = (2ν -1)[(2x) 2ν-2 -(x + 1) 2ν-2 ] > 0 since x > 1.
Thus, F (x) is an increasing function and F (x) > F (1) = 0.

Lemma 2.5

Let y ≥ 1 and ν = 1, 2, ... . Then

H(y) = y 2ν + 2ν -1 + 2νy - 4 2 2ν (y + 1) 2ν ≥ 0. Proof: H (y) = 2ν.y 2ν-1 + 2ν - 4 2 2ν 2ν(y + 1) 2ν-1 = 2ν 4 2 2ν [ 2 2ν 4 y 2ν-1 + 2 2ν 4 -(y + 1) 2ν-1 ]
A c c e p t e d m a n u s c r i p t

= 2 3-2ν .ν[2 2ν-2 y 2ν-1 + 2 2ν-2 -(y + 1) 2ν-1 ] = 2 3-2ν .ν[2 2ν-2 (y 2ν-1 + 1) -(y + 1) 2ν-1 ].
By Lemma 2.4 H (y) > 0 implying that H is increasing and therefore H(x) ≥ H(1) = 0.

Lemma 2.6

Let x, y be as in Lemma 2.3 and r = 1, 2, ... . Then

x 2r + (2r -1)y 2r + 2rxy 2r-1 ≥ 4( x + y 2 ) 2r .
Proof: By lemma 2.5 for c ≥ 1

c 2r + 2r -1 + 2rc - 4 2 2r (c + 1) 2r ≥ 0.
Take c = x y . Then x 2r y 2r + 2r -1 + 2r

x y ≥ 4 2 2r ( x y + 1) 2r

x 2r + (2r -1)y 2r + 2rxy 2r-1 ≥ 4( x + y 2 ) 2r .

Main Results

Theorem 3.1

Let Y 1 , Y 2 , ..., Y n be a sequence of independent Bernoulli random variables with E(Y i ) = p i , i = 1, ..., n and < 1 2 . Then, for p+ < 1 2

or p ≥ 1 2 + 1 3 , P ( Ȳ -p > ) ≤ (1 -4 2 ) n 2 where Ȳ = 1 n n i=1 Y i and p = 1 n n i=1 p i .

A c c e p t e d m a n u s c r i p t

Proof: Let s > 0. Then,

P ( Ȳ -p > ) = P [s( Ȳ -p -) > 0] ≤ E[e s( Ȳ -p-) ] = e -s(p+ ) E[e (s Ȳ ) ] = e -s(p+ ) E(e s 1 n n i=1 Y i ) = e -s(p+ ) n i=1 E(e s n Y i ) = e -s(p+ ) n i=1 (p i e s n + 1 -p i ) ≤ e -s(p+ ) (pe s n + 1 -p) n (1) = e -f (s)
where f (s) = s(p + ) -nln(pe s n + 1 -p) and the last inequality follows from Lemma 2.1.

The function f is maximized at s max = nln[ (1-p)(p+ ) p(1-p-) ] and

f (s max ) = n(p + )ln (p + )(1 -p) p(1 -p -) -nln 1 - p 1 -p - = n[(1 -p -)ln( 1-p- 1-p ) + (p + )ln( p+ p )] = n.g(p, ).
Thus, by Lemma 2.2

f (s max ) = ng(p, ) ≥ - n 2 ln(1 -4 2 )
A c c e p t e d m a n u s c r i p t and therefore

P ( Ȳ -p > ) ≤ (1 -4 2 ) n 2 .
Notice that the restrictions on p and arise from Lemma 2.2 which is due to [START_REF] Christofides | A Kolmogorov inequality for U-statistics based on Bernoulli kernels[END_REF].

The following theorem gives an exponential bound under different conditions on p and .

Theorem 3.2

Let Y 1 , Y 2 , ..., Y n be a sequence of independent Bernoulli random variables, with E(Y i ) = p i , i = 1, ..., n. Then for p + > 1 2 or p < 1 2 and ∀ < 1,

P ( Ȳ -p > ) ≤ e -n(2 2 + 1 3 4 e 2 4 )
where Ȳ = 1 n n i=1 Y i and p = 1 n n i=1 p i .

Proof: From the proof of Theorem 3.1 (p, ) where

P ( Ȳ -p > ) ≤ e -ng
g(p, ) = (1 -p -)ln( 1 -p - 1 - p ) + (p + )ln( p + p ). By Lemma 2.3 g(p, ) = ∞ r=1 1 2r(2r -1) [x 2r + (2r -1)y 2r + 2rxy 2r-1 ].
x and y are positive values, imposing the restrictions on p and . Now, since x + y = 2 and using Lemma 2.6 we have Proof: Using Lemma 1 of Turner, [START_REF] Turner | A Kolmogorov inequality for the sum of independent Bernoulli random variables with unequal means[END_REF] we can arrive at inequality (1) of Theorem 3.1 having the quantity P [sup k≥n ( Ȳk -pk ) > ] as our left-hand side. Then, one can follow the same steps of theorems 3.1 and 3.2 to reach the right-hand side, and the proof is complete.

Remarks

(1) Theorem 3.3 provides sharper bounds than that of the main result of [START_REF] Turner | A Kolmogorov inequality for the sum of independent Bernoulli random variables with unequal means[END_REF], under of course restrictions on p and .

(2) Theorem 3.1 is an extension of Corollary 3.2 of [START_REF] Christofides | A Kolmogorov inequality for U-statistics based on Bernoulli kernels[END_REF].
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The last inequality is clearly true for r = 2, and can be established (e.g., by induction) for r > 2. Then,

Thus

and the proof is complete.

Theorem 3.3

Let Y 1 , Y 2 , ..., be a sequence of independent Bernoulli random variables with E(Y i ) = p i . Then,

(1) ∀ < 1 2 and for pk + < 1 2 or pk ≥

n 2 n = 0, 1, 2, ...