The Drag in a Navier-Stokes Flow with Friction-Driven Boundary Conditions

Matthieu Bonnivard

To cite this version:

Matthieu Bonnivard. The Drag in a Navier-Stokes Flow with Friction-Driven Boundary Conditions. 2011. hal-00565411

HAL Id: hal-00565411
https://hal.science/hal-00565411
Preprint submitted on 13 Feb 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The Drag in a Navier-Stokes Flow with Friction-Driven Boundary Conditions

Matthieu Bonnivard

Abstract

We consider the drag of an obstacle in a Navier-Stokes flow, associated to the friction-driven boundary conditions introduced by Bucur, Feireisl and Nečasová [6]. These boundary conditions account for the asymptotic effect of rough boundaries on the solutions to the Navier-Stokes equations. Consequently, they appear as a natural control variable in order to reduce the drag using the effect of micro-rugosities. In this paper, we prove the existence of a drag associated to friction-driven boundary conditions, we give a uniqueness criterion and, in the particular case of Navier's friction law, we prove that the drag is differentiable with respect to the friction coefficient, and compute its gradient.

1 Introduction

In this paper, we are interested in the definition and the mathematical properties of the drag of an obstacle in a Navier-Stokes flow, associated to the so-called friction-driven boundary conditions on the solid-fluid interface [6].

Let $N \in\{2,3\}$ be the space dimension. We define the obstacle \mathcal{S} as a compact subset of \mathbb{R}^{N}, with a Lipschitz boundary. The friction-driven boundary conditions are determined by a triplet $\{\mu, A, \mathcal{V}\}$, where:

- μ is a capacitary measure concentrated on $\partial \mathcal{S}$,
- A is a positive symmetric matrix function,
- $\mathcal{V}=\{\mathcal{V}(x)\}_{x \in \partial \mathcal{S}}$ is a collection of vector spaces, where for q.e. $x \in \partial \mathcal{S}, \mathcal{V}(x)$ is a subspace of the tangent hyperplane to \mathcal{S} at x.

Let $\mathbf{u}_{\infty} \in \mathbb{R}^{N}$ be the velocity of the fluid at infinity. To define the drag of the solid \mathcal{S} in the direction \mathbf{u}_{∞}, we (artificially) introduce an open subset $\Omega \subset \mathbb{R}^{N}$ such that $\mathcal{S} \subset \Omega$, and define the fluid domain

$$
\mathcal{F}=\Omega \backslash \mathcal{S}
$$

We note $L_{0}^{2}(\mathcal{F})$ the subspace of $L^{2}(\mathcal{F})$ consisting of functions with mean value equal to zero. We consider the following problem: find $(\mathbf{u}, p) \in H^{1}\left(\mathcal{F}, \mathbb{R}^{N}\right) \times L_{0}^{2}(\mathcal{F})$ such that

$$
\begin{align*}
& -\operatorname{div}(\sigma(\mathbf{u}, p))+(\mathbf{u} \cdot \nabla) \mathbf{u}=0 \text { in } \mathcal{F} \tag{1}\\
& \operatorname{div} \mathbf{u}=0 \text { in } \mathcal{F} \tag{2}\\
& \mathbf{u}=\mathbf{u}_{\infty} \text { on } \partial \Omega \tag{3}\\
& \mathbf{u}(x) \in \mathcal{V}(x) \text { for q.e. } x \in \partial \mathcal{S} \tag{4}\\
& {[2 \nu \mathbf{D}(\mathbf{u}) \mathbf{n}+\mu A \mathbf{u}] \cdot \phi=0 \text { for any } \phi \in \mathcal{V}(x), x \in \partial \mathcal{S},} \tag{5}
\end{align*}
$$

where $\sigma(\mathbf{u}, p)$ is the stress tensor defined by

$$
\sigma(\mathbf{u}, p)=2 \nu \mathbf{D}(\mathbf{u})-p \mathrm{Id}
$$

$\nu>0$ being the viscosity of the fluid and $\mathbf{D}(\mathbf{u})$ the symmetric part of $\nabla \mathbf{u}$, defined by

$$
\mathbf{D}(\mathbf{u})=\frac{1}{2}\left((\nabla \mathbf{u})+(\nabla \mathbf{u})^{T}\right) .
$$

In condition (5), \mathbf{n} stands for the normal vector field to $\partial \mathcal{S}$ oriented towards the solid.
Condition (4) expresses that the flow is driven by the family of linear spaces $\{\mathcal{V}(x)\}_{x \in \partial \mathcal{S}}$. Above, $[2 \nu \mathbf{D}(\mathbf{u}) \mathbf{n}+\mu A \mathbf{u}] \cdot \phi=0$ for $\phi \in \mathcal{V}(x)$ is a formal pointwise relation, which has to be understood globally on $\partial \mathcal{S}$. Precisely, condition (5) holds provided that

$$
2 \nu \int_{\partial \mathcal{S}} \mathbf{D}(\mathbf{u}) \mathbf{n} \cdot \phi \mathrm{d} x+\int_{\partial \mathcal{S}} A \mathbf{u} \cdot \phi \mathrm{~d} \mu=0
$$

for every $\phi \in H^{1}\left(\mathcal{F}, \mathbb{R}^{N}\right)$ such that $\phi(x) \in \mathcal{V}(x)$ for q.e. $x \in \partial S$. In particular, condition (5) is a friction condition, characterized by the measure μ and the matrix A.

Friction-driven boundary conditions have been obtained by Bucur, Feireisl and Nečasová in [6], as the general expression of the boundary conditions resulting from the rugosity effect on perfectly slippery walls. The rugosity effect has been investigated in [11, 10, 8, 2] and in the more recent papers $[7,6,5]$. It consists in approximating a given domain U by a sequence of geometric perturbations $\left(U_{\varepsilon}\right)_{\varepsilon>0}$, and studying the asymptotic behaviour of a family of vector fields $\mathbf{u}_{\varepsilon} \in H^{1}\left(U_{\varepsilon}, \mathbb{R}^{N}\right)$ in the neighborhood of the boundary of the limit domain U. In [6], the authors have considered a sequence $\left(\mathbf{u}_{\varepsilon}\right)_{\varepsilon>0}$ of weak solutions to the NavierStokes equations with perfect slip boundary conditions in equi-Lipschitz domains $\left(U_{\varepsilon}\right)_{\varepsilon>0}$. They have proved the existence of a triplet $\{\mu, A, \mathcal{V}\}$, such that, up to a subsequence, $\left(\mathbf{u}_{\varepsilon}\right)_{\varepsilon>0}$ converges weakly to a function \mathbf{u} solution to the Navier-Stokes equations with friction-driven boundary conditions.

This asymptotic process is an indirect proof of the existence of a solution to the NavierStokes equations with friction-driven boundary conditions, for admissible triplets $\{\mu, A, \mathcal{V}\}$, that is, triplets that can be effectively obtained by a sequence of geometric perturbations of the domain. However, since this result relies on abstract Γ-convergence tools, the class of admissible triplets cannot be explicitely described, at least for very general perturbations. The purpose of this paper is to prove that, in fact, problem (1)-(5) admits at least one weak solution (in a sense that will be precised below), for every $\nu>0, \mathbf{u}_{\infty} \in \mathbb{R}^{N}$ and every triplet
$\{\mu, A, \mathcal{V}\}$. This result is stated in Theorem 1. Moreover, we prove that for a suitable choice of ν, \mathbf{u}_{∞} and \mathcal{V}, which does not depend on $\{\mu, A\}$, every weak solution to System (1)-(5) is unique (see Theorem 2).

In the second part of the paper, we study the differentiability of the drag function with respect to the friction part of the boundary condition. Let $\nu>0$ and $\mathbf{u}_{\infty} \in \mathbb{R}$. We can associate to every triplet $\{\mu, A, \mathcal{V}\}$ and every weak solution \mathbf{u} to System (1)-(5), a drag $\mathcal{T}(\mu, A, \mathcal{V}, \mathbf{u})$ defined by

$$
\mathcal{T}(\mu, A, \mathcal{V}, \mathbf{u})=2 \nu \int_{\mathcal{F}}|\mathbf{D}(\mathbf{u})|^{2} \mathrm{~d} x+\int_{\partial \mathcal{S}} A \mathbf{u} \cdot \mathbf{u} \mathrm{~d} \mu
$$

In the case where \mathbf{u} is unique, the drag depends only on the choice of the triplet $\{\mu, A, \mathcal{V}\}$, which appears as a natural control variable in drag minimization problems. As a first step in the study of the regularity of the drag with respect to $\{\mu, A, \mathcal{V}\}$, we consider Navier's boundary conditions on $\partial \mathcal{S}$, which are given by the non penetration condition

$$
\begin{equation*}
\mathbf{u} \cdot \mathbf{n}=0 \text { on } \partial \mathcal{S} \tag{6}
\end{equation*}
$$

and by the friction law

$$
\begin{equation*}
2 \nu[\mathbf{D}(\mathbf{u}) \mathbf{n}]_{t a n}+\beta \mathbf{u}=0 \text { on } \partial \mathcal{S} \tag{7}
\end{equation*}
$$

Here, \mathbf{n} is the normal vector field to $\partial \mathcal{S}$ oriented towards the solid and $\beta \in L^{2}(\partial \mathcal{S})$ is a friction coefficient. For any vector field \mathbf{v}, defined on $\partial \mathcal{S}$, we note $[\mathbf{v}]_{t a n}$ its tangential part, defined by

$$
[\mathbf{v}]_{t a n}=\mathbf{v}-(\mathbf{v} \cdot \mathbf{n}) \mathbf{n}
$$

Boundary conditions (6)-(7) correspond to the case where $\mathcal{V}(x)$ is equal to the tangent hyperplane to $\partial \mathcal{S}$ on q.e. x on the boundary, $A \equiv \operatorname{Id}$ and μ is absolutely continuous with respect to the surface measure on $\partial \mathcal{S}$ with a density $\beta \in L^{2}(\partial \mathcal{S})$. We prove that the drag is differentiable with respect to β and compute the gradient of the drag in the $L^{2}(\partial \mathcal{S})$ topology (see Theorem 3 and Corollary 4).

The structure of the paper is the following. In Section 2, we introduce the functional framework associated with System (1)-(3) and boundary conditions (4)-(5) and (6)-(7), and state our main results. In Section 3, we recall some abstract material from [9] which we use in the proof of Theorems 1 and 2. Section 4 is devoted to the proof of Theorem 3 and Corollary 4.

2 Statement of the Main Results

We note

$$
\mathbf{H}^{1}(\mathcal{F})=H^{1}\left(\mathcal{F}, \mathbb{R}^{N}\right)
$$

To define the weak solutions to System (1)-(5), we introduce the following subsets of $\mathbf{H}^{1}(\mathcal{F})$:

$$
K=\left\{\mathbf{v} \in \mathbf{H}^{1}(\mathcal{F}) \mid \operatorname{div} \mathbf{v}=0 \text { in } L^{2}(\mathcal{F}), \mathbf{v}(x) \in \mathcal{V}(x) \text { for q.e. } x \in \partial \mathcal{S}, \mathbf{v}=\mathbf{u}_{\infty} \text { on } \partial \Omega\right\}
$$

and

$$
V=\left\{\phi \in \mathbf{H}^{1}(\mathcal{F}) \mid \operatorname{div} \phi=0 \text { in } L^{2}(\mathcal{F}), \mathbf{v}(x) \in \mathcal{V}(x) \text { for q.e. } x \in \partial \mathcal{S}, \phi=0 \text { on } \partial \Omega\right\} .
$$

Let us fix the family of linear spaces \mathcal{V} such that V is non empty. In particular, V is a separable Hilbert space for the \mathbf{H}^{1} scalar product. We note V^{\prime} its dual space for the \mathbf{H}^{1} norm. Let μ be a capacitary measure concentrated on $\partial \mathcal{S}$ and A a positive symmetric matrix function.

We say that $\mathbf{u} \in \mathbf{H}^{1}(\mathcal{F})$ is a weak solution to system (1)-(5) if $\mathbf{u} \in K$ and for every $\phi \in V$,

$$
\begin{equation*}
2 \nu \int_{\mathcal{F}} \mathbf{D}(\mathbf{u}): \mathbf{D}(\phi) \mathrm{d} x+\int_{\mathcal{F}}[(\mathbf{u} \cdot \nabla) \mathbf{u}] \cdot \phi \mathrm{d} x+\int_{\partial \mathcal{S}} A \mathbf{u} \cdot \phi \mathrm{~d} \mu=0 . \tag{8}
\end{equation*}
$$

The following results hold:
Theorem 1 Given $\nu>0$ and $\mathbf{u}_{\infty} \in \mathbb{R}^{N}$, there exists at least one weak solution to System (1)-(5). Moreover, there exists a constant $M>0$ depending only on $\nu, \mathbf{u}_{\infty}, \Omega$ and \mathcal{S}, such that every weak solution $\mathbf{u} \in K$ satisfies the following estimate:

$$
\begin{equation*}
\|\mathbf{u}\|_{\mathbf{H}^{1}(\mathcal{F})} \leqslant M . \tag{9}
\end{equation*}
$$

Theorem 2 There exists a constant $C=C(\Omega, \mathcal{S})>0$ such that, for all $\mathbf{u}_{\infty} \in \mathbb{R}^{N}$, there exists $\nu_{0}>0$ satisfying

$$
\begin{equation*}
\nu_{0} \leqslant C\left(\left|\mathbf{u}_{\infty}\right|+\left|\mathbf{u}_{\infty}\right|^{2}\right)^{1 / 2} \tag{10}
\end{equation*}
$$

and such that for all $\nu>\nu_{0}$, System (1)-(5) has a unique weak solution, which satisfies the following estimate:

$$
\begin{equation*}
\|\mathbf{u}\|_{\mathbf{H}^{1}(\mathcal{F})} \leqslant C^{\prime}\left(\nu+\left|\mathbf{u}_{\infty}\right|\right) \tag{11}
\end{equation*}
$$

where C^{\prime} is a positive constant depending only on Ω, \mathcal{S}.
Now we consider System (1)-(3) with Navier's boundary conditions (6)-(7) on $\partial \mathcal{S}$. To define weak solutions to this system, we introduce

$$
\mathbf{H}_{\tau}=\left\{\mathbf{v} \in \mathbf{H}^{1}(\mathcal{F}) \mid \operatorname{div} \mathbf{v}=0 \text { in } L^{2}(\mathcal{F}), \mathbf{v} \cdot \mathbf{n}=0 \text { on } \partial \mathcal{S}\right\}
$$

and define, as above,

$$
K_{\tau}=\left\{\mathbf{v} \in \mathbf{H}_{\tau} \mid \mathbf{v}=\mathbf{u}_{\infty} \text { on } \partial \Omega\right\}
$$

and

$$
V_{\tau}=\left\{\phi \in \mathbf{H}_{\tau} \mid \phi=0 \text { on } \partial \Omega\right\}
$$

We say that $\mathbf{u} \in \mathbf{H}^{1}(\mathcal{F})$ is a weak solution to system (1)-(3) with boundary conditions (6)-(7) if $\mathbf{u} \in K_{\tau}$ and for every $\phi \in V_{\tau}$,

$$
\begin{equation*}
2 \nu \int_{\mathcal{F}} \mathbf{D}(\mathbf{u}): \mathbf{D}(\phi) \mathrm{d} x+\int_{\mathcal{F}}[(\mathbf{u} \cdot \nabla) \mathbf{u}] \cdot \phi \mathrm{d} x+\int_{\partial \mathcal{S}} \beta \mathbf{u} \cdot \phi \mathrm{d} \mathcal{H}^{N-1}=0 . \tag{12}
\end{equation*}
$$

Let $\mathbf{u}_{\infty} \in \mathbb{R}^{N}$ and $\nu_{0}>0$ as in Theorem 2. We fix $\nu>\nu_{0}$, so that for every $\beta \in L^{2}(\partial \mathcal{S})$, any weak solution to system (1)-(3), (6)-(7), is unique. To each friction coefficient $\beta \in$ $L^{2}(\partial \mathcal{S})$, we associate a drag $T(\beta)$ defined by

$$
T(\beta)=2 \nu \int_{\mathcal{F}}|\mathbf{D}(\mathbf{u})|^{2} \mathrm{~d} x+\int_{\partial \mathcal{S}} \beta|\mathbf{u}|^{2} \mathrm{~d} \mathcal{H}^{N-1}
$$

where $\mathbf{u} \in K_{\tau}$ satisfies (12).
To address the differentiability of the drag with respect to β, we introduce the following open subset of $L^{2}(\partial \mathcal{S})$

$$
\mathcal{O}=\left\{\beta \in L^{2}(\partial \mathcal{S}) \mid \beta>0 \text { q.e. on } \partial \mathcal{S}\right\},
$$

and define the mapping

$$
\begin{aligned}
R: \mathcal{O} & \rightarrow \mathbf{H}_{\tau} \\
\beta & \mapsto \mathbf{u},
\end{aligned}
$$

where $\mathbf{u} \in K_{\tau}$ satisfies (12). The following result holds:
Theorem 3 The mapping

$$
\beta \in \mathcal{O} \rightarrow R(\beta) \in \mathbf{H}_{\tau}
$$

is differentiable, and for every $\beta \in \mathcal{O}$, its derivative $D R(\beta) \in \mathcal{L}\left(L^{2}(\partial \mathcal{S}), \mathbf{H}_{\tau}\right)$ at point β is defined by

$$
D R(\beta) h=\mathbf{w} \quad \forall h \in L^{2}(\partial \mathcal{S})
$$

where \mathbf{w} is the unique solution to the system:

$$
\left\{\begin{align*}
-\operatorname{div}(\sigma(\mathbf{w}, p))+(\mathbf{w} \cdot \nabla) \mathbf{u}+(\mathbf{u} \cdot \nabla) \mathbf{w}=0 & \text { in } \mathcal{F} \tag{13}\\
\operatorname{div} \mathbf{w}=0 & \text { in } \mathcal{F} \\
\mathbf{w}=0 & \text { on } \partial \Omega \\
\mathbf{w} \cdot \mathbf{n}=0 & \text { on } \partial \mathcal{S} \\
2 \nu[\mathbf{D}(\mathbf{w}) \mathbf{n}]_{\tan }+\beta \mathbf{w}=-h \mathbf{u} & \text { on } \partial \mathcal{S}
\end{align*}\right.
$$

in the following sense: $\mathbf{w} \in V_{\tau}$ and for every $\phi \in V_{\tau}$,
$2 \nu \int_{\mathcal{F}} \mathbf{D}(\mathbf{w}): \mathbf{D}(\phi) \mathrm{d} x+\int_{\mathcal{F}}[(\mathbf{w} \cdot \nabla) \mathbf{u}+(\mathbf{u} \cdot \nabla) \mathbf{w}] \cdot \phi \mathrm{d} x+\int_{\partial \mathcal{S}} \beta \mathbf{w} \cdot \phi \mathrm{d} \mathcal{H}^{N-1}=-\int_{\partial \mathcal{S}} h \mathbf{u} \cdot \phi \mathrm{~d} \mathcal{H}^{N-1}$.

The following corollary has interesting applications to the drag optimization problem.
Corollary 4 The mapping

$$
\beta \in \mathcal{O} \rightarrow T(\beta) \in \mathbb{R}
$$

is differentiable, and for every $\beta \in \mathcal{O}$, its derivative $D T(\beta) \in \mathcal{L}\left(L^{2}(\partial \mathcal{S}), \mathbb{R}\right)$ is defined by

$$
D T(\beta) h=2\left(2 \nu \int_{\mathcal{F}} D(\mathbf{u}): D(\mathbf{w}) \mathrm{d} x+\int_{\partial \mathcal{S}} \beta \mathbf{u} \cdot \mathbf{w}\right)+\int_{\partial \mathcal{S}} h|\mathbf{u}|^{2} \mathrm{~d} \mathcal{H}^{N-1} \quad \forall h \in L^{2}(\partial \mathcal{S})
$$

where $\mathbf{u}=R(\beta)$ and $\mathbf{w}=D R(\beta) h$ is the solution to system (13). For every β, the gradient of T at β with respect to the $L^{2}(\partial \mathcal{S})$ topology is given by the following formula:

$$
\begin{equation*}
\nabla T(\beta)=(\mathbf{u}+\psi) \cdot \mathbf{u} \quad \text { q.e. on } \partial \mathcal{S}, \tag{15}
\end{equation*}
$$

where $\mathbf{u}=R(\beta)$ and ψ is the unique solution to

$$
\left\{\begin{align*}
-\operatorname{div}(\sigma(\psi, p))+(\nabla \mathbf{u})^{T} \psi-(\mathbf{u} \cdot \nabla) \psi & =2(\mathbf{u} \cdot \nabla) \mathbf{u} \text { in } \mathcal{F}, \tag{16}\\
\operatorname{div} \psi & =0 \text { in } \mathcal{F}, \\
\psi & =0 \text { on } \partial \Omega \\
\psi \cdot \mathbf{n} & =0 \text { on } \partial \mathcal{S} \\
2 \nu[\mathbf{D}(\psi) \mathbf{n}]_{t a n}+\beta \psi & =0 \text { on } \partial \mathcal{S}
\end{align*}\right.
$$

in the sense that $\psi \in V_{\tau}$ and for every $\phi \in V_{\tau}$,

$$
\begin{equation*}
2 \nu \int_{\mathcal{F}} \mathbf{D}(\psi): \mathbf{D}(\phi) \mathrm{d} x+\int_{\mathcal{F}}\left[(\nabla \mathbf{u})^{T} \psi-(\mathbf{u} \cdot \nabla) \psi\right] \cdot \phi \mathrm{d} x+\int_{\partial \mathcal{S}} \beta \psi \cdot \phi \mathrm{d} \mathcal{H}^{N-1}=2 \int_{\mathcal{F}}[(\mathbf{u} \cdot \nabla) \mathbf{u}] \cdot \phi \mathrm{d} x \tag{17}
\end{equation*}
$$

3 Proof of Theorems 1 and 2

In order to prove Theorems 1 and 2, we follow the standard steps from the theory of stationary Navier-Stokes equations, which we adapt to the framework of friction-driven boundary conditions. These arguments are developed in [9], for instance.

We define the bilinear form $a_{0}: \mathbf{H}^{1}(\mathcal{F}) \times \mathbf{H}^{1}(\mathcal{F}) \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
a_{0}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)=2 \nu \int_{\mathcal{F}} \mathbf{D}\left(\mathbf{v}_{1}\right): \mathbf{D}\left(\mathbf{v}_{2}\right) \mathrm{d} x+\int_{\partial \mathcal{S}} A \mathbf{v}_{1} \cdot \mathbf{v}_{2} \mathrm{~d} \mu \quad \forall\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right) \in \mathbf{H}^{1}(\mathcal{F}) \times \mathbf{H}^{1}(\mathcal{F}), \tag{18}
\end{equation*}
$$

and the trilinear form $a_{1}: \mathbf{H}^{1}(\mathcal{F}) \times \mathbf{H}^{1}(\mathcal{F}) \times \mathbf{H}^{1}(\mathcal{F}) \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
a_{1}\left(\mathbf{v}, \mathbf{v}_{1}, \mathbf{v}_{2}\right)=\int_{\mathcal{F}}\left[(\mathbf{v} \cdot \nabla) \mathbf{v}_{1}\right] \cdot \mathbf{v}_{2} \mathrm{~d} x \quad \forall\left(\mathbf{v}, \mathbf{v}_{1}, \mathbf{v}_{2}\right) \in \mathbf{H}^{1}(\mathcal{F}) \times \mathbf{H}^{1}(\mathcal{F}) \times \mathbf{H}^{1}(\mathcal{F}) \tag{19}
\end{equation*}
$$

Let $\mathbf{u}_{0} \in K$ such that

$$
\begin{equation*}
\left\|\mathbf{u}_{0}\right\|_{\mathbf{H}^{1}(\mathcal{F})} \leqslant C_{0}\left|\mathbf{u}_{\infty}\right| \tag{20}
\end{equation*}
$$

where $C_{0}>0$ depends only on \mathcal{F}. The existence of C_{0} and $\mathbf{u}_{0} \in K$ satisfying (20) was proved by Bogovskiŭ [3]. Setting $\widetilde{\mathbf{u}}=\mathbf{u}-\mathbf{u}_{0}$, we get that a function $\mathbf{u} \in K$ satisfies (12) if and only if $\widetilde{\mathbf{u}} \in V$ and satisfies the following identity:

$$
\begin{array}{r}
\forall \phi \in V \quad a_{0}(\widetilde{\mathbf{u}}, \phi)+a_{1}\left(\mathbf{u}_{0}, \widetilde{\mathbf{u}}, \phi\right)+a_{1}\left(\widetilde{\mathbf{u}}, \mathbf{u}_{0}, \phi\right)+a_{1}(\widetilde{\mathbf{u}}, \widetilde{\mathbf{u}}, \phi) \\
=-a_{0}\left(\mathbf{u}_{0}, \phi\right)-a_{1}\left(\mathbf{u}_{0}, \mathbf{u}_{0}, \phi\right) . \tag{21}
\end{array}
$$

We define the mapping $a: \mathbf{H}^{1}(\mathcal{F}) \times \mathbf{H}^{1}(\mathcal{F}) \times \mathbf{H}^{1}(\mathcal{F}) \rightarrow \mathbb{R}$ by

$$
\begin{align*}
& a\left(\mathbf{v}, \mathbf{v}_{1}, \mathbf{v}_{2}\right)=a_{0}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)+a_{1}\left(\mathbf{u}_{0}, \mathbf{v}_{1}, \mathbf{v}_{2}\right)+a_{1}\left(\mathbf{v}_{1}, \mathbf{u}_{0}, \mathbf{v}_{2}\right)+a_{1}\left(\mathbf{v}, \mathbf{v}_{1}, \mathbf{v}_{2}\right) \\
& \forall\left(\mathbf{v}, \mathbf{v}_{1}, \mathbf{v}_{2}\right) \in \mathbf{H}^{1}(\mathcal{F}) \times \mathbf{H}^{1}(\mathcal{F}) \times \mathbf{H}^{1}(\mathcal{F}), \tag{22}
\end{align*}
$$

and the linear form $\mathbf{f}=\mathbf{f}\left(\mathbf{u}_{0}\right) \in V^{\prime}$ by

$$
\langle\mathbf{f}, \phi\rangle_{V^{\prime} \times V}=-a_{0}\left(\mathbf{u}_{0}, \phi\right)-a_{1}\left(\mathbf{u}_{0}, \mathbf{u}_{0}, \phi\right) \quad \forall \phi \in V .
$$

The problem we consider is equivalent to the following : find $\mathbf{u}_{0} \in K$ and $\widetilde{\mathbf{u}} \in V$ such that

$$
\begin{equation*}
a(\widetilde{\mathbf{u}}, \widetilde{\mathbf{u}}, \phi)=\left\langle\mathbf{f}\left(\mathbf{u}_{0}\right), \phi\right\rangle_{V^{\prime} \times V} \quad \forall \phi \in V \tag{23}
\end{equation*}
$$

We recall the following results from [9].
Theorem 5 Assume that the following hypotheses hold:
(i) for all $\mathbf{v} \in \mathbf{H}^{1}(\mathcal{F})$, the mapping $\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right) \rightarrow a\left(\mathbf{v}, \mathbf{v}_{1}, \mathbf{v}_{2}\right)$ is continuous on $\mathbf{H}^{1}(\mathcal{F}) \times$ $\mathbf{H}^{1}(\mathcal{F})$;
(ii) there exists a constant $\alpha>0$ such that

$$
\begin{equation*}
a(\phi, \phi, \phi) \geqslant \alpha\|\phi\|_{\mathbf{H}^{1}(\mathcal{F})}^{2} \quad \forall \phi \in V ; \tag{24}
\end{equation*}
$$

(iii) the space V is separable and, for all $\phi \in V$, the mapping

$$
\mathbf{v} \rightarrow a(\mathbf{v}, \mathbf{v}, \phi)
$$

is sequentially weakly continuous on V, i.e.,

$$
\begin{equation*}
\text { weak } \lim _{m \rightarrow \infty} \mathbf{v}_{m}=\mathbf{v} \text { in V implies } \lim _{m \rightarrow \infty} a\left(\mathbf{v}_{m}, \mathbf{v}_{m}, \phi\right)=a(\mathbf{v}, \mathbf{v}, \phi) \quad \forall \phi \in V . \tag{25}
\end{equation*}
$$

Then, problem (23) admits at least one solution.
Theorem 6 Moreover, assume that
(iv) the bilinear form $a(\mathbf{v}, \cdot, \cdot)$ is uniformly V-elliptic with respect to \mathbf{v}, i.e., there exists a constant $\alpha>0$ such that

$$
\begin{equation*}
a(\mathbf{v}, \phi, \phi) \geqslant \alpha\|\phi\|_{\mathbf{H}^{1}(\mathcal{F})}^{2} \quad \forall(\mathbf{v}, \phi) \in V \times V \tag{26}
\end{equation*}
$$

(v) there exists a continuous and monotonically increasing function $L: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$such that for all $\eta>0$

$$
\begin{gather*}
\left|a\left(\mathbf{v}_{1}, \mathbf{v}_{1}, \mathbf{v}_{2}\right)-a\left(\mathbf{v}_{2}, \mathbf{v}_{1}, \mathbf{v}_{2}\right)\right| \leqslant L(\eta)\left\|\mathbf{v}_{1}\right\|_{\mathbf{H}^{1}(\mathcal{F})}\left\|\mathbf{v}_{2}\right\|_{\mathbf{H}^{1}(\mathcal{F})}\left\|\mathbf{v}_{1}-\mathbf{v}_{2}\right\|_{\mathbf{H}^{1}(\mathcal{F})} \\
\forall \mathbf{v}_{1}, \mathbf{v}_{2} \in V, \quad \forall \mathbf{v}_{1}, \mathbf{v}_{2} \in S_{\eta}=\left\{\mathbf{v} \in V \mid\|\mathbf{v}\|_{\mathbf{H}^{1}(\mathcal{F})} \leqslant \eta\right\} . \tag{27}
\end{gather*}
$$

Then, under the condition

$$
\begin{equation*}
\left[\|\mathbf{f}\|_{V^{\prime}} /\left(\alpha^{2}\right)\right] L\left(\|\mathbf{f}\|_{V^{\prime}} / \alpha\right)<1 \tag{28}
\end{equation*}
$$

the solution $\widetilde{\mathbf{u}} \in V$ to problem (23) is unique, and satisfies the following estimate:

$$
\begin{equation*}
\|\widetilde{\mathbf{u}}\|_{\mathbf{H}^{1}(\mathcal{F})} \leqslant\|\mathbf{f}\|_{V^{\prime}} / \alpha . \tag{29}
\end{equation*}
$$

Proof of Theorem 1. Let us fix $\mathbf{u}_{\infty} \in \mathbb{R}^{N}$ and $\nu>0$. We need to prove that the mapping a defined by (22) satisfies the assumptions of Theorem 5 .

By Sobolev imbedding theorem (see the standard monograph by Adams [1]), $\mathbf{H}^{1}(\mathcal{F})$ is continuously imbedded in $L^{4}\left(\mathcal{F}, \mathbb{R}^{N}\right)$ for $N=2,3$. Therefore, by Hölder inequality, the mapping a_{1} defined by (19) is continuous. Since a_{0} defined by (18) is continuous, we obtain the continuity of a, and consequently, condition (i) from Theorem 5 holds.

To prove ($i i$), we prove the stronger condition (iv). We use the following Korn inequality, which is proved for instance in [4] (see the proof of Lemma VII.3.5, p. 329):

Lemma 7 There exists $C_{1}>0$ such that for all $\phi \in V$,

$$
\|\nabla \phi\|_{L^{2}\left(\mathcal{F}, \mathbb{R}^{N \times N}\right)} \leqslant C_{1}\|D(\phi)\|_{L^{2}\left(\mathcal{F}, \mathbb{R}^{N \times N}\right)} .
$$

Consequently, by Poincaré inequality, there exists $C_{2}>0$ such that for all $\phi \in V$,

$$
\begin{equation*}
\frac{1}{C_{2}}\|\phi\|_{\mathbf{H}^{1}(\mathcal{F})}^{2} \leqslant 2\|D(\phi)\|_{L^{2}\left(\mathcal{F}, \mathbb{R}^{N \times N}\right)}^{2} . \tag{30}
\end{equation*}
$$

Let $\mathbf{v}, \phi \in V$. We observe that

$$
a(\mathbf{v}, \phi, \phi)=a_{0}(\phi, \phi)+a_{1}\left(\phi, \mathbf{u}_{0}, \phi\right) .
$$

Indeed, $a_{1}\left(\mathbf{u}_{0}, \phi, \phi\right)=0$ and $a_{1}(\mathbf{v}, \phi, \phi)=0$, which comes from the following computation:

$$
\begin{align*}
a_{1}\left(\mathbf{u}_{0}, \phi, \phi\right) & =\frac{1}{2} \int_{\mathcal{F}}\left(\mathbf{u}_{0} \cdot \nabla\right)\left(|\phi|^{2}\right) \mathrm{d} x \\
& =\frac{1}{2}\left(\int_{\partial \mathcal{S}}|\phi|^{2} \mathbf{u}_{0} \cdot \mathbf{n} \mathrm{~d} \mathcal{H}^{N-1}+\int_{\partial \Omega}|\phi|^{2} \mathbf{u}_{0} \cdot \mathbf{n} \mathrm{~d} \mathcal{H}^{N-1}\right) . \tag{31}
\end{align*}
$$

Since $\phi \in V, \phi=0$ on $\partial \Omega$, and since $\mathbf{u}_{0} \in K, \mathbf{u}_{0} \cdot \mathbf{n}=0$ on $\partial \mathcal{S}$. Therefore, last boundary integrals vanish. Replacing \mathbf{u}_{0} by \mathbf{v} we obtain the desired conclusion.

For every $\mathbf{u}_{0} \in K$ satisfying (20), we note $\rho\left(\mathbf{u}_{0}\right)$ the best positive constant such that

$$
\begin{equation*}
\left|a_{1}\left(\phi, \mathbf{u}_{0}, \phi\right)\right| \leqslant \rho\left(\mathbf{u}_{0}\right)\|\phi\|_{\mathbf{H}^{1}(\mathcal{F})}^{2} \quad \forall \phi \in V \tag{32}
\end{equation*}
$$

We prove the following result:
Lemma 8 For every $\delta>0$, there exists $\mathbf{u}_{0} \in K$ satisfying (20) and such that $\rho\left(\mathbf{u}_{0}\right) \leqslant \delta$.
Proof. We consider a bounded extension operator

$$
P: \mathbf{H}^{1}(\mathcal{F}) \rightarrow H_{0}^{1}\left(\Omega, \mathbb{R}^{N}\right)
$$

Let $\delta>0$. By the proof of Lemma 2.3 in [9], chapter IV, there exists $\widetilde{\mathbf{u}}_{0} \in H^{1}\left(\Omega, \mathbb{R}^{N}\right)$ such that

$$
\left\{\begin{array}{rlr}
\operatorname{div} \widetilde{\mathbf{u}}_{0} & =0 & \text { in } \Omega \\
\widetilde{\mathbf{u}}_{0} & =\mathbf{u}_{\infty} & \text { on } \partial \Omega \\
\widetilde{\mathbf{u}}_{0} & =0 \quad \text { in a neighborhood of } \mathcal{S}
\end{array}\right.
$$

and such that for every $\varphi \in H_{0}^{1}\left(\Omega, \mathbb{R}^{N}\right)$,

$$
\begin{equation*}
\left|\int_{\Omega}\left[(\varphi \cdot \nabla) \widetilde{\mathbf{u}}_{0}\right] \cdot \varphi \mathrm{d} x\right| \leqslant \frac{\delta}{\|P\|}\|\varphi\|_{H^{1}\left(\Omega, \mathbb{R}^{N}\right)} . \tag{33}
\end{equation*}
$$

Let $\phi \in V$. By inequality (33), we obtain

$$
\begin{aligned}
\int_{\Omega}\left[((P \phi) \cdot \nabla) \widetilde{\mathbf{u}}_{0}\right] \cdot(P \phi) \mathrm{d} x & \leqslant \frac{\delta}{\|P\|}\|P \phi\|_{H^{1}\left(\Omega, \mathbb{R}^{N}\right)} \\
& \leqslant \delta\|\phi\|_{\mathbf{H}^{1}(\mathcal{F})} .
\end{aligned}
$$

Since $\widetilde{\mathbf{u}}_{0}$ vanishes on \mathcal{S}, observing that

$$
\int_{\Omega}\left[((P \phi) \cdot \nabla) \widetilde{\mathbf{u}}_{0}\right] \cdot(P \phi) \mathrm{d} x=\int_{\mathcal{F}}\left[(\phi \cdot \nabla) \widetilde{\mathbf{u}}_{0}\right] \cdot \phi \mathrm{d} x
$$

we obtain the desired result with $\mathbf{u}_{0}=\left(\widetilde{\mathbf{u}}_{0}\right)_{\mid \mathcal{F}}$.
Let $\mathbf{u}_{0} \in K$ such that $\rho\left(\mathbf{u}_{0}\right)<\nu / C_{2}$, where C_{2} is defined by (30). By conditions (30) and (32), for every $\mathbf{v}, \phi \in V$,

$$
a(\mathbf{v}, \phi, \phi) \geqslant\left(\frac{\nu}{C_{2}}-\rho\left(\mathbf{u}_{0}\right)\right)\|\phi\|_{\mathbf{H}^{1}(\mathcal{F})}^{2}
$$

Consequently, condition (iv) holds with $\alpha=\nu / C_{2}-\rho\left(\mathbf{u}_{0}\right)$.
To prove condition (25), we only need to consider the nonlinear term $a_{1}\left(\mathbf{v}_{m}, \mathbf{v}_{m}, \phi\right)$. Integrating by part and using the incompressibility condition, we obtain

$$
a_{1}\left(\mathbf{v}_{m}, \mathbf{v}_{m}, \phi\right)=-\int_{\mathcal{F}}\left[\left(\mathbf{v}_{m} \cdot \nabla\right) \phi\right] \cdot \mathbf{v} \mathrm{d} x+\int_{\partial \mathcal{S} \cup \partial \Omega}\left(\mathbf{v}_{m} \cdot \phi\right)\left(\mathbf{v}_{m} \cdot \mathbf{n}\right) \mathrm{d} \mathcal{H}^{N-1}
$$

Since $\phi, \mathbf{v}_{m} \in V$, we conclude as above that

$$
a_{1}\left(\mathbf{v}_{m}, \mathbf{v}_{m}, \phi\right)=-\int_{\mathcal{F}}\left[\left(\mathbf{v}_{m} \cdot \nabla\right) \phi\right] \cdot \mathbf{v}_{m} \mathrm{~d} x
$$

Since $\mathbf{H}^{1}(\mathcal{F})$ is continuously imbedded in $L^{4}\left(\mathcal{F}, \mathbb{R}^{N}\right)$, we obtain

$$
\lim _{m \rightarrow \infty} a_{1}\left(\mathbf{v}_{m}, \mathbf{v}_{m}, \phi\right)=a_{1}(\mathbf{v}, \mathbf{v}, \phi)
$$

This proves condition (iii).
Now let $\mathbf{u} \in K$ be a weak solution to System (1)-(5). We define $\widetilde{\mathbf{u}}=\mathbf{u}-\mathbf{u}_{0}$. Applying relation (23) to $\phi=\widetilde{\mathbf{u}}$ and using inequality (26), we obtain

$$
\|\widetilde{\mathbf{u}}\|_{\mathbf{H}^{1}(\mathcal{F})} \leqslant \frac{1}{\alpha}\left\|\mathbf{f}\left(\mathbf{u}_{0}\right)\right\|_{V^{\prime}}
$$

By the triangular inequality, estimate (9) holds with $M=\left\|\mathbf{u}_{0}\right\|_{\mathbf{H}^{1}(\mathcal{F})}+1 / \alpha\left\|\mathbf{f}\left(\mathbf{u}_{0}\right)\right\|_{V^{\prime}}$. This concludes the proof of Theorem 1.

Proof of Theorem 2. Let us fix $\mathbf{u}_{\infty} \in \mathbb{R}^{N}$.
To prove (v), we observe that for $\mathbf{v}, \widetilde{\mathbf{v}}, \mathbf{v}_{1}, \mathbf{v}_{2} \in V$,

$$
a\left(\mathbf{v}, \mathbf{v}_{1}, \mathbf{v}_{2}\right)-a\left(\widetilde{\mathbf{v}}, \mathbf{v}_{1}, \mathbf{v}_{2}\right)=a_{1}\left(\mathbf{v}-\widetilde{\mathbf{v}}, \mathbf{v}_{1}, \mathbf{v}_{2}\right) .
$$

Introducing

$$
\begin{equation*}
\mathcal{N}=\sup _{\mathbf{v}, \mathbf{v}_{1}, \mathbf{v}_{2} \in V \backslash\{0\}} \frac{a_{1}\left(\mathbf{v}, \mathbf{v}_{1}, \mathbf{v}_{2}\right)}{\|\mathbf{v}\|_{\mathbf{H}^{1}(\mathcal{F})}\left\|\mathbf{v}_{1}\right\|_{\mathbf{H}^{1}(\mathcal{F})}\left\|\mathbf{v}_{2}\right\|_{\mathbf{H}^{1}(\mathcal{F})}}, \tag{34}
\end{equation*}
$$

we obtain that (27) holds with $L(\eta)=\mathcal{N}$ for all $\eta>0$.
We define

$$
\nu_{0}=\inf \left\{C_{2}\left[\rho\left(\mathbf{u}_{0}\right)+\left(\mathcal{N}\left\|\mathbf{f}\left(\mathbf{u}_{0}\right)\right\|_{V^{\prime}}\right)^{1 / 2}\right], \mathbf{u}_{0} \in K \text { satisfying }(20)\right\} .
$$

Estimate (10) results from the existence of a constant $C_{3}>0$, such that for every $\phi \in V$,

$$
\left|\left\langle\mathbf{f}\left(\mathbf{u}_{0}\right), \phi\right\rangle_{V^{\prime} \times V}\right| \leqslant C_{3}\left\|\mathbf{u}_{0}\right\|_{\mathbf{H}^{1}(\mathcal{F})}\left(1+\left\|\mathbf{u}_{0}\right\|_{\mathbf{H}^{1}(\mathcal{F})}\right)\|\phi\|_{\mathbf{H}^{1}(\mathcal{F})} .
$$

As a result, by (20), there exists $C_{4}>0$ such that

$$
\left\|\mathbf{f}\left(\mathbf{u}_{0}\right)\right\|_{V^{\prime}} \leqslant C_{4}\left|\mathbf{u}_{\infty}\right|\left(1+\left|\mathbf{u}_{\infty}\right|\right),
$$

and consequently, inequality (35) implies that there exists a constant $C_{5}>0$ such that

$$
\nu_{0}^{2} \leqslant C_{5}\left(\left|\mathbf{u}_{\infty}\right|+\left|\mathbf{u}_{\infty}\right|^{2}\right) .
$$

This proves (10).
Let $\nu>\nu_{0}$. By definition of the infimum, there exists $\mathbf{u}_{0} \in K$ satisfying (20) and such that

$$
\begin{equation*}
\nu_{0} \leqslant C_{2}\left[\rho\left(\mathbf{u}_{0}\right)+\left(\mathcal{N}\left\|\mathbf{f}\left(\mathbf{u}_{0}\right)\right\|_{V^{\prime}}\right)^{1 / 2}\right]<\nu \tag{35}
\end{equation*}
$$

We fix $\alpha=\nu / C_{2}-\rho\left(\mathbf{u}_{0}\right)$. By (35), $\alpha>0$ and by the same argument as above, α satisfies (26). Now let $\mathbf{u} \in K$ be a weak solution to System (1)-(5) and let $\widetilde{\mathbf{u}}=\mathbf{u}-\mathbf{u}_{0}$. Condition (28) reads

$$
\mathcal{N}\left\|\mathbf{f}\left(\mathbf{u}_{0}\right)\right\|_{V^{\prime}}<\alpha^{2}
$$

which is equivalent to

$$
\begin{equation*}
\left(\mathcal{N}\left\|\mathbf{f}\left(\mathbf{u}_{0}\right)\right\|_{V^{\prime}}\right)^{1 / 2}<\nu / C_{2}-\rho\left(\mathbf{u}_{0}\right) \tag{36}
\end{equation*}
$$

By (35), last estimate holds. By Theorem 6, $\widetilde{\mathbf{u}} \in V$ is the unique solution to (23). Using (10) and (36), we obtain the following estimate:

$$
\begin{equation*}
\|\widetilde{\mathbf{u}}\|_{\mathbf{H}^{1}(\mathcal{F})}<\frac{1}{\mathcal{N}}\left(\frac{\nu}{C_{2}}-\rho\left(\mathbf{u}_{0}\right)\right) \tag{37}
\end{equation*}
$$

Consequently, be (20) and the triangular inequality,

$$
\|\mathbf{u}\|_{\mathbf{H}^{1}(\mathcal{F})} \leqslant C_{0}\left|\mathbf{u}_{\infty}\right|+\frac{1}{\mathcal{N} C_{2}} \nu .
$$

This proves (11).
By taking the infimum over all admissible functions \mathbf{u}_{0}, for $\nu>\nu_{0}$, we obtain the uniqueness of the function $\widetilde{\mathbf{u}} \in K$ satisfying (21). Therefore, System (1)-(5) admits one unique weak solution $\mathbf{u}_{0}+\widetilde{\mathbf{u}} \in \mathbf{H}^{1}(\mathcal{F})$.

4 Proof of Theorem 3

In this section, we assume that $\mathcal{V}(x)$ is equal to the tangent hyperplane to $\partial \mathcal{S}$ on q.e. x on the boundary, $A \equiv \operatorname{Id}$ and μ is absolutely continuous with respect to the surface measure on $\partial \mathcal{S}$ with a density $\beta \in L^{2}(\partial \mathcal{S})$.

Let $\mathbf{u}_{\infty} \in \mathbb{R}^{N}$. Let $\nu_{0}>0$ as in Theorem 2, and $\nu>\nu_{0}$. Let $\mathbf{u}_{0} \in K$ satisfying (20) and such that

$$
\begin{equation*}
\nu_{0} \leqslant C_{2}\left[\rho\left(\mathbf{u}_{0}\right)+\left(\mathcal{N}\left\|\mathbf{f}\left(\mathbf{u}_{0}\right)\right\|_{V_{\tau}^{\prime}}\right)^{1 / 2}\right]<\nu \tag{38}
\end{equation*}
$$

We use the mappings introduced in Section 3. We define $\mathbf{g}=\mathbf{g}\left(\mathbf{u}_{0}\right) \in V_{\tau}^{\prime}$ by

$$
\langle\mathbf{g}, \phi\rangle_{V_{\tau}^{\prime} \times V_{\tau}}=-a_{0}\left(\mathbf{u}_{0}, \phi\right)-a_{1}\left(\mathbf{u}_{0}, \mathbf{u}_{0}, \phi\right) \quad \forall \phi \in V_{\tau}
$$

The problem we consider is equivalent to the following: find $\mathbf{u}_{0} \in K_{\tau}$ and $\widetilde{\mathbf{u}} \in V_{\tau}$ such that

$$
\begin{equation*}
a(\widetilde{\mathbf{u}}, \widetilde{\mathbf{u}}, \phi)=\left\langle\mathbf{g}\left(\mathbf{u}_{0}\right), \phi\right\rangle_{V_{\tau}^{\prime} \times V_{\tau}} \quad \forall \phi \in V_{\tau} \tag{39}
\end{equation*}
$$

Proof of Theorem 3. The proof is based on the implicit function theorem. We will prove that the mapping

$$
\beta \in \mathcal{O} \rightarrow \widetilde{\mathbf{u}} \in V_{\tau}
$$

where $\widetilde{\mathbf{u}}$ satisfies (21), is differentiable. We introduce the open subset of V_{τ} :

$$
V_{0}=\left\{\xi \in V_{\tau} \left\lvert\,\|\xi\|_{\mathbf{H}^{1}(\mathcal{F})}<\frac{1}{\mathcal{N}}\left(\frac{\nu}{C_{2}}-\rho\left(\mathbf{u}_{0}\right)\right)\right.\right\}
$$

and define the mapping

$$
F: \mathcal{O} \times V_{0} \rightarrow V_{\tau}^{\prime}
$$

by

$$
\begin{align*}
\forall \phi \in V_{\tau} \quad\langle F(\beta, \mathbf{v}), \phi\rangle_{V_{\tau}^{\prime} \times V_{\tau}}= & a_{0}(\mathbf{v}, \phi)+a_{1}\left(\mathbf{u}_{0}, \mathbf{v}, \phi\right)+a_{1}\left(\mathbf{v}, \mathbf{u}_{0}, \phi\right)+a_{1}(\mathbf{v}, \mathbf{v}, \phi) \\
& +a_{0}\left(\mathbf{u}_{0}, \phi\right)+a_{1}\left(\mathbf{u}_{0}, \mathbf{u}_{0}, \phi\right) . \tag{40}
\end{align*}
$$

The mapping F is well defined and F is of class \mathcal{C}^{∞}. By the proof of Theorems 1 and 2, for every $\beta \in \mathcal{O}$ there exists one unique $\widetilde{\mathbf{u}} \in V_{0}$ satisfying (21). We need to prove that for every $(\beta, \mathbf{v}) \in \mathcal{O} \times V_{0}, D_{\mathbf{v}} F(\beta, \mathbf{v}) \in \mathcal{L}\left(V_{\tau}, V_{\tau}^{\prime}\right)$ is invertible with continuous inverse.

For every $(\beta, \mathbf{v}) \in \mathcal{O} \times V_{0}, D_{\mathbf{v}} F(\beta, \mathbf{v}) \in \mathcal{L}\left(V_{\tau}, V_{\tau}^{\prime}\right)$ is defined by

$$
\begin{aligned}
& \forall \xi, \phi \in V_{\tau} \quad\left\langle D_{\mathbf{v}} F(\beta, \mathbf{v}) \xi, \phi\right\rangle_{V_{\tau}^{\prime} \times V_{\tau}}=a_{0}(\xi, \phi)+a_{1}\left(\mathbf{u}_{0}, \xi, \phi\right)+a_{1}\left(\xi, \mathbf{u}_{0}, \phi\right) \\
&+a_{1}(\xi, \mathbf{v}, \phi)+a_{1}(\mathbf{v}, \xi, \phi)
\end{aligned}
$$

We need to prove that for every $(\beta, \mathbf{v}) \in \mathcal{O} \times V_{0}$, there exists a constant $C>0$ such that for every $\mathbf{h} \in V_{\tau}^{\prime}$, there exists one unique $\xi \in V_{\tau}$ such that

$$
\begin{equation*}
D_{\mathbf{v}} F(\beta, \mathbf{v}) \xi=\mathbf{h} \tag{41}
\end{equation*}
$$

with the estimate

$$
\begin{equation*}
\|\xi\|_{\mathbf{H}^{1}(\mathcal{F})} \leqslant C\|\mathbf{h}\|_{V_{\tau}^{\prime}} . \tag{42}
\end{equation*}
$$

Fix $(\beta, \mathbf{v}) \in \mathcal{O} \times V_{0}$. We will prove that the bilinear form associated to $D_{\mathbf{v}} F(\beta, \mathbf{v})$ satisfies the assumptions of Lax-Milgram theorem. The continuity results from the continuity of a_{0} and a_{1}, and the coercivity is a consequence of the definition of V_{0}. Indeed, by computation (31), for all $\phi \in V_{\tau}$,

$$
\left\langle D_{\mathbf{v}} F(\beta, \mathbf{v}) \phi, \phi\right\rangle_{V_{\tau}^{\prime} \times V_{\tau}}=a_{0}(\phi, \phi)+a_{1}\left(\phi, \mathbf{u}_{0}, \phi\right)+a_{1}(\phi, \mathbf{v}, \phi)
$$

Consequently, using property (30) and definitions (32) and (34), we obtain for all $\phi \in V_{\tau}$,

$$
\left\langle D_{\mathbf{v}} F(\beta, \mathbf{v}) \phi, \phi\right\rangle_{V_{\tau}^{\prime} \times V_{\tau}} \geqslant\left(\frac{\nu}{C_{2}}-\rho\left(\mathbf{u}_{0}\right)-\mathcal{N}\|v\|_{\mathbf{H}^{1}(\mathcal{F})}\right)\|\phi\|_{\mathbf{H}^{1}(\mathcal{F})}^{2} .
$$

Since $\mathbf{v} \in V_{0}$,

$$
\frac{\nu}{C_{2}}-\rho\left(\mathbf{u}_{0}\right)-\mathcal{N}\|v\|_{\mathbf{H}^{1}(\mathcal{F})}>0 .
$$

This proves that the mapping

$$
\beta \in \mathcal{O} \rightarrow \widetilde{\mathbf{u}} \in V_{\tau}
$$

where $\widetilde{\mathbf{u}}$ satisfies (39), is differentiable. Consequently, since for all $\beta \in \mathcal{O}, R(\beta)=\mathbf{u}_{0}+\widetilde{\mathbf{u}}, R$ is differentiable on \mathcal{O}. Moreover, for every $\beta \in \mathcal{O}, D R(\beta) \in \mathcal{L}\left(L^{2}(\partial \mathcal{S}), \mathbf{H}\right)$ is defined by

$$
D R(\beta)=-\left[D_{v} F\left(\beta, R(\beta)-\mathbf{u}_{0}\right)\right]^{-1} D_{\beta} F\left(\beta, R(\beta)-\mathbf{u}_{0}\right)
$$

Since for every $(\beta, \mathbf{v}) \in \mathcal{O} \times V_{0}, D_{\beta} F(\beta, \mathbf{v}) \in \mathcal{L}\left(L^{2}(\partial \mathcal{S}), V_{\tau}^{\prime}\right)$ is defined by

$$
\forall h \in L^{2}(\partial \mathcal{S}), \forall \phi \in V_{\tau} \quad\left\langle D_{\beta} F(\beta, \mathbf{v}), h\right\rangle=\int_{\partial \mathcal{S}} h\left(\mathbf{v}+\mathbf{u}_{0}\right) \cdot \phi \mathrm{d} \mathcal{H}^{N-1}
$$

defining $\mathbf{w}=D R(\beta) h$ for $h \in L^{2}(\partial \mathcal{S})$, we obtain that $\mathbf{w} \in V_{\tau}$ satisfies the following identity:

$$
\begin{aligned}
\forall \phi \in V_{\tau} \quad & a_{0}(\mathbf{w}, \phi)+a_{1}\left(\mathbf{u}_{0}, \mathbf{w}, \phi\right)+a_{1}\left(\mathbf{w}, \mathbf{u}_{0}, \phi\right)+a_{1}\left(\mathbf{w}, R(\beta)-\mathbf{u}_{0}, \phi\right) \\
& +a_{1}\left(R(\beta)-\mathbf{u}_{0}, \mathbf{w}, \phi\right)=-\int_{\partial \mathcal{S}} h R(\beta) \cdot \phi \mathrm{d} \mathcal{H}^{N-1} .
\end{aligned}
$$

Using the trilinearity of a_{1}, we obtain (14).
Proof of Corollary 4. Noticing that for every $\phi \in V_{\tau}$,

$$
\left[(\nabla \mathbf{u})^{T} \psi\right] \cdot \phi=[(\phi \cdot \nabla) \mathbf{u}] \cdot \psi
$$

and

$$
-\int_{\mathcal{F}}[(\mathbf{u} \cdot \nabla) \psi] \cdot \phi \mathrm{d} x=\int_{\mathcal{F}}[(\mathbf{u} \cdot \nabla) \phi] \cdot \psi \mathrm{d} x
$$

(17) can be written in the following form:

$$
\begin{align*}
\forall \phi \in V_{\tau} \quad & 2 \nu \int_{\mathcal{F}} \mathbf{D}(\psi): \mathbf{D}(\phi) \mathrm{d} x+\int_{\mathcal{F}} \psi \cdot[(\phi \cdot \nabla) \mathbf{u}+(\mathbf{u} \cdot \nabla) \phi] \mathrm{d} x+\int_{\partial \mathcal{S}} \beta \psi \cdot \phi \mathrm{d} \mathcal{H}^{N-1} \\
& =2 \int_{\mathcal{F}}[(\mathbf{u} \cdot \nabla) \mathbf{u}] \cdot \phi \mathrm{d} x . \tag{43}
\end{align*}
$$

Let us fix $\beta \in \mathcal{O}$ and $h \in L^{2}(\partial \mathcal{S})$. We note $\mathbf{u}=R(\beta)$ and $\mathbf{w}=D R(\beta) h$. Taking $\phi=\mathbf{w}$ in (12), we express $D T(\beta) h$ as follows:

$$
\begin{equation*}
D T(\beta) h=-2 \int_{\mathcal{F}}[(\mathbf{u} \cdot \nabla) \mathbf{u}] \cdot \mathbf{w} \mathrm{d} x+\int_{\partial \mathcal{S}} h|\mathbf{u}|^{2} \mathrm{~d} \mathcal{H}^{N-1} \tag{44}
\end{equation*}
$$

Besides, taking $\phi=\psi$ in (14) and $\phi=\mathbf{w}$ in (43), we obtain

$$
\begin{aligned}
& 2 \nu \int_{\mathcal{F}} \mathbf{D}(\mathbf{w}): \mathbf{D}(\psi) \mathrm{d} x+\int_{\mathcal{F}}[(\mathbf{w} \cdot \nabla) \mathbf{u}+(\mathbf{u} \cdot \nabla) \mathbf{w}] \cdot \psi \mathrm{d} x+\int_{\partial \mathcal{S}} \beta \mathbf{w} \cdot \psi \mathrm{d} \mathcal{H}^{N-1} \\
& \quad=-\int_{\partial \mathcal{S}} h \mathbf{u} \cdot \psi \mathrm{~d} \mathcal{H}^{N-1}, \\
& 2 \nu \int_{\mathcal{F}} \mathbf{D}(\psi): \mathbf{D}(\mathbf{w}) \mathrm{d} x+\int_{\mathcal{F}} \psi \cdot[(\mathbf{w} \cdot \nabla) \mathbf{u}+(\mathbf{u} \cdot \nabla) \mathbf{w}] \mathrm{d} x+\int_{\partial \mathcal{S}} \beta \psi \cdot \mathbf{w} \mathrm{d} \mathcal{H}^{N-1} \\
& \quad=2 \int_{\mathcal{F}}[(\mathbf{u} \cdot \nabla) \mathbf{u}] \cdot \mathbf{w} \mathrm{d} x .
\end{aligned}
$$

Substracting these equalities, we obtain

$$
-2 \int_{\mathcal{F}}[(\mathbf{u} \cdot \nabla) \mathbf{u}] \cdot \mathbf{w} \mathrm{d} x=\int_{\partial \mathcal{S}} h \mathbf{u} \cdot \psi \mathrm{~d} \mathcal{H}^{N-1}
$$

and finally, by (44),

$$
D T(\beta) h=\int_{\partial \mathcal{S}}[(\mathbf{u}+\psi) \cdot \mathbf{u}] h \mathrm{~d} \mathcal{H}^{N-1} .
$$

This proves (15).
Remark 9 The coercivity of the bilinear form associated to the weak formulation (43) results from the following estimate (see the proof of Theorems 1 and 2):

$$
\begin{aligned}
\rho(\mathbf{u}) & \leqslant \rho\left(\mathbf{u}_{0}\right)+\rho(\widetilde{\mathbf{u}}) \\
& \leqslant \rho\left(\mathbf{u}_{0}\right)+\mathcal{N}\|\widetilde{\mathbf{u}}\|_{\mathbf{H}^{1}(\mathcal{F})} \\
& <\frac{\nu}{C_{2}} .
\end{aligned}
$$

References

[1] Robert A. Adams. Sobolev spaces. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Pure and Applied Mathematics, Vol. 65.
[2] Youcef Amirat, Didier Bresch, Jérôme Lemoine, and Jacques Simon. Effect of rugosity on a flow governed by stationary Navier-Stokes equations. Quart. Appl. Math., 59(4):769-785, 2001.
[3] M. E. Bogovskiil. Solution of the first boundary value problem for an equation of continuity of an incompressible medium. Dokl. Akad. Nauk SSSR, 248(5):1037-1040, 1979.
[4] Franck Boyer and Pierre Fabrie. Éléments d'analyse pour l'étude de quelques modèles d'écoulements de fluides visqueux incompressibles, volume 52 of Mathématiques $\varepsilon \mathcal{B}$ Applications (Berlin) [Mathematics \& Applications]. Springer-Verlag, Berlin, 2006.
[5] J. Březina. Asymptotic properties of solutions to the equations of incompressible fluid mechanics. Preprint, Necas Center for Math. Model.
[6] Dorin Bucur, Eduard Feireisl, and Šárka Nečasová. Boundary behavior of viscous fluids: influence of wall roughness and friction-driven boundary conditions. Arch. Ration. Mech. Anal., 197(1):117-138, 2010.
[7] Dorin Bucur, Eduard Feireisl, Šárka Nečasová, and Joerg Wolf. On the asymptotic limit of the Navier-Stokes system on domains with rough boundaries. J. Differential Equations, 244(11):2890-2908, 2008.
[8] Juan Casado-Díaz, Enrique Fernández-Cara, and Jacques Simon. Why viscous fluids adhere to rugose walls: a mathematical explanation. J. Differential Equations, 189(2):526-537, 2003.
[9] Vivette Girault and Pierre-Arnaud Raviart. Finite element methods for Navier-Stokes equations, volume 5 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 1986. Theory and algorithms.
[10] Willi Jäger and Andro Mikelić. On the roughness-induced effective boundary conditions for an incompressible viscous flow. J. Differential Equations, 170(1):96-122, 2001.
[11] Bijan Mohammadi, Olivier Pironneau, and Frederic Valentin. Rough boundaries and wall laws. Internat. J. Numer. Methods Fluids, 27(1-4, Special Issue):169-177, 1998. Finite elements in fluids.

