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The Drag in a Navier-Stokes Flow with Friction-Driven

Boundary Conditions

Matthieu Bonnivard

Abstract

We consider the drag of an obstacle in a Navier-Stokes flow, associated to the
friction-driven boundary conditions introduced by Bucur, Feireisl and Nečasová [6].
These boundary conditions account for the asymptotic effect of rough boundaries on
the solutions to the Navier-Stokes equations. Consequently, they appear as a natural
control variable in order to reduce the drag using the effect of micro-rugosities. In
this paper, we prove the existence of a drag associated to friction-driven boundary
conditions, we give a uniqueness criterion and, in the particular case of Navier’s friction
law, we prove that the drag is differentiable with respect to the friction coefficient, and
compute its gradient.

1 Introduction

In this paper, we are interested in the definition and the mathematical properties of the drag
of an obstacle in a Navier-Stokes flow, associated to the so-called friction-driven boundary
conditions on the solid-fluid interface [6].

Let N ∈ {2, 3} be the space dimension. We define the obstacle S as a compact subset of
R

N , with a Lipschitz boundary. The friction-driven boundary conditions are determined by
a triplet {µ,A,V}, where:

• µ is a capacitary measure concentrated on ∂S,

• A is a positive symmetric matrix function,

• V = {V(x)}x∈∂S is a collection of vector spaces, where for q.e. x ∈ ∂S, V(x) is a
subspace of the tangent hyperplane to S at x.

Let u∞ ∈ R
N be the velocity of the fluid at infinity. To define the drag of the solid S in

the direction u∞, we (artificially) introduce an open subset Ω ⊂ R
N such that S ⊂ Ω, and

define the fluid domain
F = Ω \ S.
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We note L2
0(F) the subspace of L2(F) consisting of functions with mean value equal to zero.

We consider the following problem: find (u, p) ∈ H1(F ,RN)× L2
0(F) such that

−div(σ(u, p)) + (u · ∇)u = 0 in F , (1)

div u = 0 in F , (2)

u = u∞ on ∂Ω, (3)

u(x) ∈ V(x) for q.e. x ∈ ∂S, (4)

[2νD(u)n+ µAu] · φ = 0 for any φ ∈ V(x), x ∈ ∂S, (5)

where σ(u, p) is the stress tensor defined by

σ(u, p) = 2νD(u)− pId,

ν > 0 being the viscosity of the fluid and D(u) the symmetric part of ∇u, defined by

D(u) =
1

2

(
(∇u) + (∇u)T

)
.

In condition (5), n stands for the normal vector field to ∂S oriented towards the solid.
Condition (4) expresses that the flow is driven by the family of linear spaces {V(x)}x∈∂S .

Above, [2νD(u)n+ µAu] · φ = 0 for φ ∈ V(x) is a formal pointwise relation, which has to
be understood globally on ∂S. Precisely, condition (5) holds provided that

2ν

∫

∂S

D(u)n · φ dx+

∫

∂S

Au · φ dµ = 0

for every φ ∈ H1(F ,RN) such that φ(x) ∈ V(x) for q.e. x ∈ ∂S. In particular, condition (5)
is a friction condition, characterized by the measure µ and the matrix A.

Friction-driven boundary conditions have been obtained by Bucur, Feireisl and Nečasová
in [6], as the general expression of the boundary conditions resulting from the rugosity effect
on perfectly slippery walls. The rugosity effect has been investigated in [11, 10, 8, 2] and in
the more recent papers [7, 6, 5]. It consists in approximating a given domain U by a sequence
of geometric perturbations (Uε)ε>0, and studying the asymptotic behaviour of a family of
vector fields uε ∈ H1(Uε,R

N) in the neighborhood of the boundary of the limit domain
U . In [6], the authors have considered a sequence (uε)ε>0 of weak solutions to the Navier-
Stokes equations with perfect slip boundary conditions in equi-Lipschitz domains (Uε)ε>0.
They have proved the existence of a triplet {µ,A,V}, such that, up to a subsequence, (uε)ε>0

converges weakly to a function u solution to the Navier-Stokes equations with friction-driven
boundary conditions.

This asymptotic process is an indirect proof of the existence of a solution to the Navier-
Stokes equations with friction-driven boundary conditions, for admissible triplets {µ,A,V},
that is, triplets that can be effectively obtained by a sequence of geometric perturbations of
the domain. However, since this result relies on abstract Γ−convergence tools, the class of
admissible triplets cannot be explicitely described, at least for very general perturbations.
The purpose of this paper is to prove that, in fact, problem (1)-(5) admits at least one weak
solution (in a sense that will be precised below), for every ν > 0, u∞ ∈ R

N and every triplet
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{µ,A,V}. This result is stated in Theorem 1. Moreover, we prove that for a suitable choice
of ν, u∞ and V , which does not depend on {µ,A}, every weak solution to System (1)-(5) is
unique (see Theorem 2).

In the second part of the paper, we study the differentiability of the drag function with
respect to the friction part of the boundary condition. Let ν > 0 and u∞ ∈ R. We can
associate to every triplet {µ,A,V} and every weak solution u to System (1)-(5), a drag
T (µ,A,V ,u) defined by

T (µ,A,V ,u) = 2ν

∫

F

|D(u)|2 dx+

∫

∂S

Au · u dµ.

In the case where u is unique, the drag depends only on the choice of the triplet {µ,A,V},
which appears as a natural control variable in drag minimization problems. As a first step
in the study of the regularity of the drag with respect to {µ,A,V}, we consider Navier’s
boundary conditions on ∂S, which are given by the non penetration condition

u · n = 0 on ∂S (6)

and by the friction law
2ν [D(u)n]tan + βu = 0 on ∂S. (7)

Here, n is the normal vector field to ∂S oriented towards the solid and β ∈ L2(∂S) is a
friction coefficient. For any vector field v, defined on ∂S, we note [v]tan its tangential part,
defined by

[v]tan = v − (v · n)n.

Boundary conditions (6)-(7) correspond to the case where V(x) is equal to the tangent
hyperplane to ∂S on q.e. x on the boundary, A ≡ Id and µ is absolutely continuous with
respect to the surface measure on ∂S with a density β ∈ L2(∂S). We prove that the drag is
differentiable with respect to β and compute the gradient of the drag in the L2(∂S) topology
(see Theorem 3 and Corollary 4).

The structure of the paper is the following. In Section 2, we introduce the functional
framework associated with System (1)-(3) and boundary conditions (4)-(5) and (6)-(7), and
state our main results. In Section 3, we recall some abstract material from [9] which we
use in the proof of Theorems 1 and 2. Section 4 is devoted to the proof of Theorem 3 and
Corollary 4.

2 Statement of the Main Results

We note
H1(F) = H1(F ,RN).

To define the weak solutions to System (1)-(5), we introduce the following subsets of H1(F):

K = {v ∈ H1(F) | div v = 0 in L2(F), v(x) ∈ V(x) for q.e. x ∈ ∂S, v = u∞ on ∂Ω}

and

V = {φ ∈ H1(F) | div φ = 0 in L2(F), v(x) ∈ V(x) for q.e. x ∈ ∂S, φ = 0 on ∂Ω}.
3



Let us fix the family of linear spaces V such that V is non empty. In particular, V is a
separable Hilbert space for the H1 scalar product. We note V ′ its dual space for the H1

norm. Let µ be a capacitary measure concentrated on ∂S and A a positive symmetric matrix
function.

We say that u ∈ H1(F) is a weak solution to system (1)-(5) if u ∈ K and for every
φ ∈ V ,

2ν

∫

F

D(u) : D(φ) dx+

∫

F

[(u · ∇)u] · φ dx+

∫

∂S

Au · φ dµ = 0. (8)

The following results hold:

Theorem 1 Given ν > 0 and u∞ ∈ R
N , there exists at least one weak solution to System

(1)-(5). Moreover, there exists a constant M > 0 depending only on ν, u∞, Ω and S, such
that every weak solution u ∈ K satisfies the following estimate:

‖u‖H1(F) 6M. (9)

Theorem 2 There exists a constant C = C(Ω,S) > 0 such that, for all u∞ ∈ R
N , there

exists ν0 > 0 satisfying
ν0 6 C(|u∞|+ |u∞|2)1/2 (10)

and such that for all ν > ν0, System (1)-(5) has a unique weak solution, which satisfies the
following estimate:

‖u‖H1(F) 6 C ′(ν + |u∞|), (11)

where C ′ is a positive constant depending only on Ω,S.

Now we consider System (1)-(3) with Navier’s boundary conditions (6)-(7) on ∂S. To
define weak solutions to this system, we introduce

Hτ = {v ∈ H1(F) | div v = 0 in L2(F), v · n = 0 on ∂S},

and define, as above,
Kτ = {v ∈ Hτ | v = u∞ on ∂Ω}

and
Vτ = {φ ∈ Hτ | φ = 0 on ∂Ω}

We say that u ∈ H1(F) is a weak solution to system (1)-(3) with boundary conditions
(6)-(7) if u ∈ Kτ and for every φ ∈ Vτ ,

2ν

∫

F

D(u) : D(φ) dx+

∫

F

[(u · ∇)u] · φ dx+

∫

∂S

βu · φ dHN−1 = 0. (12)

Let u∞ ∈ R
N and ν0 > 0 as in Theorem 2. We fix ν > ν0, so that for every β ∈ L2(∂S),

any weak solution to system (1)-(3), (6)-(7), is unique. To each friction coefficient β ∈
L2(∂S), we associate a drag T (β) defined by

T (β) = 2ν

∫

F

|D(u)|2 dx+

∫

∂S

β|u|2 dHN−1,
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where u ∈ Kτ satisfies (12).
To address the differentiability of the drag with respect to β, we introduce the following

open subset of L2(∂S)

O = {β ∈ L2(∂S) | β > 0 q.e. on ∂S},

and define the mapping
R : O → Hτ

β 7→ u,

where u ∈ Kτ satisfies (12). The following result holds:

Theorem 3 The mapping
β ∈ O → R(β) ∈ Hτ

is differentiable, and for every β ∈ O, its derivative DR(β) ∈ L(L2(∂S),Hτ ) at point β is
defined by

DR(β)h = w ∀h ∈ L2(∂S),

where w is the unique solution to the system:





−div(σ(w, p)) + (w · ∇)u+ (u · ∇)w = 0 in F ,
div w = 0 in F ,

w = 0 on ∂Ω,
w · n = 0 on ∂S,

2ν [D(w)n]tan + βw = −hu on ∂S,

(13)

in the following sense: w ∈ Vτ and for every φ ∈ Vτ ,

2ν

∫

F

D(w) : D(φ) dx+

∫

F

[(w·∇)u+(u·∇)w]·φ dx+

∫

∂S

βw·φ dHN−1 = −

∫

∂S

hu·φ dHN−1.

(14)

The following corollary has interesting applications to the drag optimization problem.

Corollary 4 The mapping
β ∈ O → T (β) ∈ R

is differentiable, and for every β ∈ O, its derivative DT (β) ∈ L(L2(∂S),R) is defined by

DT (β)h = 2

(
2ν

∫

F

D(u) : D(w) dx+

∫

∂S

βu ·w

)
+

∫

∂S

h|u|2 dHN−1 ∀h ∈ L2(∂S)

where u = R(β) and w = DR(β)h is the solution to system (13). For every β, the gradient
of T at β with respect to the L2(∂S) topology is given by the following formula:

∇T (β) = (u+ ψ) · u q.e. on ∂S, (15)
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where u = R(β) and ψ is the unique solution to




−div(σ(ψ, p)) + (∇u)Tψ − (u · ∇)ψ = 2(u · ∇)u in F ,
div ψ = 0 in F ,

ψ = 0 on ∂Ω,
ψ · n = 0 on ∂S,

2ν [D(ψ)n]tan + βψ = 0 on ∂S,

(16)

in the sense that ψ ∈ Vτ and for every φ ∈ Vτ ,

2ν

∫

F

D(ψ) : D(φ) dx+

∫

F

[
(∇u)Tψ − (u · ∇)ψ

]
·φ dx+

∫

∂S

βψ·φ dHN−1 = 2

∫

F

[(u·∇)u]·φ dx.

(17)

3 Proof of Theorems 1 and 2

In order to prove Theorems 1 and 2, we follow the standard steps from the theory of station-
ary Navier-Stokes equations, which we adapt to the framework of friction-driven boundary
conditions. These arguments are developed in [9], for instance.

We define the bilinear form a0 : H
1(F)×H1(F) → R by

a0(v1,v2) = 2ν

∫

F

D(v1) : D(v2) dx+

∫

∂S

Av1 · v2 dµ ∀(v1,v2) ∈ H1(F)×H1(F), (18)

and the trilinear form a1 : H
1(F)×H1(F)×H1(F) → R by

a1(v,v1,v2) =

∫

F

[(v · ∇)v1] · v2 dx ∀(v,v1,v2) ∈ H1(F)×H1(F)×H1(F). (19)

Let u0 ∈ K such that
‖u0‖H1(F) 6 C0|u∞| (20)

where C0 > 0 depends only on F . The existence of C0 and u0 ∈ K satisfying (20) was
proved by Bogovskĭı [3]. Setting ũ = u − u0, we get that a function u ∈ K satisfies (12) if
and only if ũ ∈ V and satisfies the following identity:

∀φ ∈ V a0(ũ, φ)+a1(u0, ũ, φ) + a1(ũ,u0, φ) + a1(ũ, ũ, φ)

= −a0(u0, φ)− a1(u0,u0, φ). (21)

We define the mapping a : H1(F)×H1(F)×H1(F) → R by

a(v,v1,v2) = a0(v1,v2) + a1(u0,v1,v2)+a1(v1,u0,v2) + a1(v,v1,v2)

∀(v,v1,v2) ∈ H1(F)×H1(F)×H1(F),
(22)

and the linear form f = f(u0) ∈ V ′ by

〈f , φ〉V ′×V = −a0(u0, φ)− a1(u0,u0, φ) ∀φ ∈ V.
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The problem we consider is equivalent to the following : find u0 ∈ K and ũ ∈ V such that

a(ũ, ũ, φ) = 〈f(u0), φ〉V ′×V ∀φ ∈ V. (23)

We recall the following results from [9].

Theorem 5 Assume that the following hypotheses hold:

(i) for all v ∈ H1(F), the mapping (v1,v2) → a(v,v1,v2) is continuous on H1(F) ×
H1(F);

(ii) there exists a constant α > 0 such that

a(φ, φ, φ) > α‖φ‖2
H1(F) ∀φ ∈ V ; (24)

(iii) the space V is separable and, for all φ ∈ V , the mapping

v → a(v,v, φ)

is sequentially weakly continuous on V , i.e.,

weak lim
m→∞

vm = v in V implies lim
m→∞

a(vm,vm, φ) = a(v,v, φ) ∀φ ∈ V. (25)

Then, problem (23) admits at least one solution.

Theorem 6 Moreover, assume that

(iv) the bilinear form a(v, ·, ·) is uniformly V -elliptic with respect to v, i.e., there exists a
constant α > 0 such that

a(v, φ, φ) > α‖φ‖2
H1(F) ∀(v, φ) ∈ V × V ; (26)

(v) there exists a continuous and monotonically increasing function L : R+ → R+ such
that for all η > 0

|a(v1,v1,v2)− a(v2,v1,v2)| 6 L(η)‖v1‖H1(F)‖v2‖H1(F)‖v1 − v2‖H1(F)

∀v1,v2 ∈ V, ∀v1,v2 ∈ Sη = {v ∈ V | ‖v‖H1(F) 6 η}. (27)

Then, under the condition
[‖f‖V ′/(α2)]L(‖f‖V ′/α) < 1, (28)

the solution ũ ∈ V to problem (23) is unique, and satisfies the following estimate:

‖ũ‖H1(F) 6 ‖f‖V ′/α. (29)
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Proof of Theorem 1. Let us fix u∞ ∈ R
N and ν > 0. We need to prove that the mapping

a defined by (22) satisfies the assumptions of Theorem 5.
By Sobolev imbedding theorem (see the standard monograph by Adams [1]), H1(F) is

continuously imbedded in L4(F ,RN) for N = 2, 3. Therefore, by Hölder inequality, the
mapping a1 defined by (19) is continuous. Since a0 defined by (18) is continuous, we obtain
the continuity of a, and consequently, condition (i) from Theorem 5 holds.

To prove (ii), we prove the stronger condition (iv). We use the following Korn inequality,
which is proved for instance in [4] (see the proof of Lemma VII.3.5, p. 329):

Lemma 7 There exists C1 > 0 such that for all φ ∈ V ,

‖∇φ‖L2(F ,RN×N ) 6 C1‖D(φ)‖L2(F ,RN×N ).

Consequently, by Poincaré inequality, there exists C2 > 0 such that for all φ ∈ V ,

1

C2

‖φ‖2
H1(F) 6 2‖D(φ)‖2L2(F ,RN×N ). (30)

Let v, φ ∈ V . We observe that

a(v, φ, φ) = a0(φ, φ) + a1(φ,u0, φ).

Indeed, a1(u0, φ, φ) = 0 and a1(v, φ, φ) = 0, which comes from the following computation:

a1(u0, φ, φ) =
1

2

∫

F

(u0 · ∇)(|φ|2) dx

=
1

2

(∫

∂S

|φ|2 u0 · n dHN−1 +

∫

∂Ω

|φ|2 u0 · n dHN−1

)
. (31)

Since φ ∈ V , φ = 0 on ∂Ω, and since u0 ∈ K, u0 · n = 0 on ∂S. Therefore, last boundary
integrals vanish. Replacing u0 by v we obtain the desired conclusion.

For every u0 ∈ K satisfying (20), we note ρ(u0) the best positive constant such that

|a1(φ,u0, φ)| 6 ρ(u0)‖φ‖
2
H1(F) ∀φ ∈ V, (32)

We prove the following result:

Lemma 8 For every δ > 0, there exists u0 ∈ K satisfying (20) and such that ρ(u0) 6 δ.

Proof. We consider a bounded extension operator

P : H1(F) → H1
0 (Ω,R

N).

Let δ > 0. By the proof of Lemma 2.3 in [9], chapter IV, there exists ũ0 ∈ H1(Ω,RN) such
that 




div ũ0 = 0 in Ω,
ũ0 = u∞ on ∂Ω,
ũ0 = 0 in a neighborhood of S,
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and such that for every ϕ ∈ H1
0 (Ω,R

N),

∣∣∣∣
∫

Ω

[(ϕ · ∇)ũ0] · ϕ dx

∣∣∣∣ 6
δ

‖P‖
‖ϕ‖H1(Ω,RN ). (33)

Let φ ∈ V . By inequality (33), we obtain

∫

Ω

[((Pφ) · ∇)ũ0] · (Pφ) dx 6
δ

‖P‖
‖Pφ‖H1(Ω,RN )

6 δ‖φ‖H1(F).

Since ũ0 vanishes on S, observing that

∫

Ω

[((Pφ) · ∇)ũ0] · (Pφ) dx =

∫

F

[(φ · ∇)ũ0] · φ dx,

we obtain the desired result with u0 = (ũ0)|F . ✷

Let u0 ∈ K such that ρ(u0) < ν/C2, where C2 is defined by (30). By conditions (30) and
(32), for every v, φ ∈ V ,

a(v, φ, φ) >

(
ν

C2

− ρ(u0)

)
‖φ‖2

H1(F).

Consequently, condition (iv) holds with α = ν/C2 − ρ(u0).
To prove condition (25), we only need to consider the nonlinear term a1(vm,vm, φ).

Integrating by part and using the incompressibility condition, we obtain

a1(vm,vm, φ) = −

∫

F

[(vm · ∇)φ] · v dx+

∫

∂S∪∂Ω

(vm · φ)(vm · n) dHN−1.

Since φ,vm ∈ V , we conclude as above that

a1(vm,vm, φ) = −

∫

F

[(vm · ∇)φ] · vm dx.

Since H1(F) is continuously imbedded in L4(F ,RN), we obtain

lim
m→∞

a1(vm,vm, φ) = a1(v,v, φ).

This proves condition (iii).
Now let u ∈ K be a weak solution to System (1)-(5). We define ũ = u − u0. Applying

relation (23) to φ = ũ and using inequality (26), we obtain

‖ũ‖H1(F) 6
1

α
‖f(u0)‖V ′ .

By the triangular inequality, estimate (9) holds with M = ‖u0‖H1(F) + 1/α‖f(u0)‖V ′ . This
concludes the proof of Theorem 1. ✷
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Proof of Theorem 2. Let us fix u∞ ∈ R
N .

To prove (v), we observe that for v, ṽ,v1,v2 ∈ V ,

a(v,v1,v2)− a(ṽ,v1,v2) = a1(v − ṽ,v1,v2).

Introducing

N = sup
v,v1,v2∈V \{0}

a1(v,v1,v2)

‖v‖H1(F)‖v1‖H1(F)‖v2‖H1(F)

, (34)

we obtain that (27) holds with L(η) = N for all η > 0.
We define

ν0 = inf
{
C2

[
ρ(u0) + (N‖f(u0)‖V ′)1/2

]
, u0 ∈ K satisfying (20)

}
.

Estimate (10) results from the existence of a constant C3 > 0, such that for every φ ∈ V ,

|〈f(u0), φ〉V ′×V | 6 C3‖u0‖H1(F)(1 + ‖u0‖H1(F))‖φ‖H1(F).

As a result, by (20), there exists C4 > 0 such that

‖f(u0)‖V ′ 6 C4|u∞|(1 + |u∞|),

and consequently, inequality (35) implies that there exists a constant C5 > 0 such that

ν20 6 C5(|u∞|+ |u∞|2).

This proves (10).
Let ν > ν0. By definition of the infimum, there exists u0 ∈ K satisfying (20) and such

that
ν0 6 C2

[
ρ(u0) + (N‖f(u0)‖V ′)1/2

]
< ν. (35)

We fix α = ν/C2 − ρ(u0). By (35), α > 0 and by the same argument as above, α satisfies
(26). Now let u ∈ K be a weak solution to System (1)-(5) and let ũ = u − u0. Condition
(28) reads

N‖f(u0)‖V ′ < α2

which is equivalent to
(N‖f(u0)‖V ′)1/2 < ν/C2 − ρ(u0). (36)

By (35), last estimate holds. By Theorem 6, ũ ∈ V is the unique solution to (23). Using
(10) and (36), we obtain the following estimate:

‖ũ‖H1(F) <
1

N

(
ν

C2

− ρ(u0)

)
. (37)

Consequently, be (20) and the triangular inequality,

‖u‖H1(F) 6 C0|u∞|+
1

NC2

ν.

This proves (11).
By taking the infimum over all admissible functions u0, for ν > ν0, we obtain the unique-

ness of the function ũ ∈ K satisfying (21). Therefore, System (1)-(5) admits one unique
weak solution u0 + ũ ∈ H1(F). ✷
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4 Proof of Theorem 3

In this section, we assume that V(x) is equal to the tangent hyperplane to ∂S on q.e. x on
the boundary, A ≡ Id and µ is absolutely continuous with respect to the surface measure on
∂S with a density β ∈ L2(∂S).

Let u∞ ∈ R
N . Let ν0 > 0 as in Theorem 2, and ν > ν0. Let u0 ∈ K satisfying (20) and

such that
ν0 6 C2

[
ρ(u0) + (N‖f(u0)‖V ′

τ
)1/2

]
< ν. (38)

We use the mappings introduced in Section 3. We define g = g(u0) ∈ V ′
τ by

〈g, φ〉V ′
τ×Vτ

= −a0(u0, φ)− a1(u0,u0, φ) ∀φ ∈ Vτ .

The problem we consider is equivalent to the following: find u0 ∈ Kτ and ũ ∈ Vτ such that

a(ũ, ũ, φ) = 〈g(u0), φ〉V ′
τ×Vτ

∀φ ∈ Vτ . (39)

Proof of Theorem 3. The proof is based on the implicit function theorem. We will prove
that the mapping

β ∈ O → ũ ∈ Vτ

where ũ satisfies (21), is differentiable. We introduce the open subset of Vτ :

V0 =

{
ξ ∈ Vτ | ‖ξ‖H1(F) <

1

N

(
ν

C2

− ρ(u0)

)}

and define the mapping
F : O × V0 → V ′

τ

by

∀φ ∈ Vτ 〈F (β,v), φ〉V ′
τ×Vτ

= a0(v, φ) + a1(u0,v, φ) + a1(v,u0, φ) + a1(v,v, φ)

+ a0(u0, φ) + a1(u0,u0, φ). (40)

The mapping F is well defined and F is of class C∞. By the proof of Theorems 1 and 2, for
every β ∈ O there exists one unique ũ ∈ V0 satisfying (21). We need to prove that for every
(β,v) ∈ O × V0, DvF (β,v) ∈ L(Vτ , V

′
τ ) is invertible with continuous inverse.

For every (β,v) ∈ O × V0, DvF (β,v) ∈ L(Vτ , V
′
τ ) is defined by

∀ξ, φ ∈ Vτ 〈DvF (β,v)ξ, φ〉V ′
τ×Vτ

= a0(ξ, φ) + a1(u0, ξ, φ) + a1(ξ,u0, φ)

+ a1(ξ,v, φ) + a1(v, ξ, φ).

We need to prove that for every (β,v) ∈ O×V0, there exists a constant C > 0 such that for
every h ∈ V ′

τ , there exists one unique ξ ∈ Vτ such that

DvF (β,v)ξ = h, (41)
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with the estimate
‖ξ‖H1(F) 6 C‖h‖V ′

τ
. (42)

Fix (β,v) ∈ O × V0. We will prove that the bilinear form associated to DvF (β,v) satisfies
the assumptions of Lax-Milgram theorem. The continuity results from the continuity of a0
and a1, and the coercivity is a consequence of the definition of V0. Indeed, by computation
(31), for all φ ∈ Vτ ,

〈DvF (β,v)φ, φ〉V ′
τ×Vτ

= a0(φ, φ) + a1(φ,u0, φ) + a1(φ,v, φ).

Consequently, using property (30) and definitions (32) and (34), we obtain for all φ ∈ Vτ ,

〈DvF (β,v)φ, φ〉V ′
τ×Vτ

>

(
ν

C2

− ρ(u0)−N‖v‖H1(F)

)
‖φ‖2

H1(F).

Since v ∈ V0,
ν

C2

− ρ(u0)−N‖v‖H1(F) > 0.

This proves that the mapping
β ∈ O → ũ ∈ Vτ

where ũ satisfies (39), is differentiable. Consequently, since for all β ∈ O, R(β) = u0 + ũ, R
is differentiable on O. Moreover, for every β ∈ O, DR(β) ∈ L(L2(∂S),H) is defined by

DR(β) = − [DvF (β,R(β)− u0)]
−1DβF (β,R(β)− u0).

Since for every (β,v) ∈ O × V0, DβF (β,v) ∈ L(L2(∂S), V ′
τ ) is defined by

∀h ∈ L2(∂S), ∀φ ∈ Vτ 〈DβF (β,v), h〉 =

∫

∂S

h(v + u0) · φ dHN−1,

defining w = DR(β)h for h ∈ L2(∂S), we obtain that w ∈ Vτ satisfies the following identity:

∀φ ∈ Vτ a0(w, φ) + a1(u0,w, φ) + a1(w,u0, φ) + a1(w, R(β)− u0, φ)

+ a1(R(β)− u0,w, φ) = −

∫

∂S

hR(β) · φ dHN−1.

Using the trilinearity of a1, we obtain (14). ✷

Proof of Corollary 4. Noticing that for every φ ∈ Vτ ,

[(∇u)Tψ] · φ = [(φ · ∇)u] · ψ

and

−

∫

F

[(u · ∇)ψ] · φ dx =

∫

F

[(u · ∇)φ] · ψ dx,

(17) can be written in the following form:

∀φ ∈ Vτ 2ν

∫

F

D(ψ) : D(φ) dx+

∫

F

ψ · [(φ · ∇)u+ (u · ∇)φ] dx+

∫

∂S

βψ · φ dHN−1

= 2

∫

F

[(u · ∇)u] · φ dx. (43)
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Let us fix β ∈ O and h ∈ L2(∂S). We note u = R(β) and w = DR(β)h. Taking φ = w

in (12), we express DT (β)h as follows:

DT (β)h = −2

∫

F

[(u · ∇)u] ·w dx+

∫

∂S

h|u|2 dHN−1. (44)

Besides, taking φ = ψ in (14) and φ = w in (43), we obtain

2ν

∫

F

D(w) : D(ψ) dx+

∫

F

[(w · ∇)u+ (u · ∇)w] · ψ dx+

∫

∂S

βw · ψ dHN−1

= −

∫

∂S

hu · ψ dHN−1,

2ν

∫

F

D(ψ) : D(w) dx+

∫

F

ψ · [(w · ∇)u+ (u · ∇)w] dx+

∫

∂S

βψ ·w dHN−1

= 2

∫

F

[(u · ∇)u] ·w dx.

Substracting these equalities, we obtain

−2

∫

F

[(u · ∇)u] ·w dx =

∫

∂S

hu · ψ dHN−1

and finally, by (44),

DT (β)h =

∫

∂S

[(u+ ψ) · u]h dHN−1.

This proves (15). ✷

Remark 9 The coercivity of the bilinear form associated to the weak formulation (43)
results from the following estimate (see the proof of Theorems 1 and 2):

ρ(u) 6 ρ(u0) + ρ(ũ)

6 ρ(u0) +N‖ũ‖H1(F)

<
ν

C2

.
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d’écoulements de fluides visqueux incompressibles, volume 52 of Mathématiques & Ap-
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