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We derive the optimal convergence rates for density estimation based on aggregated observations under common smoothness conditions for symmetric densities.

We study a procedure for data-driven bandwidth selection and give an extension to skew densities.

A c c e p t e d m a n u s c r i p t 1. Introduction

The statistical problem of estimating a density function when only aggregated data are observed has received considerable attention, where research is mainly motivated by real applications in the field of econometrics.

In the mathematical model, we define the i.i.d. random variables X ij , integer i, j, having the density function f X , which we aim to estimate. The only empirical access is

given by the data Y 1 , . . . , Y n where

Y i = m j=1 X ij , (1) 
where m is the fixed size of the data groups. Note that our problem may also be seen as a missing data problem in time series analysis. Consider the moving average process (Z k ) k with Z k = m+k-1 j=k X j with i.i.d. X 1 , X 2 , . . . having the density f X . Then, assume that only the data Z 1+mk are observed for integer k ≥ 0.

The current note intends to advance the understanding of this problem by deriving the optimal rates of convergence under common smoothness conditions on f X with respect to the mean integrated squared error (MISE). In Section 2, we study the optimal rates for symmetric densities. In Section 3, we describe a procedure for data-driven bandwidth selection; in Section 4 we give an extension to skew densities. The proofs are deferred to Section 5.

To give a survey on related problems of indirect density estimation, we mention problems of reconstructing a density from measurement error; that topic has become famous as density deconvolution [START_REF] Stefanski | Deconvoluting kernel density estimators[END_REF], [START_REF] Carroll | Optimal rates of convergence for deconvolving a density[END_REF], [START_REF] Zhang | Fourier methods for estimating mixing densities and distributions[END_REF], [START_REF] Horowitz | Semiparametric estimation of regression models for panel data[END_REF], [START_REF] Fan | On the optimal rates of convergence for nonparametric deconvolution problems[END_REF] among many others). See the recent note of [START_REF] Machado | A note on identification with averaged data[END_REF] for a study on parameter identification from averaged data. A nonparametric approach to density estimation from aggregated observations is given by [START_REF] Linton | Nonparametric estimation with aggregated data[END_REF], where the authors consider a more complicated model with an additional independent error component for each data group. Pointwise asymptotic normality of the authors' estimator is studied at certain convergence rates. Another contribution is given by [START_REF] Schick | Root n consistent density estimation for sums of independent random variables[END_REF] where estimation of the density of the sums of independent random variables is studied; hence, somehow, our consideration can be seen as the corresponding inverse problem. [START_REF] Belomestny | Rates of convergence for constrained deconvolution problem[END_REF] (2005).

Minimax rates

We focus on those f X which are symmetric around zero and, hence, have a real-valued Fourier transform f f t X (t). As the density f Y of each observation Y i turns out to be the m-fold self-convolution of f X , it is convenient to apply a Fourier approach. With respect to the characteristic functions f f t X and f f t Y , we have

f f t Y (t) = f f t X (t) m .
We assume that f X (x) = f X (-x) for almost all x; and, in addition,

f f t X (t) = 0 , ∀t . (2) 
The necessity of a condition as (2) to ensure identifiability of f X is shown in the following:

We define the density

f 0 (x) = 1 -cos(x) /(πx 2 ) , (3) 
having the triangle-shaped Fourier transform f f t 0 (t) = 1 -|t| on t ∈ [-1, 1]. Therefore, the densities f ± (x) = f 0 (x) ± (1/2)f 0 (x) cos(2x) possess the Fourier transforms

f f t ± (t) = f f t 0 (t) ± 1 4 f f t 0 (t + 2) + f f t 0 (t -2) , hence we have f f t + (t) 2 = f f t -(t)
2 for all t. This proves that f X = f + cannot be uniquely reconstructed from the observation density f Y = f + * f + in this example; where * denotes convolution.

The empirical Fourier transform is denoted by f f t Y (t) = 1 n n k=1 exp(itY k ). We define the estimator of f X by Fourier inversion,

fX (x) = 1 2π exp(-itx)K f t (th) f f t Y (t) 1/m dt , (4) 
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where K denotes a square-integrable kernel function with K f t (0) = 1 and K f t is compactly supported; parameter h denotes the bandwidth.

In order to establish rates of convergence, we propose common smoothness conditions on f X by assuming a uniform upper bound on the Sobolev norm of f X . We introduce the class F βC of even densities which satisfy (2) and

|f f t X (t)| 2 (1 + t 2 ) β dt ≤ C ,
where β describes the smoothness degree. Further, we consider so-called supersmooth densities whose Fourier transforms satisfy

|f f t X (t)| 2 exp C 0 |t| γ dt ≤ C 1 .
Those densities are collected into the class G C 0 C 1 γ . We give the following theorem.

Theorem 1 Let • denote the L 2 (R)-norm. As the kernel function K, we choose the sinc kernel with

K f t (t) = χ [-1,1] (t), i.e. the indicator function of the interval [-1, 1].
(a) Take estimator f X as in (4). Then, we have 2β+1) where c n > 0 is bounded away from both ∞ and 0;

sup f X ∈F βC E fX -f X 2 = O n -2β/ m(2β+1) , sup f X ∈G C 0 C 1 γ E fX -f X 2 = O (ln n) 1/γ n -1/m , when selecting h = c n n -1/ m(
and h = d(ln n) -1/γ with a constant d ≤ C 1/γ 0 , respectively. (b) Assume an arbitrary estimator f of f X based on the data Y 1 , . . . , Y n . Then, for γ ∈ (0, 1) and β > 1/2, C, C 1 sufficiently large, there is a constant c > 0 so that sup f X ∈F βC E f -f X 2 ≥ c • n -2β/ m(2β+1) , sup f X ∈G C 0 C 1 γ E f -f X 2 ≥ c • (ln n) 1/γ n -1/m .
Hence, we have established rate optimality of our estimation procedure. We notice deterioration of the convergence rate compared to density estimation based on direct data
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where the well-known rates n -2β/(2β+1) and (ln n) 1/γ n -1 , resp., occur; they are included into our framework for m = 1. The rates become worse when m increases. We mention that Theorem 1(a) can be extended to more general kernels K as long as

K f t (t) = 1 on
an open interval around t = 0 and K f t is compactly supported.

Adaptive estimation

The choice of the bandwidth h as given in Theorem 1 leads to optimal rates; however it requires knowledge of the parameters β, γ, C 0 . Therefore our goal is to find a fully data-driven bandwidth selector. In classical density estimation, cross-validation (CV) is a famous procedure for adaptive bandwidth choice. As mentioned in [START_REF] Linton | Nonparametric estimation with aggregated data[END_REF] there is no straight-forward extension of the underlying theory to aggregated data problems as the estimators are non-linear.

Nevertheless, we can apply CV to estimate the observation density f Y based on the direct data Y 1 , . . . , Y n . The outcome bandwidth is denoted by ĥC , see [START_REF] Hall | Extent to which least-squares cross-validation minimises integrated square error in nonparametric density estimation[END_REF] for the methodology and theory for that problem. In this section we restrict our consideration to densities whose Fourier transforms satisfy

C 2 |t| -β-1/2 ≤ |f f t X (t)| ≤ C 3 |t| -β-1/2 , ∀|t| ≥ T (5)
for some T; and |f f t X (t)| ≥ |f f t X (T )| for all |t| ≤ T . This smoothness assumption is closely related to f X ∈ F βC with appropriate constants; indeed, the optimal convergence rates are the same under the corresponding constraints. Therefore, the mean integrated squared error for the estimation of f Y is minimised by h = h 0 ∼ n -1/(2βm+m) . Surprisingly, this selection rule also minimises the MISE in our aggregated data problem when estimating f X according to Theorem 1. That inspires us to employ ĥ = ĥC as the bandwidth selector.

The resulting estimator is denoted by fX, ĥ. With respect to the convergence rates, we give a weak individual version. We write const. for a generic positive constant.

Proposition 1 Assume f X satisfies (5) where β > 7/2; and f X , f X are integrable. We apply the sinc kernel in fX, ĥ. Then, for all c > 0, we have

lim sup n→∞ P n 2β/ m(2β+1) fX, ĥ -f X 2 > c ≤ const. • c -1
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Therefore, the adaptive estimator fX, ĥ keeps the optimal rates from Theorem 1 under certain circumstances. The case of supersmooth f X is more difficult to address.

Skew densities

When f X is no longer assumed to be symmetric around zero, its Fourier transform f f t X is not real-valued. Therefore the inversion procedure becomes more difficult as we have

m different complex roots of f f t Y (t)
and its empirical version f f t Y (t). Let R(t), ϕ(t) denote the absolute value and the angle of f f t Y (t) in the polar representation of complex numbers. We face the problem that the angle is not uniquely defined. Our intention is to specify ϕ(t) so that those functions are continuous for all t and ϕ(0) = 0.

We introduce the intervals I j = ((j/2 -1)π, (j/2 + 1)π] for integer j. Assuming that R(t) = 0, for all t, the angle ϕ(t) is uniquely determined by f f t Y (t) if its image is restricted to I j for any j. Therefore, we denote the angle within I j by ϕ j (t). Setting ϕ(t) = ϕ j(t) (t), we start with t 0 = 0, j(t 0 ) = 0. Then, given t k , we denote by t k+1 the smallest t > t k where ϕ j(t k ) (t) crosses either (j(t k )/2 -1/2)π or (j(t k )/2 + 1/2)π; in the first case, we put j(t k+1 ) = j(t k ) -1; in the latter case, we define j(t k+1 ) = j(t k ) + 1; otherwise, put t k+1 = ∞. It follows from there that ϕ(t k ) = j(t k )π/2 holds for any k. The sequence (t k ) k>0 tends to infinity as, otherwise, the continuity of f f t Y (t) is violated at the limit of (t k ) k>0 . Then we define ϕ(t) = ϕ j(τ (t)) (t) with τ (t) = max{t k : t k ≤ t} for t ≥ 0; for t < 0 we set ϕ(t) = -ϕ(-t). Then ϕ is a continuous function on the whole real line with ϕ(0) = 0.

When determining an empirical version φ(t) for ϕ(t), we must consider that f f t Y (t) may have some isolated zeros. Therefore we introduce a parameter ρ n ∈ (0, 1). We realise that the set N = {t : | f f t Y (t)| ≤ ρ n } may be written as the disjoint union of countably many intervals, [τ j , τ j+1 ] say. We introduce a function f f t Y (t) which is equal to f f t Y (t) outside the set N ; while on any interval [τ j , τ j+1 ] we put f f t Y equal to the shortest connection between 

τ j , f f t Y (τ j ) and τ j+1 , f f t Y (τ j+1 ) under the constraint | f f t Y (t)| = ρ n for all t ∈ [τ j , τ j+1 ]. Then, define R(t) = | f f t Y (t
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Further, we define the empirical version of f f t X (t) by

f f t X (t) = R1/m (t) exp it φ(t)/m , (6) 
and, accordingly,

fX (x) = 1 2π exp(-itx)K f t (th) f f t X (t) dt , (7) 
while stipulating that

K f t is supported on [-1, 1].
In order to give convergence rates we need more restrictive conditions compared to symmetric densities, namely |x| 2 f X (x)dx ≤ C 7 and (5). As an analogue for (5) for supersmooth densities we use

C 5 |t| (γ-1)/2 exp(-C 4 |t| γ ) ≤ |f f t X (t)| ≤ C 6 |t| (γ-1)/2 exp(-C 4 |t| γ ) , ∀|t| ≥ T . (8) 
Densities satisfying those conditions are collected into the class F βC 7 C 2 C 3 , which corresponds to F βC . When assuming (8) instead of ( 5), we call the density class

G γC 7 C 4 C 5 C 6 , as the analogue of G C 0 C 1 γ .
Proposition 2 Take estimator fX as defined in ( 7) and K as in Theorem 1. Choose

ρ n = exp(-n). Under the constraint f X ∈ F βC 7 C 2 C 3 , select h = h n = [C h (ln n)/n] 1/[m(2β+1)] with a constant C h > (576m)/C 2m 2 . Then, for β > 1/2, we have sup f X ∈F βC 7 C 2 C 3 E fX -f X 2 = O (ln n/n) 2β/[m(2β+1)] . If f X ∈ G γC 7 C 4 C 5 C 6 and max{1, γ} < m, select h = h n = 2C 4 m/ 1-ν(ln ln n)/ ln n 1/γ • (ln n) -1/γ with ν ∈ (1 -m(γ -1)/γ, m/γ] to obtain sup f X ∈G γC 7 C 4 C 5 C 6 E fX -f X 2 = O (ln n) 1/γ n -1/m .
Therefore, the rates are kept in the case of f X ∈ F βC 7 C 2 C 3 from the symmetric constraint f X ∈ F βC (see Theorem 1) up to a logarithmic factor; while, for f X ∈ G γC 7 C 4 C 5 C 6 , they are exactly the same as for symmetric f X ∈ G C 0 C 1 γ in Theorem 1.
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Proofs

Proof of Theorem 1: (a) By Parseval's identity and Fubini's theorem, we obtain, for

f X ∈ F βC , E fX -f X 2 = |K f t (t/h)| 2 E | f f t Y (t)| 1/m -|f f t X (t)| 2 dt + O(h 2β ) . (9) 
In the case of

f X ∈ G C 0 C 1 γ , the bias term in (9) changes from O(h 2β ) to O exp(-C 0 h -γ ) .
For the variance term we use the inequalities |x 1/my 1/m | m ≤ |x -y| for x, y > 0 and even m as well as |x 1/my 1/m | m ≤ 2 m |x -y| for all x, y in the case of odd m; combined with Jensen's inequality, we obtain

E | f f t Y (t)| 1/m -|f f t X (t)| 2 ≤ const. • E f f t Y (t) -f f t Y (t) 2 1/m = O n -1/m ,
independently of t. Therefore, the mean integrated squared error is bounded above by

O h -1 n -1/m , h 2β for f X ∈ F βC and O h -1 n -1/m , exp(-C 0 h -γ ) for f X ∈ G C 0 C 1 γ . Choos-
ing h as stated in the theorem leads to the given rates.

(b) First we consider f X ∈ F βC . Take f 0 as in (3). Furthermore, we introduce the supersmooth Cauchy density

f 1 (x) = π -1 (1 + x 2 ) -1 with f f t 1 (t) = exp(-|t|).
From there, we construct the following subclass of densities

f n,θ (x) = 1 2 f 1 (x) + f 0 (x) + const. • 2kn≥j≥kn θ j j -β-(1/2) cos(2jx)f 0 (x) , (10) 
where k n denotes a positive integer still to be determined and const. is sufficiently small; and all θ j ∈ {0, 1} are i.i.d. random variables with P (θ j = 0) = 1/2. The corresponding Fourier transforms are given by

f f t n,θ (t) = 1 2 f f t 1 (t) + f f t 0 (t) + const. • 2kn≥j≥kn θ j j -β-(1/2) f f t 0 (t -2j) + f f t 0 (t + 2j) .
By that we may verify that all f f t n,θ are non-vanishing and f n,θ ∈ F βC . Now assume an arbitrary estimator f (x) = f (x; Y 1 , . . . , Y n ). In the sequel, we write θ j,b = θ kn , . . . , θ j-1 , b, θ j+1 , . . . , θ 2kn where b ∈ {0, 1} and f Y,θ j,b = f * ,n n,θ j,b , i.e. the n-fold self-convolution of f n,θ j,b , which, therefore, denotes the density of each observation Y j . We
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consider its mean integrated squared error, using Parseval's identity and Fubini's theorem, sup

fx∈F βC E f -f X 2 ≥ const. 2kn≥j≥kn E θ E f n,θ j 2j+1 2j-1 f f t (t) -f f t n,θ (t) 2 dt ≥ const. 2kn≥j≥kn E θ 2j+1 2j-1 f f t n,θ j,0 (t) -f f t n,θ j,1 (t) 2 dt • • • • min{f Y,θ j,0 (y 1 ) • • • f Y,θ j,0 (y n ) , f Y,θ j,1 (y 1 ) • • • f Y,θ j,1 (y n ) dy 1 • • • dy n ≥ const. 2kn≥j≥kn j -2β-1 ≥ const.k -2β n , (11) 
if the χ 2 -distance between f Y,θ j,0 and f Y,θ j,1 satisfies

χ 2 (f Y,θ j,0 , f Y,θ j,1 ) = f Y,θ j,0 (x) -f Y,θ j,1 (x) 2 f Y,θ j,0 (x) -1 dx = O(1/n) (12)
holds for all k n ≤ j ≤ 2k n . There we have used a result in [START_REF] Fan | Adaptively local one-dimensional subproblems with application to a deconvolution problem[END_REF] which has been developed for the classical deconvolution problem. That method was influenced by Donoho & Liu (1991a,b). From the definition of the density subclass, we derive f Y,θ j,0 (x) ≥

2 -m f * ,m 1 (x). That implies f Y,θ j,0 (x) ≥ const.(1 + x 2 ) -1 ,
and, from there, we see that (12) may be represented equivalently in the Fourier domain by

2j+1 2j-1 g j (t) 2 + g j (t) 2 dt = O(1/n) , (13) 
where

|g j (t)| = f Y,θ j,1 -f Y,θ j,0 f t (t) = 1 2 f f t 1 (t) + j -β-1/2 f f t 0 (t + 2j) m - 1 2 f f t 1 (t) m ≤ const. • j m(-β-1/2) ,
while j ≥ k n and |t| ≥ 2j -1. We can derive the same bound for |g j (t)|. Then, (13) and, hence, (11) follow when selecting

k n = n 1/[m(2β+1)] .
In the case f X ∈ G C 0 C 1 γ , we replace j -β-(1/2) by n -1/(2m) and set k n = (1/4) • ln n/(mC ) 1/γ with some constant C > C 0 in (10). Then the proof follows analogously.
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Proof of Proposition 1: We consider

P n 2β/ m(2β+1) • fX, ĥ -f X 2 > c ≤ P n 2β/ m(2β+1) |t|≤(dh 0 ) -1 f f t X, ĥ(t) -f f t X (t) 2 dt > c/2 + P ( ĥ < dh 0 ) + P n 2β/ m(2β+1) ĥ2β > c/2 (14) 
for some d ∈ (0, 1). The first addend is seen to be bounded above by const.•c -1 when using

Markov's inequality. The second and the third term are bounded above by P | ĥ -

h 0 | ≥ const. • h 0 .
Both n 3/10 ( ĥ0h 0 ) and n 3/10 ( ĥ -ĥ0 ) are asymptotically normal distributed, due to Theorem 2.1 in [START_REF] Hall | Extent to which least-squares cross-validation minimises integrated square error in nonparametric density estimation[END_REF]; where ĥ0 is the bandwidth which minimises the integrated squared error; the conditions are satisfied for β > 7/2, f X , f X integrable and an appropriate kernel; also note that the kernel used for deriving ĥC need not coincide with K in estimator fX, ĥ. It follows from there that the second and the third term in ( 14) converge to zero as n → ∞ so that the proposition follows.

Proof of Proposition 2: Note that, for |t| ≤ 1/h, we have

| f f t Y (t) -f f t Y (t)| ≥ | f f t Y (t) -f f t Y (t)| -2ρ n and hence | f f t Y (t) -f f t Y (t)| ≥ (1/2)| f f t Y (t) -f f t Y (t)|. With f f t X as in (6), we derive E f f t X (t) -f f t X (t) 2 = E R1/m (t) exp i φ(t)/m -R 1/m (t) exp iϕ(t)/m 2 ≤ E R1/m (t) -R 1/m (t) 2 + E R1/m (t)R 1/m (t) 1 -cos ( φ(t) -ϕ(t))/m = O n -1/m + E R1/m (t)R 1/m (t) 1 -cos ( φ(t) -ϕ(t))/m • χ {| φ(t)-ϕ(t)|>π} + E R1/m (t)R 1/m (t) 1 -cos ( φ(t) -ϕ(t))/m • χ {| φ(t)-ϕ(t)|≤π} .
Considering the fact that the function 1cos(•/m) / 1cos(•) is bounded on the interval [-π, π], some standard techniques lead to The term above as well as the third addend in ( 16) are negligible when selecting M = C M h -m(β+1/2)-1 with an appropriate constant C M > 0.

E f f t X (t) -f f t X (t) 2 = O n -1/m , R 2
In the case f X ∈ G γC 7 C 4 C 5 C 6 , the proof follows by replacing C 2 by C 5 , h 2β by exp(-2C 4 h -γ ) in ( 15) and h m(β+1/2) by exp(-C 4 mh -γ ) • h -m(γ-1)/2 in the first two lines of ( 16) and, accordingly, in the sequel.

Then the specific choice of h as stated in the theorem leads to the desired rates in the view of (15).
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