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The Drag in a Navier-Stokes Flow with Friction-Driven Boundary Conditions

. These boundary conditions account for the asymptotic effect of rough boundaries on the solutions to the Navier-Stokes equations. Consequently, they appear as a natural control variable in order to reduce the drag using the effect of micro-rugosities. In this paper, we prove the existence of a drag associated to friction-driven boundary conditions, we give a uniqueness criterion and, in the particular case of Navier's friction law, we prove that the drag is differentiable with respect to the friction coefficient, and compute its gradient.

Introduction

In this paper, we are interested in the definition and the mathematical properties of the drag of an obstacle in a Navier-Stokes flow, associated to the so-called friction-driven boundary conditions on the solid-fluid interface [START_REF] Bucur | Boundary behavior of viscous fluids: influence of wall roughness and friction-driven boundary conditions[END_REF].

Let N ∈ {2, 3} be the space dimension. We define the obstacle S as a compact subset of R N , with a Lipschitz boundary. The friction-driven boundary conditions are determined by a triplet {µ, A, V}, where:

• µ is a capacitary measure concentrated on ∂S,

• A is a positive symmetric matrix function,

• V = {V(x)} x∈∂S is a collection of vector spaces, where for q.e. x ∈ ∂S, V(x) is a subspace of the tangent hyperplane to S at x.

Let u ∞ ∈ R N be the velocity of the fluid at infinity. To define the drag of the solid S in the direction u ∞ , we (artificially) introduce an open subset Ω ⊂ R N such that S ⊂ Ω, and define the fluid domain F = Ω \ S.

We note L 2 0 (F) the subspace of L 2 (F) consisting of functions with mean value equal to zero. We consider the following problem: find (u, p) ∈ H 1 (F, R N ) × L 2 0 (F) such that -div(σ(u, p)) + (u • ∇)u = 0 in F, (1) div u = 0 in F,

u = u ∞ on ∂Ω, (2) 
u(x) ∈ V(x) for q.e. x ∈ ∂S, (4) [2νD(u)n + µAu] • φ = 0 for any φ ∈ V(x), x ∈ ∂S, [START_REF] Březina | Asymptotic properties of solutions to the equations of incompressible fluid mechanics[END_REF] where σ(u, p) is the stress tensor defined by σ(u, p) = 2νD(u) -pId, ν > 0 being the viscosity of the fluid and D(u) the symmetric part of ∇u, defined by

D(u) = 1 2 (∇u) + (∇u) T .
In condition [START_REF] Březina | Asymptotic properties of solutions to the equations of incompressible fluid mechanics[END_REF], n stands for the normal vector field to ∂S oriented towards the solid. Condition (4) expresses that the flow is driven by the family of linear spaces {V(x)} x∈∂S . Above, [2νD(u)n + µAu] • φ = 0 for φ ∈ V(x) is a formal pointwise relation, which has to be understood globally on ∂S. Precisely, condition [START_REF] Březina | Asymptotic properties of solutions to the equations of incompressible fluid mechanics[END_REF] 

holds provided that 2ν ∂S D(u)n • φ dx + ∂S Au • φ dµ = 0
for every φ ∈ H 1 (F, R N ) such that φ(x) ∈ V(x) for q.e. x ∈ ∂S. In particular, condition (5) is a friction condition, characterized by the measure µ and the matrix A.

Friction-driven boundary conditions have been obtained by Bucur, Feireisl and Nečasová in [START_REF] Bucur | Boundary behavior of viscous fluids: influence of wall roughness and friction-driven boundary conditions[END_REF], as the general expression of the boundary conditions resulting from the rugosity effect on perfectly slippery walls. The rugosity effect has been investigated in [START_REF] Mohammadi | Rough boundaries and wall laws[END_REF][START_REF] Jäger | On the roughness-induced effective boundary conditions for an incompressible viscous flow[END_REF][START_REF] Casado-Díaz | Why viscous fluids adhere to rugose walls: a mathematical explanation[END_REF][START_REF] Amirat | Effect of rugosity on a flow governed by stationary Navier-Stokes equations[END_REF] and in the more recent papers [START_REF] Bucur | On the asymptotic limit of the Navier-Stokes system on domains with rough boundaries[END_REF][START_REF] Bucur | Boundary behavior of viscous fluids: influence of wall roughness and friction-driven boundary conditions[END_REF][START_REF] Březina | Asymptotic properties of solutions to the equations of incompressible fluid mechanics[END_REF]. It consists in approximating a given domain U by a sequence of geometric perturbations (U ε ) ε>0 , and studying the asymptotic behaviour of a family of vector fields u ε ∈ H 1 (U ε , R N ) in the neighborhood of the boundary of the limit domain U . In [START_REF] Bucur | Boundary behavior of viscous fluids: influence of wall roughness and friction-driven boundary conditions[END_REF], the authors have considered a sequence (u ε ) ε>0 of weak solutions to the Navier-Stokes equations with perfect slip boundary conditions in equi-Lipschitz domains (U ε ) ε>0 . They have proved the existence of a triplet {µ, A, V}, such that, up to a subsequence, (u ε ) ε>0 converges weakly to a function u solution to the Navier-Stokes equations with friction-driven boundary conditions. This asymptotic process is an indirect proof of the existence of a solution to the Navier-Stokes equations with friction-driven boundary conditions, for admissible triplets {µ, A, V}, that is, triplets that can be effectively obtained by a sequence of geometric perturbations of the domain. However, since this result relies on abstract Γ-convergence tools, the class of admissible triplets cannot be explicitely described, at least for very general perturbations. The purpose of this paper is to prove that, in fact, problem (1)-( 5) admits at least one weak solution (in a sense that will be precised below), for every ν > 0, u ∞ ∈ R N and every triplet {µ, A, V}. This result is stated in Theorem 1. Moreover, we prove that for a suitable choice of ν, u ∞ and V, which does not depend on {µ, A}, every weak solution to System (1)-( 5) is unique (see Theorem 2).

In the second part of the paper, we study the differentiability of the drag function with respect to the friction part of the boundary condition. Let ν > 0 and u ∞ ∈ R. We can associate to every triplet {µ, A, V} and every weak solution u to System (1)-( 5), a drag T (µ, A, V, u) defined by

T (µ, A, V, u) = 2ν F |D(u)| 2 dx + ∂S Au • u dµ.
In the case where u is unique, the drag depends only on the choice of the triplet {µ, A, V}, which appears as a natural control variable in drag minimization problems. As a first step in the study of the regularity of the drag with respect to {µ, A, V}, we consider Navier's boundary conditions on ∂S, which are given by the non penetration condition

u • n = 0 on ∂S (6) 
and by the friction law 2ν [D(u)n] tan + βu = 0 on ∂S.

Here, n is the normal vector field to ∂S oriented towards the solid and β ∈ L 2 (∂S) is a friction coefficient. For any vector field v, defined on ∂S, we note [v] tan its tangential part, defined by

[v] tan = v -(v • n)n.
Boundary conditions ( 6)-( 7) correspond to the case where V(x) is equal to the tangent hyperplane to ∂S on q.e. x on the boundary, A ≡ Id and µ is absolutely continuous with respect to the surface measure on ∂S with a density β ∈ L 2 (∂S). We prove that the drag is differentiable with respect to β and compute the gradient of the drag in the L 2 (∂S) topology (see Theorem 3 and Corollary 4). The structure of the paper is the following. In Section 2, we introduce the functional framework associated with System (1)-( 3) and boundary conditions (4)-( 5) and ( 6)- [START_REF] Bucur | On the asymptotic limit of the Navier-Stokes system on domains with rough boundaries[END_REF], and state our main results. In Section 3, we recall some abstract material from [START_REF] Girault | Finite element methods for Navier-Stokes equations[END_REF] which we use in the proof of Theorems 1 and 2. Section 4 is devoted to the proof of Theorem 3 and Corollary 4.

Statement of the Main Results

We note

H 1 (F) = H 1 (F, R N ).
To define the weak solutions to System (1)-( 5), we introduce the following subsets of H 1 (F):

K = {v ∈ H 1 (F) | div v = 0 in L 2 (F), v(x) ∈ V(x) for q.e. x ∈ ∂S, v = u ∞ on ∂Ω} and V = {φ ∈ H 1 (F) | div φ = 0 in L 2 (F), v(x) ∈ V(x) for q.e. x ∈ ∂S, φ = 0 on ∂Ω}.
Let us fix the family of linear spaces V such that V is non empty. In particular, V is a separable Hilbert space for the H 1 scalar product. We note V ′ its dual space for the H 1 norm. Let µ be a capacitary measure concentrated on ∂S and A a positive symmetric matrix function.

We say that u ∈ H 1 (F) is a weak solution to system (1)-( 5) if u ∈ K and for every

φ ∈ V , 2ν F D(u) : D(φ) dx + F [(u • ∇)u] • φ dx + ∂S Au • φ dµ = 0. ( 8 
)
The following results hold:

Theorem 1 Given ν > 0 and u ∞ ∈ R N , there exists at least one weak solution to System (1)-( 5). Moreover, there exists a constant M > 0 depending only on ν, u ∞ , Ω and S, such that every weak solution u ∈ K satisfies the following estimate:

u H 1 (F ) M. (9) 
Theorem 2 There exists a constant C = C(Ω, S) > 0 such that, for all u ∞ ∈ R N , there exists ν 0 > 0 satisfying

ν 0 C(|u ∞ | + |u ∞ | 2 ) 1/2 (10)
and such that for all ν > ν 0 , System (1)-( 5) has a unique weak solution, which satisfies the following estimate:

u H 1 (F ) C ′ (ν + |u ∞ |), (11) 
where C ′ is a positive constant depending only on Ω, S.

Now we consider System (1)-( 3) with Navier's boundary conditions ( 6)-( 7) on ∂S. To define weak solutions to this system, we introduce

H τ = {v ∈ H 1 (F) | div v = 0 in L 2 (F), v • n = 0 on ∂S},
and define, as above,

K τ = {v ∈ H τ | v = u ∞ on ∂Ω} and V τ = {φ ∈ H τ | φ = 0 on ∂Ω} We say that u ∈ H 1 (F) is a weak solution to system (1)-(3) with boundary conditions (6)-(7) if u ∈ K τ and for every φ ∈ V τ , 2ν F D(u) : D(φ) dx + F [(u • ∇)u] • φ dx + ∂S βu • φ dH N -1 = 0. ( 12 
)
Let u ∞ ∈ R N and ν 0 > 0 as in Theorem 2. We fix ν > ν 0 , so that for every β ∈ L 2 (∂S), any weak solution to system (1)-( 3), ( 6)- [START_REF] Bucur | On the asymptotic limit of the Navier-Stokes system on domains with rough boundaries[END_REF], is unique. To each friction coefficient β ∈ L 2 (∂S), we associate a drag T (β) defined by

T (β) = 2ν F |D(u)| 2 dx + ∂S β|u| 2 dH N -1 ,
where u ∈ K τ satisfies (12).

To address the differentiability of the drag with respect to β, we introduce the following open subset of L 2 (∂S)

O = {β ∈ L 2 (∂S) | β > 0 q.e. on ∂S},
and define the mapping

R : O → H τ β → u,
where u ∈ K τ satisfies (12). The following result holds:

Theorem 3 The mapping β ∈ O → R(β) ∈ H τ
is differentiable, and for every β ∈ O, its derivative

DR(β) ∈ L(L 2 (∂S), H τ ) at point β is defined by DR(β)h = w ∀h ∈ L 2 (∂S),
where w is the unique solution to the system:

           -div(σ(w, p)) + (w • ∇)u + (u • ∇)w = 0 in F, div w = 0 in F, w = 0 on ∂Ω, w • n = 0 on ∂S, 2ν [D(w)n] tan + βw = -hu on ∂S, (13) 
in the following sense: w ∈ V τ and for every φ ∈ V τ ,

2ν F D(w) : D(φ) dx+ F [(w•∇)u+(u•∇)w]•φ dx+ ∂S βw•φ dH N -1 = - ∂S hu•φ dH N -1 . (14) 
The following corollary has interesting applications to the drag optimization problem.

Corollary 4 The mapping β ∈ O → T (β) ∈ R
is differentiable, and for every β ∈ O, its derivative DT (β) ∈ L(L 2 (∂S), R) is defined by

DT (β)h = 2 2ν F D(u) : D(w) dx + ∂S βu • w + ∂S h|u| 2 dH N -1 ∀h ∈ L 2 (∂S)
where u = R(β) and w = DR(β)h is the solution to system (13). For every β, the gradient of T at β with respect to the L 2 (∂S) topology is given by the following formula:

∇T (β) = (u + ψ) • u q.e. on ∂S, (15) 
where u = R(β) and ψ is the unique solution to

           -div(σ(ψ, p)) + (∇u) T ψ -(u • ∇)ψ = 2(u • ∇)u in F, div ψ = 0 in F, ψ = 0 on ∂Ω, ψ • n = 0 on ∂S, 2ν [D(ψ)n] tan + βψ = 0 on ∂S, (16) 
in the sense that ψ ∈ V τ and for every φ ∈ V τ ,

2ν F D(ψ) : D(φ) dx+ F (∇u) T ψ -(u • ∇)ψ •φ dx+ ∂S βψ•φ dH N -1 = 2 F [(u•∇)u]•φ dx. ( 17 
)
3 Proof of Theorems 1 and 2

In order to prove Theorems 1 and 2, we follow the standard steps from the theory of stationary Navier-Stokes equations, which we adapt to the framework of friction-driven boundary conditions. These arguments are developed in [START_REF] Girault | Finite element methods for Navier-Stokes equations[END_REF], for instance.

We define the bilinear form a 0 :

H 1 (F) × H 1 (F) → R by a 0 (v 1 , v 2 ) = 2ν F D(v 1 ) : D(v 2 ) dx + ∂S Av 1 • v 2 dµ ∀(v 1 , v 2 ) ∈ H 1 (F) × H 1 (F), (18) 
and the trilinear form a 1 :

H 1 (F) × H 1 (F) × H 1 (F) → R by a 1 (v, v 1 , v 2 ) = F [(v • ∇)v 1 ] • v 2 dx ∀(v, v 1 , v 2 ) ∈ H 1 (F) × H 1 (F) × H 1 (F). (19) Let u 0 ∈ K such that u 0 H 1 (F ) C 0 |u ∞ | (20) 
where C 0 > 0 depends only on F. The existence of C 0 and u 0 ∈ K satisfying (20) was proved by Bogovskiȋ [START_REF] Bogovskiȋ | Solution of the first boundary value problem for an equation of continuity of an incompressible medium[END_REF]. Setting u = uu 0 , we get that a function u ∈ K satisfies (12) if and only if u ∈ V and satisfies the following identity:

∀φ ∈ V a 0 ( u, φ)+a 1 (u 0 , u, φ) + a 1 ( u, u 0 , φ) + a 1 ( u, u, φ) = -a 0 (u 0 , φ) -a 1 (u 0 , u 0 , φ). (21) 
We define the mapping a :

H 1 (F) × H 1 (F) × H 1 (F) → R by a(v, v 1 , v 2 ) = a 0 (v 1 , v 2 ) + a 1 (u 0 , v 1 , v 2 )+a 1 (v 1 , u 0 , v 2 ) + a 1 (v, v 1 , v 2 ) ∀(v, v 1 , v 2 ) ∈ H 1 (F) × H 1 (F) × H 1 (F), ( 22 
)
and the linear form

f = f (u 0 ) ∈ V ′ by f , φ V ′ ×V = -a 0 (u 0 , φ) -a 1 (u 0 , u 0 , φ) ∀φ ∈ V.
The problem we consider is equivalent to the following : find u 0 ∈ K and u ∈ V such that

a( u, u, φ) = f (u 0 ), φ V ′ ×V ∀φ ∈ V. ( 23 
)
We recall the following results from [START_REF] Girault | Finite element methods for Navier-Stokes equations[END_REF].

Theorem 5 Assume that the following hypotheses hold:

(i) for all v ∈ H 1 (F), the mapping (v 1 , v 2 ) → a(v, v 1 , v 2 ) is continuous on H 1 (F) × H 1 (F);
(ii) there exists a constant α > 0 such that a(φ, φ, φ) α φ 2

H 1 (F ) ∀φ ∈ V ; ( 24 
)
(iii) the space V is separable and, for all φ ∈ V , the mapping

v → a(v, v, φ)
is sequentially weakly continuous on V , i.e., weak lim

m→∞ v m = v in V implies lim m→∞ a(v m , v m , φ) = a(v, v, φ) ∀φ ∈ V. (25) 
Then, problem (23) admits at least one solution.

Theorem 6 Moreover, assume that (iv) the bilinear form a(v, •, •) is uniformly V -elliptic with respect to v, i.e., there exists a constant α > 0 such that

a(v, φ, φ) α φ 2 H 1 (F ) ∀(v, φ) ∈ V × V ; (26) 
(v) there exists a continuous and monotonically increasing function L : R + → R + such that for all η > 0

|a(v 1 , v 1 , v 2 ) -a(v 2 , v 1 , v 2 )| L(η) v 1 H 1 (F ) v 2 H 1 (F ) v 1 -v 2 H 1 (F ) ∀v 1 , v 2 ∈ V, ∀v 1 , v 2 ∈ S η = {v ∈ V | v H 1 (F ) η}. ( 27 
)
Then, under the condition

[ f V ′ /(α 2 )]L( f V ′ /α) < 1, (28) 
the solution u ∈ V to problem (23) is unique, and satisfies the following estimate:

u H 1 (F ) f V ′ /α. (29) 
Proof of Theorem 1. Let us fix u ∞ ∈ R N and ν > 0. We need to prove that the mapping a defined by ( 22) satisfies the assumptions of Theorem 5. By Sobolev imbedding theorem (see the standard monograph by Adams [START_REF] Adams | Sobolev spaces[END_REF]), H 1 (F) is continuously imbedded in L 4 (F, R N ) for N = 2, 3. Therefore, by Hölder inequality, the mapping a 1 defined by ( 19) is continuous. Since a 0 defined by ( 18) is continuous, we obtain the continuity of a, and consequently, condition (i) from Theorem 5 holds.

To prove (ii), we prove the stronger condition (iv). We use the following Korn inequality, which is proved for instance in [4] (see the proof of Lemma VII.3.5, p. 329):

Lemma 7 There exists C 1 > 0 such that for all φ ∈ V , ∇φ L 2 (F ,R N ×N ) C 1 D(φ) L 2 (F ,R N ×N ) .
Consequently, by Poincaré inequality, there exists C 2 > 0 such that for all φ ∈ V ,

1 C 2 φ 2 H 1 (F ) 2 D(φ) 2 L 2 (F ,R N ×N ) . (30) 
Let v, φ ∈ V . We observe that

a(v, φ, φ) = a 0 (φ, φ) + a 1 (φ, u 0 , φ).
Indeed, a 1 (u 0 , φ, φ) = 0 and a 1 (v, φ, φ) = 0, which comes from the following computation:

a 1 (u 0 , φ, φ) = 1 2 F (u 0 • ∇)(|φ| 2 ) dx = 1 2 ∂S |φ| 2 u 0 • n dH N -1 + ∂Ω |φ| 2 u 0 • n dH N -1 . (31) 
Since φ ∈ V , φ = 0 on ∂Ω, and since u 0 ∈ K, u 0 • n = 0 on ∂S. Therefore, last boundary integrals vanish. Replacing u 0 by v we obtain the desired conclusion.

For every u 0 ∈ K satisfying (20), we note ρ(u 0 ) the best positive constant such that

|a 1 (φ, u 0 , φ)| ρ(u 0 ) φ 2 H 1 (F ) ∀φ ∈ V, (32) 
We prove the following result:

Lemma 8 For every δ > 0, there exists u 0 ∈ K satisfying (20) and such that ρ(u 0 ) δ.

Proof. We consider a bounded extension operator

P : H 1 (F) → H 1 0 (Ω, R N ).
Let δ > 0. By the proof of Lemma 2.3 in [START_REF] Girault | Finite element methods for Navier-Stokes equations[END_REF], chapter IV, there exists

u 0 ∈ H 1 (Ω, R N ) such that    div u 0 = 0 in Ω, u 0 = u ∞ on ∂Ω, u 0 = 0 in a neighborhood of S,
and such that for every ϕ ∈ H

1 0 (Ω, R N ), Ω [(ϕ • ∇) u 0 ] • ϕ dx δ P ϕ H 1 (Ω,R N ) . (33) 
Let φ ∈ V . By inequality (33), we obtain

Ω [((P φ) • ∇) u 0 ] • (P φ) dx δ P P φ H 1 (Ω,R N ) δ φ H 1 (F ) .
Since u 0 vanishes on S, observing that

Ω [((P φ) • ∇) u 0 ] • (P φ) dx = F [(φ • ∇) u 0 ] • φ dx,
we obtain the desired result with u 0 = ( u 0 ) |F . ✷ Let u 0 ∈ K such that ρ(u 0 ) < ν/C 2 , where C 2 is defined by (30). By conditions (30) and (32), for every v, φ ∈ V ,

a(v, φ, φ) ν C 2 -ρ(u 0 ) φ 2 H 1 (F ) .
Consequently, condition (iv) holds with α = ν/C 2ρ(u 0 ). To prove condition (25), we only need to consider the nonlinear term a 1 (v m , v m , φ). Integrating by part and using the incompressibility condition, we obtain

a 1 (v m , v m , φ) = - F [(v m • ∇)φ] • v dx + ∂S∪∂Ω (v m • φ)(v m • n) dH N -1 .
Since φ, v m ∈ V , we conclude as above that

a 1 (v m , v m , φ) = - F [(v m • ∇)φ] • v m dx. Since H 1 (F) is continuously imbedded in L 4 (F, R N ), we obtain lim m→∞ a 1 (v m , v m , φ) = a 1 (v, v, φ).

This proves condition (iii).

Now let u ∈ K be a weak solution to System (1)-( 5). We define u = uu 0 . Applying relation (23) to φ = u and using inequality (26), we obtain

u H 1 (F ) 1 α f (u 0 ) V ′ .
By the triangular inequality, estimate (9) holds with M = u 0 H 1 (F ) + 1/α f (u 0 ) V ′ . This concludes the proof of Theorem 1. ✷ with the estimate

ξ H 1 (F ) C h V ′ τ . (42) 
Fix (β, v) ∈ O × V 0 . We will prove that the bilinear form associated to D v F (β, v) satisfies the assumptions of Lax-Milgram theorem. The continuity results from the continuity of a 0 and a 1 , and the coercivity is a consequence of the definition of V 0 . Indeed, by computation (31), for all φ ∈ V τ ,

D v F (β, v)φ, φ V ′ τ ×Vτ = a 0 (φ, φ) + a 1 (φ, u 0 , φ) + a 1 (φ, v , 
φ). Consequently, using property (30) and definitions (32) and (34), we obtain for all φ ∈ V τ ,

D v F (β, v)φ, φ V ′ τ ×Vτ ν C 2 -ρ(u 0 ) -N v H 1 (F ) φ 2 H 1 (F ) . Since v ∈ V 0 , ν C 2 -ρ(u 0 ) -N v H 1 (F ) > 0.
This proves that the mapping

β ∈ O → u ∈ V τ
where u satisfies (39), is differentiable. Consequently, since for all

β ∈ O, R(β) = u 0 + u, R is differentiable on O. Moreover, for every β ∈ O, DR(β) ∈ L(L 2 (∂S), H) is defined by DR(β) = -[D v F (β, R(β) -u 0 )] -1 D β F (β, R(β) -u 0 ). Since for every (β, v) ∈ O × V 0 , D β F (β, v) ∈ L(L 2 (∂S), V ′ τ ) is defined by ∀h ∈ L 2 (∂S), ∀φ ∈ V τ D β F (β, v), h = ∂S h(v + u 0 ) • φ dH N -1 ,
defining w = DR(β)h for h ∈ L 2 (∂S), we obtain that w ∈ V τ satisfies the following identity:

∀φ ∈ V τ a 0 (w, φ) + a 1 (u 0 , w, φ) + a 1 (w, u 0 , φ) + a 1 (w, R(β)u 0 , φ)

+ a 1 (R(β) -u 0 , w, φ) = - ∂S hR(β) • φ dH N -1 .
Using the trilinearity of a 1 , we obtain (14). ✷ This proves (15). ✷

Remark 9

The coercivity of the bilinear form associated to the weak formulation (43) results from the following estimate (see the proof of Theorems 1 and 2):

ρ(u) ρ(u 0 ) + ρ( u) ρ(u 0 ) + N u H 1 (F ) < ν C 2 .

Proof of Corollary 4 .F[ 1 = 2 F 2 FFDFD 1 = 2 F 2 F

 4122122 Noticing that for every φ ∈ V τ ,[(∇u) T ψ] • φ = [(φ • ∇)u] • ψ and -(u • ∇)ψ] • φ dx = F [(u • ∇)φ] • ψ dx,(17)can be written in the following form:∀φ ∈ V τ 2ν F D(ψ) : D(φ) dx + F ψ • [(φ • ∇)u + (u • ∇)φ] dx + ∂S βψ • φ dH N -[(u • ∇)u] • φ dx. (43)Let us fix β ∈ O and h ∈ L 2 (∂S). We note u = R(β) and w = DR(β)h. Taking φ = w in (12), we express DT (β)h as follows:DT (β)h = -[(u • ∇)u] • w dx + ∂S h|u| 2 dH N -1 .(44)Besides, taking φ = ψ in (14) and φ = w in (43), we obtain 2ν (w) :D(ψ) dx + F [(w • ∇)u + (u • ∇)w] • ψ dx + ∂S βw • ψ dH N -1 = -∂S hu • ψ dH N -1 , 2ν (ψ) : D(w) dx + F ψ • [(w • ∇)u + (u • ∇)w] dx + ∂S βψ • w dH N -[(u • ∇)u] • w dx.Substracting these equalities, we obtain -[(u • ∇)u] • w dx = ∂S hu • ψ dH N -1and finally, by (44),DT (β)h = ∂S [(u + ψ) • u]h dH N -1 .

Proof of Theorem 2. Let us fix u ∞ ∈ R N .

To prove (v), we observe that for v, v, v 1 , v 2 ∈ V ,

Introducing

we obtain that (27) holds with L(η) = N for all η > 0. We define

Estimate [START_REF] Jäger | On the roughness-induced effective boundary conditions for an incompressible viscous flow[END_REF] results from the existence of a constant C 3 > 0, such that for every φ ∈ V ,

As a result, by (20), there exists C 4 > 0 such that

and consequently, inequality (35) implies that there exists a constant C 5 > 0 such that

This proves [START_REF] Jäger | On the roughness-induced effective boundary conditions for an incompressible viscous flow[END_REF]. Let ν > ν 0 . By definition of the infimum, there exists u 0 ∈ K satisfying (20) and such that

We fix α = ν/C 2ρ(u 0 ). By (35), α > 0 and by the same argument as above, α satisfies (26). Now let u ∈ K be a weak solution to System (1)-( 5) and let u = uu 0 . Condition (28) reads

By (35), last estimate holds. By Theorem 6, u ∈ V is the unique solution to (23). Using [START_REF] Jäger | On the roughness-induced effective boundary conditions for an incompressible viscous flow[END_REF] and (36), we obtain the following estimate:

Consequently, be (20) and the triangular inequality,

This proves [START_REF] Mohammadi | Rough boundaries and wall laws[END_REF]. By taking the infimum over all admissible functions u 0 , for ν > ν 0 , we obtain the uniqueness of the function u ∈ K satisfying (21). Therefore, System (1)-( 5) admits one unique weak solution u 0 + u ∈ H 1 (F).

✷ 10 4 Proof of Theorem 3

In this section, we assume that V(x) is equal to the tangent hyperplane to ∂S on q.e. x on the boundary, A ≡ Id and µ is absolutely continuous with respect to the surface measure on ∂S with a density β ∈ L 2 (∂S).

Let u ∞ ∈ R N . Let ν 0 > 0 as in Theorem 2, and ν > ν 0 . Let u 0 ∈ K satisfying (20) and such that

We use the mappings introduced in Section 3. We define g = g(u

The problem we consider is equivalent to the following: find

Proof of Theorem 3. The proof is based on the implicit function theorem. We will prove that the mapping

where u satisfies (21), is differentiable. We introduce the open subset of V τ :

and define the mapping

The mapping F is well defined and F is of class C ∞ . By the proof of Theorems 1 and 2, for every β ∈ O there exists one unique u ∈ V 0 satisfying (21). We need to prove that for every

τ ×Vτ = a 0 (ξ, φ) + a 1 (u 0 , ξ, φ) + a 1 (ξ, u 0 , φ) + a 1 (ξ, v, φ) + a 1 (v, ξ, φ).

We need to prove that for every (β, v) ∈ O × V 0 , there exists a constant C > 0 such that for every h ∈ V ′ τ , there exists one unique ξ ∈ V τ such that