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1. Introduction

The statistical problem of estimating a density function when only aggregated data are

observed has received considerable attention, where research is mainly motivated by real

applications in the field of econometrics.

In the mathematical model, we define the i.i.d. random variables Xij, integer i, j,

having the density function fX , which we aim to estimate. The only empirical access is

given by the data Y1, . . . , Yn where

Yi =

m∑

j=1

Xij , (1)

where m is the fixed size of the data groups. Note that our problem may also be seen

as a missing data problem in time series analysis. Consider the moving average process

(Zk)k with Zk =
∑m+k−1

j=k Xj with i.i.d. X1, X2, . . . having the density fX . Then, assume

that only the data Z1+mk are observed for integer k ≥ 0.

The current note intends to advance the understanding of this problem by deriving the

optimal rates of convergence under common smoothness conditions on fX with respect

to the mean integrated squared error (MISE). In Section 2, we study the optimal rates

for symmetric densities. In Section 3, we describe a procedure for data-driven bandwidth

selection; in Section 4 we give an extension to skew densities. The proofs are deferred to

Section 5.

To give a survey on related problems of indirect density estimation, we mention prob-

lems of reconstructing a density from measurement error; that topic has become famous as

density deconvolution (Stefanski & Carroll (1990), Carroll & Hall (1988), Zhang (1990),

Horowitz & Markatou (1996), Fan (1991) among many others). See the recent note of

Machado & Santos Silva (2006) for a study on parameter identification from averaged

data. A nonparametric approach to density estimation from aggregated observations is

given by Linton & Whang (2002), where the authors consider a more complicated model

with an additional independent error component for each data group. Pointwise asymp-

totic normality of the authors’ estimator is studied at certain convergence rates. Another

contribution is given by Schick & Wefelmeyer (2004) where estimation of the density of

the sums of independent random variables is studied; hence, somehow, our consideration

can be seen as the corresponding inverse problem. Belomestny (2003) studies a procedure

for estimating the density of a component of a moving average process (MA(1)) where the
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other component is scaled with some factor ϑ with |ϑ| < 1. The problem of estimating

the density of independent components of a Poisson sum is considered in van Es et al.

(2005).

2. Minimax rates

We focus on those fX which are symmetric around zero and, hence, have a real-valued

Fourier transform f ftX (t). As the density fY of each observation Yi turns out to be the

m-fold self-convolution of fX , it is convenient to apply a Fourier approach. With respect

to the characteristic functions f ftX and f ftY , we have

f ftY (t) =
[
f ftX (t)

]m
.

We assume that fX(x) = fX(−x) for almost all x; and, in addition,

f ftX (t) 6= 0 , ∀t . (2)

The necessity of a condition as (2) to ensure identifiability of fX is shown in the following:

We define the density

f0(x) =
(
1− cos(x)

)
/(πx2) , (3)

having the triangle-shaped Fourier transform f ft0 (t) = 1 − |t| on t ∈ [−1, 1]. Therefore,

the densities f±(x) = f0(x)± (1/2)f0(x) cos(2x) possess the Fourier transforms

f ft± (t) = f ft0 (t)± 1

4

[
f ft0 (t+ 2) + f ft0 (t− 2)

]
,

hence we have
[
f ft+ (t)

]2
=
[
f ft− (t)

]2
for all t. This proves that fX = f+ cannot be uniquely

reconstructed from the observation density fY = f+ ∗f+ in this example; where ∗ denotes

convolution.

The empirical Fourier transform is denoted by f̂ ftY (t) = 1
n

∑n
k=1 exp(itYk). We define

the estimator of fX by Fourier inversion,

f̂X(x) =
1

2π

∫
exp(−itx)Kft(th)

∣∣f̂ ftY (t)
∣∣1/mdt , (4)
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where K denotes a square-integrable kernel function with Kft(0) = 1 and Kft is com-

pactly supported; parameter h denotes the bandwidth.

In order to establish rates of convergence, we propose common smoothness conditions

on fX by assuming a uniform upper bound on the Sobolev norm of fX . We introduce the

class FβC of even densities which satisfy (2) and

∫
|f ftX (t)|2(1 + t2)βdt ≤ C ,

where β describes the smoothness degree. Further, we consider so-called supersmooth

densities whose Fourier transforms satisfy
∫
|f ftX (t)|2 exp

(
C0|t|γ

)
dt ≤ C1 .

Those densities are collected into the class GC0C1γ . We give the following theorem.

Theorem 1 Let ‖ · ‖ denote the L2(R)-norm. As the kernel function K, we choose the

sinc kernel with Kft(t) = χ[−1,1](t), i.e. the indicator function of the interval [−1, 1].

(a) Take estimator fX as in (4). Then, we have

sup
fX∈FβC

E‖f̂X − fX‖2 = O
(
n−2β/

[
m(2β+1)

])
,

sup
fX∈GC0C1γ

E‖f̂X − fX‖2 = O
(
(lnn)1/γn−1/m

)
,

when selecting h = cnn
−1/
[
m(2β+1)

]
where cn > 0 is bounded away from both ∞ and 0;

and h = d(lnn)−1/γ with a constant d ≤ C
1/γ
0 , respectively.

(b) Assume an arbitrary estimator f̂ of fX based on the data Y1, . . . , Yn. Then, for

γ ∈ (0, 1) and β > 1/2, C,C1 sufficiently large, there is a constant c > 0 so that

sup
fX∈FβC

E‖f̂ − fX‖2 ≥ c · n−2β/
[
m(2β+1)

]
,

sup
fX∈GC0C1γ

E‖f̂ − fX‖2 ≥ c · (lnn)1/γn−1/m .

Hence, we have established rate optimality of our estimation procedure. We notice de-

terioration of the convergence rate compared to density estimation based on direct data
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where the well-known rates n−2β/(2β+1) and (lnn)1/γn−1, resp., occur; they are included

into our framework for m = 1. The rates become worse when m increases. We mention

that Theorem 1(a) can be extended to more general kernels K as long as Kft(t) = 1 on

an open interval around t = 0 and Kft is compactly supported.

3. Adaptive estimation

The choice of the bandwidth h as given in Theorem 1 leads to optimal rates; however

it requires knowledge of the parameters β, γ, C0. Therefore our goal is to find a fully

data-driven bandwidth selector. In classical density estimation, cross-validation (CV) is

a famous procedure for adaptive bandwidth choice. As mentioned in Linton & Whang

(2002) there is no straight-forward extension of the underlying theory to aggregated data

problems as the estimators are non-linear.

Nevertheless, we can apply CV to estimate the observation density fY based on the

direct data Y1, . . . , Yn. The outcome bandwidth is denoted by ĥC , see Hall & Marron

(1987) for the methodology and theory for that problem. In this section we restrict our

consideration to densities whose Fourier transforms satisfy

C2|t|−β−1/2 ≤ |f ftX (t)| ≤ C3|t|−β−1/2 , ∀|t| ≥ T (5)

for some T; and |f ftX (t)| ≥ |f ftX (T )| for all |t| ≤ T . This smoothness assumption is closely

related to fX ∈ FβC with appropriate constants; indeed, the optimal convergence rates are

the same under the corresponding constraints. Therefore, the mean integrated squared

error for the estimation of fY is minimised by h = h0 ∼ n−1/(2βm+m). Surprisingly, this

selection rule also minimises the MISE in our aggregated data problem when estimating

fX according to Theorem 1. That inspires us to employ ĥ = ĥC as the bandwidth selector.

The resulting estimator is denoted by f̂X,ĥ. With respect to the convergence rates, we

give a weak individual version. We write const. for a generic positive constant.

Proposition 1 Assume fX satisfies (5) where β > 7/2; and f ′X , f ′′X are integrable. We

apply the sinc kernel in f̂X,ĥ. Then, for all c > 0, we have

lim sup
n→∞

P
(
n2β/

[
m(2β+1)

]
‖f̂X,ĥ − fX‖2 > c

)
≤ const. · c−1
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Therefore, the adaptive estimator f̂X,ĥ keeps the optimal rates from Theorem 1 under

certain circumstances. The case of supersmooth fX is more difficult to address.

4. Skew densities

When fX is no longer assumed to be symmetric around zero, its Fourier transform f ftX

is not real-valued. Therefore the inversion procedure becomes more difficult as we have

m different complex roots of f ftY (t) and its empirical version f̂ ftY (t). Let R(t), ϕ(t) denote

the absolute value and the angle of f ftY (t) in the polar representation of complex numbers.

We face the problem that the angle is not uniquely defined. Our intention is to specify

ϕ(t) so that those functions are continuous for all t and ϕ(0) = 0.

We introduce the intervals Ij = ((j/2− 1)π, (j/2 + 1)π] for integer j. Assuming that

R(t) 6= 0, for all t, the angle ϕ(t) is uniquely determined by f ftY (t) if its image is restricted

to Ij for any j. Therefore, we denote the angle within Ij by ϕj(t). Setting ϕ(t) = ϕj(t)(t),

we start with t0 = 0, j(t0) = 0. Then, given tk, we denote by tk+1 the smallest t > tk

where ϕj(tk)(t) crosses either (j(tk)/2 − 1/2)π or (j(tk)/2 + 1/2)π; in the first case, we

put j(tk+1) = j(tk) − 1; in the latter case, we define j(tk+1) = j(tk) + 1; otherwise, put

tk+1 = ∞. It follows from there that ϕ(tk) = j(tk)π/2 holds for any k. The sequence

(tk)k>0 tends to infinity as, otherwise, the continuity of f ftY (t) is violated at the limit of

(tk)k>0. Then we define ϕ(t) = ϕj(τ(t))(t) with τ(t) = max{tk : tk ≤ t} for t ≥ 0; for

t < 0 we set ϕ(t) = −ϕ(−t). Then ϕ is a continuous function on the whole real line with

ϕ(0) = 0.

When determining an empirical version ϕ̂(t) for ϕ(t), we must consider that f̂ ftY (t) may

have some isolated zeros. Therefore we introduce a parameter ρn ∈ (0, 1). We realise that

the set N̂ = {t : |f̂ ftY (t)| ≤ ρn} may be written as the disjoint union of countably many

intervals, [τj, τj+1] say. We introduce a function f̃ ftY (t) which is equal to f̂ ftY (t) outside the

set N̂ ; while on any interval [τj, τj+1] we put f̃ ftY equal to the shortest connection between(
τj, f̂

ft
Y (τj)

)
and

(
τj+1, f̂

ft
Y (τj+1)

)
under the constraint |f̃ ftY (t)| = ρn for all t ∈ [τj, τj+1].

Then, define R̂(t) = |f̃ ftY (t)| and ϕ̂(t) by applying the procedure for deriving ϕ(t) to

f̃ ftY (t) instead of f ftY (t).
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Further, we define the empirical version of f ftX (t) by

f̂ ftX (t) = R̂1/m(t) exp
(
itϕ̂(t)/m

)
, (6)

and, accordingly,

f̂X(x) =
1

2π

∫
exp(−itx)Kft(th)f̂ ftX (t) dt , (7)

while stipulating that Kft is supported on [−1, 1].

In order to give convergence rates we need more restrictive conditions compared to

symmetric densities, namely
∫
|x|2fX(x)dx ≤ C7 and (5). As an analogue for (5) for

supersmooth densities we use

C5|t|(γ−1)/2 exp(−C4|t|γ) ≤ |f ftX (t)| ≤ C6|t|(γ−1)/2 exp(−C4|t|γ) , ∀|t| ≥ T . (8)

Densities satisfying those conditions are collected into the class F ′βC7C2C3
, which corre-

sponds to FβC . When assuming (8) instead of (5), we call the density class G ′γC7C4C5C6
,

as the analogue of GC0C1γ.

Proposition 2 Take estimator f̂X as defined in (7) and K as in Theorem 1. Choose ρn =

exp(−n). Under the constraint fX ∈ F ′βC7C2C3
, select h = hn = [Ch(lnn)/n]1/[m(2β+1)] with

a constant Ch > (576m)/C2m
2 . Then, for β > 1/2, we have

sup
fX∈F ′βC7C2C3

E‖f̂X − fX‖2 = O
(

(lnn/n)2β/[m(2β+1)]
)
.

If fX ∈ G ′γC7C4C5C6
and max{1, γ} < m, select h = hn =

{
2C4m/

[
1−ν(ln lnn)/ lnn

]}1/γ

·
(lnn)−1/γ with ν ∈ (1−m(γ − 1)/γ,m/γ] to obtain

sup
fX∈G′γC7C4C5C6

E‖f̂X − fX‖2 = O
(

(lnn)1/γn−1/m
)
.

Therefore, the rates are kept in the case of fX ∈ F ′βC7C2C3
from the symmetric con-

straint fX ∈ FβC (see Theorem 1) up to a logarithmic factor; while, for fX ∈ G ′γC7C4C5C6
,

they are exactly the same as for symmetric fX ∈ GC0C1γ in Theorem 1.

6
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5. Proofs

Proof of Theorem 1: (a) By Parseval’s identity and Fubini’s theorem, we obtain, for

fX ∈ FβC ,

E‖f̂X − fX‖2 =

∫
|Kft(t/h)|2E

∣∣|f̂ ftY (t)|1/m − |f ftX (t)|
∣∣2dt + O(h2β) . (9)

In the case of fX ∈ GC0C1γ, the bias term in (9) changes from O(h2β) to O
(

exp(−C0h
−γ)
)
.

For the variance term we use the inequalities |x1/m− y1/m|m ≤ |x− y| for x, y > 0 and

even m as well as |x1/m − y1/m|m ≤ 2m|x− y| for all x, y in the case of odd m; combined

with Jensen’s inequality, we obtain

E
∣∣|f̂ ftY (t)|1/m − |f ftX (t)|

∣∣2 ≤ const. ·
(
E
∣∣f̂ ftY (t)− f ftY (t)

∣∣2
)1/m

= O
(
n−1/m

)
,

independently of t. Therefore, the mean integrated squared error is bounded above by

O
(
h−1n−1/m, h2β

)
for fX ∈ FβC and O

(
h−1n−1/m, exp(−C0h

−γ)
)

for fX ∈ GC0C1γ. Choos-

ing h as stated in the theorem leads to the given rates.

(b) First we consider fX ∈ FβC . Take f0 as in (3). Furthermore, we introduce the

supersmooth Cauchy density f1(x) = π−1(1 + x2)−1 with f ft1 (t) = exp(−|t|). From

there, we construct the following subclass of densities

fn,θ(x) =
1

2

{
f1(x) + f0(x)

}
+ const. ·

∑

2kn≥j≥kn
θjj
−β−(1/2) cos(2jx)f0(x) , (10)

where kn denotes a positive integer still to be determined and const. is sufficiently small;

and all θj ∈ {0, 1} are i.i.d. random variables with P (θj = 0) = 1/2. The corresponding

Fourier transforms are given by

f ftn,θ(t) =
1

2

{
f ft1 (t) + f ft0 (t)

}
+ const. ·

∑

2kn≥j≥kn
θjj
−β−(1/2)

{
f ft0 (t− 2j) + f ft0 (t+ 2j)

}
.

By that we may verify that all f ftn,θ are non-vanishing and fn,θ ∈ FβC.

Now assume an arbitrary estimator f̂(x) = f̂(x;Y1, . . . , Yn). In the sequel, we write

θj,b =
(
θkn , . . . , θj−1, b, θj+1, . . . , θ2kn

)
where b ∈ {0, 1} and fY,θj,b = f ∗,nn,θj,b, i.e. the n-fold

self-convolution of fn,θj,b, which, therefore, denotes the density of each observation Yj. We

7
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consider its mean integrated squared error, using Parseval’s identity and Fubini’s theorem,

sup
fx∈FβC

E‖f̂ − fX‖2 ≥ const.
∑

2kn≥j≥kn
EθEfn,θj

∫ 2j+1

2j−1

∣∣f̂ ft(t)− f ftn,θ(t)
∣∣2dt

≥ const.
∑

2kn≥j≥kn
Eθ

∫ 2j+1

2j−1

∣∣f ftn,θj,0(t)− f ftn,θj,1(t)
∣∣2dt

·
∫
· · ·
∫

min{fY,θj,0(y1) · · · fY,θj,0(yn) , fY,θj,1(y1) · · · fY,θj,1(yn)
}
dy1 · · ·dyn

≥ const.
∑

2kn≥j≥kn
j−2β−1 ≥ const.k−2β

n , (11)

if the χ2-distance between fY,θj,0 and fY,θj,1 satisfies

χ2(fY,θj,0, fY,θj,1) =

∫ ∣∣fY,θj,0(x)− fY,θj,1(x)
∣∣2[fY,θj,0(x)

]−1
dx = O(1/n) (12)

holds for all kn ≤ j ≤ 2kn. There we have used a result in Fan (1993) which has

been developed for the classical deconvolution problem. That method was influenced by

Donoho & Liu (1991a,b). From the definition of the density subclass, we derive fY,θj,0(x) ≥
2−mf ∗,m1 (x). That implies

fY,θj,0(x) ≥ const.(1 + x2)−1 ,

and, from there, we see that (12) may be represented equivalently in the Fourier domain

by ∫ 2j+1

2j−1

[∣∣gj(t)
∣∣2 +

∣∣g′j(t)
∣∣2]dt = O(1/n) , (13)

where

|gj(t)| =
∣∣∣
(
fY,θj,1 − fY,θj,0

)ft
(t)
∣∣∣

=
∣∣∣
(1

2
f ft1 (t) + j−β−1/2f ft0 (t+ 2j)

)m
−
(1

2
f ft1 (t)

)m∣∣∣

≤ const. · jm(−β−1/2) ,

while j ≥ kn and |t| ≥ 2j − 1. We can derive the same bound for |g′j(t)|. Then, (13) and,

hence, (11) follow when selecting kn = bn1/[m(2β+1)]c.
In the case fX ∈ GC0C1γ , we replace j−β−(1/2) by n−1/(2m) and set kn = b(1/4) ·[

lnn/(mC ′)
]1/γc with some constant C ′ > C0 in (10). Then the proof follows analo-

gously. �
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Proof of Proposition 1: We consider

P
(
n2β/

[
m(2β+1)

]
· ‖f̂X,ĥ − fX‖2 > c

)

≤ P
(
n2β/

[
m(2β+1)

] ∫

|t|≤(dh0)−1

∣∣f̂ ft
X,ĥ

(t)− f ftX (t)
∣∣2dt > c/2

)

+ P (ĥ < dh0) + P
(
n2β/

[
m(2β+1)

]
ĥ2β > c/2

)
(14)

for some d ∈ (0, 1). The first addend is seen to be bounded above by const.·c−1 when using

Markov’s inequality. The second and the third term are bounded above by P
(
|ĥ− h0| ≥

const. · h0

)
.

Both n3/10(ĥ0 − h0) and n3/10(ĥ − ĥ0) are asymptotically normal distributed, due to

Theorem 2.1 in Hall & Marron (1987); where ĥ0 is the bandwidth which minimises the

integrated squared error; the conditions are satisfied for β > 7/2, f ′X , f
′′
X integrable and

an appropriate kernel; also note that the kernel used for deriving ĥC need not coincide

with K in estimator f̂X,ĥ. It follows from there that the second and the third term in (14)

converge to zero as n→∞ so that the proposition follows. �

Proof of Proposition 2: Note that, for |t| ≤ 1/h, we have

|f̂ ftY (t)− f ftY (t)| ≥ |f̃ ftY (t)− f ftY (t)| − 2ρn

and hence |f̂ ftY (t)− f ftY (t)| ≥ (1/2)|f̃ ftY (t)− f ftY (t)|.
With f̂ ftX as in (6), we derive

E
∣∣f̂ ftX (t)− f ftX (t)

∣∣2 = E
∣∣R̂1/m(t) exp

[
iϕ̂(t)/m

]
−R1/m(t) exp

[
iϕ(t)/m

]∣∣2

≤ E
∣∣R̂1/m(t)− R1/m(t)

∣∣2 + ER̂1/m(t)R1/m(t)
[
1− cos

(
(ϕ̂(t)− ϕ(t))/m

)]

= O
(
n−1/m

)
+ ER̂1/m(t)R1/m(t)

[
1− cos

(
(ϕ̂(t)− ϕ(t))/m

)]
· χ{|ϕ̂(t)−ϕ(t)|>π}

+ ER̂1/m(t)R1/m(t)
[
1− cos

(
(ϕ̂(t)− ϕ(t))/m

)]
· χ{|ϕ̂(t)−ϕ(t)|≤π} .

Considering the fact that the function
[
1 − cos(·/m)

]
/
[
1 − cos(·)

]
is bounded on the

interval [−π, π], some standard techniques lead to

E
∣∣f̂ ftX (t)− f ftX (t)

∣∣2 = O
(
n−1/m ,

{
R2(t)P (|ϕ̂(t)− ϕ(t)| > π)

}1/m
)
.

9
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Parseval’s identity leads to

E‖f̂X − fX‖2 = O
(
h−1n−1/m , h2β , sup

|t|≤1/h

{
P (|ϕ̂(t)− ϕ(t)| > π)

}1/m)
, (15)

for fX ∈ F ′βC7C2C3
; the latter term needs more careful consideration for any t ∈ [−1/h, 1/h].

Consider that |ϕ̂(t) − ϕ(t)| > π implies the existence of at least one s ∈ [0, t] so that

|ϕ̂(s)− ϕ(s)| = π/2 and hence
∣∣f̂ ftY (s)− f ftY (s)

∣∣ ≥ (1/2) · |f ftY (s)|. Applying the sequence

(sj)j, j = 1, . . . ,M − 1 of equidistant points sj = jt/M where M = Mn, we derive that

P (|ϕ̂(t)− ϕ(t)| > π) ≤ P
(
∃j = 1, . . . ,M − 1 :

∣∣f̂ ftY (sj)− f ftY (sj)
∣∣ ≥ (Cm

2 /6) · hm(β+1/2)
)

+ P
( 1

Mnh

n∑

k=1

|Yk| ≥ const. · hm(β+1/2)
)

+ χ{h−1M−1≥const.·hm(β+1/2)} . (16)

By Hoeffding’s inequality, the first addend in (16) has the upper bound

O(M) · exp
(
− 1

288
C2m

2 hm(2β+1)n
)
.

By Markov’s inequality, the second addend is bounded above by

χ{h−1M−1≥const.·hm(β+1/2)} + O(1/n)

The term above as well as the third addend in (16) are negligible when selecting M =

CMh
−m(β+1/2)−1 with an appropriate constant CM > 0.

In the case fX ∈ G ′γC7C4C5C6
, the proof follows by replacing C2 by C5, h2β by exp(−2C4h

−γ)

in (15) and hm(β+1/2) by exp(−C4mh
−γ) · h−m(γ−1)/2 in the first two lines of (16) and, ac-

cordingly, in the sequel.

Then the specific choice of h as stated in the theorem leads to the desired rates in the

view of (15). �
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