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Constrained Estimators of Treatment Parameters

in Semiparametric Models

Short Title

Constrained Estimators in Semiparametric Models

Marcin Przystalski,1 Pawe l Krajewski

Biometry Laboratory, Institute of Plant Genetics, Polish Academy of Sciences

Strzeszyńska 34, 60− 479 Poznań, Poland

Abstract

Semiparametric models are generalizations of parametric regression models. We

present a method of estimation of treatment effects in a semiparametric model with

one smoothing term under additional conditions on their linear functions and its

application to hypothesis testing.
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1 Introduction

Semiparametric models are one of the possible generalizations of parametric regression

models. A model with one smooth term can be expressed in the form (Durban et al., 1999)

y = Xβ + f + e, (1)

where y = (y1, . . . , yn)
′
is a vector of observed values, X is an n × p design matrix, with

1, the column vector of 1’ s, included in its column space, β is a p× 1 vector of treatment

effects, f is a smooth term, that is, a function of a covariate z, e is a vector of i.i.d. errors

with expected value 0 and covariance matrix σ2In.

The term f in model (1) is called a smoother. Hastie and Tibshirani (1989) described

several smoothers, e.g. cubic smoothing splines and locally weighted running line smoother

(loess).

Durban et al. (1999) proposed a test for linear functions of treatment effects in semi-

parametric models with any number of smoothing terms based on approximate standard

errors. To avoid using such approximations the following problem has to be considered:

how to estimate the treatment effects in semiparametric models under some additional con-

ditions on their linear functions, in particular under conditions forming a set of contrasts

of treatment effects, and secondly how to apply these estimates in hypothesis testing.

The purpose of this paper is to give the answer to these two questions. In section 2 we

introduce basic notions related to estimation in semiparametric models. In section 3 we

discuss construction of the estimates under additional conditions. In section 4 we describe

a testing procedure. Section 5 contains an example based on real data. A few concluding

remarks are given in the final section.
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2 Estimation in semiparametric models

Usually, semiparametric models are fitted by the backfitting algorithm. For model (1) the

estimates of β and f can be written explicitly as

β̂ = Ay, (2)

f̂ = S
(
y −Xβ̂

)
= S (I−XA) y,

where A =
{

X
′
(I− S) X

}−1

X
′
(I− S) and S is a smoother matrix which depends on

smoothing parameter δ, provided that X
′
(I− S) X is invertible. In this paper we do not

consider the problem of choosing the smoothing parameter. Some methods of doing this

may be found in Durban et al. (2003), Eubank et al. (1998), and Schimek (2000).

When, instead of the backfitting algorithm, we consider a penalized least squares cri-

terion

‖y −Xβ − f‖2 + f ′ (S−1 − I
)
f , (3)

we derive the same estimates as (2) (see Buja et al., 1989, page 500). However this criterion

can be used only for smoothers with a symmetric smoother matrix S.

If we consider approach proposed by Speckman (1988), which minimizes

‖y −Xβ − S (y −Xβ)‖2 , (4)

where S is an arbitrary smoother matrix, we obtain a solution different from (2), namely

β̃ = Ay, (5)

f̃ = S
(
y −Xβ̃

)
,

where A =
{

X
′
(I− S)

′
(I− S) X

}−1

X
′
(I− S)

′
(I− S). The Speckman approach was

considered by Buja et al. (1989), Eubank et al. (1998), Schimek (2000).
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For both discussed cases, the variance of the estimator of β is σ2AA
′
. If H = S +

(I− S) XA is the ”hat” matrix for (1), then ŷ = Hy = Xβ̂ + f̂ and, following Durban et

al. (1999), σ2 can be estimated as σ̂2 = 1
n−trH

∑n
i=1 (yi − ŷi)

2 .

3 Constrained estimators in semiparametric models

Let us assume that we have an additional condition for the vector of treatment parameters

of the form

Rβ = r. (6)

We would like to find estimate b of β in model (1) such that condition (6) is satisfied. For

this reason we consider two cases: when the smoother matrix S is symmetric and a second

case when S is arbitrary. The following theorem gives the solution of this problem for the

first case.

Theorem 3.1 If the smoother matrix S is symmetric then the estimate of β in model (1)

obtained by using the penalized least squares criterion (3), satisfying condition (6), is equal

to

b = β̂ + D−1R
′
{

RD−1R
′
}−1 (

r−Rβ̂
)

and its covariance matrix to Var (b) = σ2CC
′
, where D = X

′
(I− S) X

and C =

(
I−D−1R

′
{

RD−1R
′
}−1

R

)
D−1X

′
(I− S).

Proof: Let us assume that the smoother matrix S is symmetric and we want to find an

estimate of β in model (1) satisfying condition (6) using the criterion (3). For this purpose

we construct the function

F (β, f , λ) = ‖y −Xβ − f‖2 + f
′ (

S−1 − I
)
f − 2λ

′
(Rβ − r) .
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By differentiating function F with respect to β, f and λ we obtain the following system

of vector equations

∂F (β, f , λ)

∂β
= −2X

′
(y −Xβ − f)− 2R

′
λ = 0

∂F (β, f , λ)

∂f
= −2 (y −Xβ − f) + 2

(
S−1 − I

)
f = 0

∂F (β, f , λ)

∂λ
= Rβ − r = 0.

If we get f from the second equation as

f = S (y −Xβ)

and we put it into the first equation, we obtain

X
′
[y −Xβ − S (y −Xβ)] + R

′
λ = 0.

Solving this equation with respect to β we get that

β =
{

X
′
(I− S) X

}−1 (
X

′
(I− S) y −R

′
λ

)
.

Such β we put into the third equation and we have

R

[{
X

′
(I− S) X

}−1 (
X

′
(I− S) y −R

′
λ

)]
= r.

If we put D = X
′
(I− S) X, and notice that

{
X

′
(I− S) X

}−1

X
′
(I− S) y is equal to β̂

in (2), we get the following equality

Rβ̂ −RD−1R
′
λ = r.

Because RD−1R
′
> 0, we may write the optimal λ as

λ̂ =
{

RD−1R
′
}−1 (

Rβ̂ − r
)

.

Finally, the estimate of β may be written as

b = β̂ + D−1R
′
{

RD−1R
′
}−1 (

r−Rβ̂
)

.

2
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Proposition 3.2 If S is an arbitrary smoother matrix then the estimate of β in model (1)

under criterion (4) such that condition (6) is satisfied, is equal to

b = β̃ + Z−1R
′
{

RZ−1R
′
}−1 (

r−Rβ̃
)

and its covariance matrix to Var (b) = σ2BB
′
, where Z = X

′
(I− S)

′
(I− S) X,

and B =

(
I− Z−1R

′
{

RZ−1R
′
}−1

R

)
Z−1X

′
(I− S)

′
(I− S).

Proof: Transforming y and X in model (1), to ỹ = (I− S) y and X̃ = (I− S) X (see

Speckman 1988, Eubank et al. 1998, Schimek 2000), applying RLSE for linear models and

(5) we get the thesis.

4 Hypothesis testing

Let us assume that we tested a hypothesis H0 : β = 0 against H1 : β 6= 0. If we denote

by y′Giy, i = 1, 2, G1 = (I−Q)′ (I−Q) and G2 = (I−H)
′
(I−H), the residual sum

of squares for model under H0 and the non restricted model, respectively, then the test of

null hypothesis against the alternative is based on the variance ratio

F =
(y′G1y − y′G2y) /ν1

y′G2y/δ1

=
y′ (G1 −G2) y/ν1

y′G2y/δ1

. (7)

According to Cleveland and Devlin (1988), this test statistic has an approximate F dis-

tribution with γ1 = ν2
1/ν2 and γ2 = δ2

1/δ2 degrees of freedom, where ν1 = tr (G1 −G2),

ν2 = tr
[
(G1 −G2)

2], δ1 = tr (G2) and δ2 = tr
(
G2

2

)
.

If the general hypothesis H0 : β = 0 is rejected, then we may be interested in testing

hypotheses of the type H0,R : Rβ = 0 against H1,R : Rβ 6= 0, with an appropriate R.

From theorem 3.1 or proposition 3.2 with r = 0 we know how to obtain the estimate

of β under this null hypothesis. Denoting again by y′Giy, i = 1, 2, the residual sum of

squares for the model with restriction and for the model without restriction, and using test

statistic (7), we reject the null hypothesis when F > Fα.
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5 Example

To illustrate the method we use the yield data from the spring barley experiment used

by Durban et al. (2003). The data concern 272 varieties. Among them, first 12 were

established as controls and 260 were tested varieties. The trial was sown in a row and

column design with 2 replicates. In each replicate there were 8 rows and 34 columns. Plot

yields were provided in tonnes per hectare.

We take as a smoother in our semiparametric model (1) the two dimensional loess

smoother across rows and columns. As a smoothing parameter we take δ = 125/544 ≈

0.2298. We compare the thirty-first variety with the controls. We can write the null

hypothesis in the form

H0 : Rβ = 0,

where the i-th row of R has −1 in th i-th position and 1 in the 31st. Using proposition 3.2

with r = 0 and (7) we get the values of the residual sums of squares and the test statistic

as in Table 1. The degrees of freedom are γ1 = 27.94 and γ2 = 543.7

Table 1

Now we compare the thirty-first variety with each control variety separately, i.e. we want

to test hypotheses

H0 : r′
iβ = 0 i = 1, . . . , 12,

H1 : r′
iβ 6= 0,

where r′
i is the i-th row of R. Applying proposition 3.2 with r = 0 and (7) we get that

the difference between thirty-first variety and first, second, third, fifth, and eighth is not

significant. Contrasts between thirty-first variety and fourth, sixth, seventh, ninth, tenth,
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eleventh, twelfth are significant.

Table 2

If we apply the proposition of calculating standard errors of contrasts described by Durban

et al. (1999) to this example and use as the test statistic the ratio

F =

(
r′β̂

)2

̂
Var

(
r′β̂

)
with 1 and 272 degrees of freedom, we get that there are no significant differences between

thirty first variety and first, second, third, fourth, fifth, eighth, tenth. The rest of the

contrasts is significant.

Table 3

If for the same data set we consider the same null hypothesis, but as a smoother we use

the cubic smoothing spline over row number and as δ we take 0.2, then using theorem 3.1

with r = 0 we get that the test statistic has γ1 = 72.48 and γ2 = 500.9 degrees of freedom,

and we can not reject the null hypothesis as shown in Table 4.

Table 4

6 Discussion

When the general hypothesis concerning treatment effects is rejected, usually more than

one treatment comparison is of interest. The proposed method allows us to test a set of

linear functions of treatment effects in a semiparametric model, not just only one function

like in the method based on the approximate standard error. Both methods used in the

example are approximate: ours because we use approximation of the F distribution, and

the second because it uses approximation of standard errors described by Durban et al.

(1999).
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Further research is needed to find the estimates of treatment effects under restriction

using backfitting algorithm. Also, it is interesting to see how the estimates will look like

under additional conditions when we consider more than one smoothing term in the model.
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Table 1: Results of testing simultaneous comparison of variety no. 31 with the controls

using loess smoother.

Model Residual SS Variance ratio P-value

(a) without restriction 19.13 - -

(b) with restriction 22.91 4.260 < .001
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Table 2: Hypothesis testing to investigate the significance of the individual contrasts using

loess smoother.

Contrast Residual SS Degrees of freedom Variance ratio P-value

γ1 γ2

β31 − β1 19.14 4.253 543.7 0.1057 0.9840

β31 − β2 19.20 4.543 543.7 0.9989 0.4135

β31 − β3 19.25 4.434 543.7 1.593 0.1683

β31 − β4 19.33 4.566 543.7 2.695 0.0241

β31 − β5 19.24 4.606 543.7 1.549 0.1783

β31 − β6 19.56 4.662 543.7 5.883 < 0.001

β31 − β7 19.59 4.567 543.7 6.296 < 0.001

β31 − β8 19.13 4.528 543.7 0.0004 1

β31 − β9 20.05 4.407 543.7 12.67 < 0.001

β31 − β10 19.44 4.409 543.7 4.255 < 0.001

β31 − β11 19.51 4.596 543.7 5.190 < 0.001

β31 − β12 19.40 4.600 543.7 3.655 0.0039
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Table 3: Hypothesis testing to investigate the significance of the contrasts using approxi-

mate standard errors.

Contrast r′β̂ Standard error F statistic P-value

β31 − β1 0.0590 0.2803 0.04 0.8334

β31 − β2 0.3107 0.2839 1.20 0.2747

β31 − β3 0.3913 0.2835 1.90 0.1687

β31 − β4 0.4677 0.2839 2.71 0.1006

β31 − β5 0.3959 0.2845 1.94 0.1652

β31 − β6 0.7155 0.2861 6.30 0.0127

β31 − β7 0.7347 0.2843 6.68 0.0103

β31 − β8 −0.0028 0.2839 0.00 0.9922

β31 − β9 0.9954 0.2817 12.49 < 0.001

β31 − β10 −0.5281 0.2830 3.48 0.0631

β31 − β11 0.6566 0.2837 5.36 0.0214

β31 − β12 0.6063 0.2883 4.52 0.0345
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Table 4: Results of testing simultaneous comparison of variety no. 31 with the controls

using cubic smoothing spline. The variance ratio is calculated with (a) as the denominator.

Model Residual SS Variance ratio P-value

(a) without restriction 2.103 - -

(b) with restriction 3.248 0.3843 1
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