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The uniform rugosity effect

Matthieu Bonnivard Dorin Bucur

Laboratoire de Mathématiques, CNRS UMR 5127 , Université de Savoie
Campus Scientifique, 73376 Le-Bourget-Du-Lac, France

Abstract

Relying on the effect of microscopic asperities, one can mathematically justify that
viscous fluids adhere completely on the boundary of an impermeable domain. The ru-
gosity effect accounts asymptotically for the transformation of complete slip boundary
conditions on a rough surface in total adherence boundary conditions, as the ampli-
tude of the rugosities vanishes. The decreasing rate (average velocity divided by the
amplitude of the rugosities) computed on close flat layers is definitely influenced by
the geometry. Recent results prove that this ratio has a uniform upper bound for
certain geometries, like periodical and ”almost Lipschitz” boundaries. The purpose of
this paper is to prove that such a result holds for arbitrary (non-periodical) crystalline
boundaries and general (non-smooth) periodical boundaries.

Keywords: rugosity effect, non-periodic boundaries, uniform decreasing of the velocity

1 Introduction

It is commonly accepted that viscous fluids adhere to rough surfaces. One mathematical ex-
planation is based on the so called rugosity effect. For the Navier-Stokes equation, complete
slip boundary conditions on a rough surface transform asymptotically in no-slip conditions
as the amplitutde of the rugosities vanishes, provided that the energy of the solutions is
uniformly bounded and the there is ”enough roughness” of the oscillating boundaries. We
refer the reader to the pioneering paper of Casado-Dı́az, Fernández-Cara and Simon where
this result is proved in the case of periodic, self-similar C2- boundaries [9]. In their proof,
the authors prove implicitly that the rugosity effect has a uniform character, in the sense
that the decreasing rate of the average velocity on a flat layer close to the boundary can be
estimated uniformly.

Recent results obtained in [5, 8, 7] (see also [11, 12]) give a quite complete understanding
of the rugosity effect for arbitrary boundaries. For equi-Lipschitz domains, if Ωε is a geo-
metric perturbation of Ω (in the sense that the Hausdorff distance vanishes, dH(Ωε,Ω) → 0),
the solutions uε of a Stokes equation with complete slip boundary conditions in Ωε converge
to the solution u of the same Stokes equation complemented by the so called friction-driven
boundary conditions (see [8]): there exists a suitable trio {µ,A, V } such that
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• µ is a capacitary measure concentrated on ∂Ω

• {V (x)}x∈Γ is a family of vector subspaces in R
N−1

• A is a positive symmetric matrix function A defined on ∂Ω

and formally the boundary conditions read

{

u(x) ∈ V (x) for q.e. x ∈ ∂Ω
[

D[u] · n + µAu
]

· v = 0 for any v ∈ V (x), x ∈ Γ
(1)

The rugosity effect holds provided that above V (x) = {0} for a.e. x ∈ ∂Ω, which implies
that u = 0 on ∂Ω. However, assuming that the energies of the solutions ‖uε‖H1(Ωε) are
uniformly bounded, the estimate of the average velocity decay rate is more delicate and
relies on finding on an upper bound for

lim sup
ε→0

∫

∂Ωε

|uε|2dS

dH(Ωε,Ω)
. (2)

For general situations one can not expect this number to be finite. If finite, the rugosity
effect is said to be uniform (we refer to [6] for applications). All previous results in the
literature providing an upper bound for (2) were given for periodic self-similar boundaries in
the framework of [9], under more or less regularity assumptions. We refer to the recent paper
of Březina [4], where the C2-regularity is weakened to almost Lipschitz boundaries (see the
precise sense in [4]). Nevertheless, at least intuitively, less regularity of the boundary should
enforce the physical rugosity effect but, of course, new technical difficulties arise.

The main purpose of the paper is to analyse general geometric perturbations of flat
domains for which an upper bound can be found in (2). On the one hand, we remove any
smoothness hypothesis and prove that the rugosity effect is uniform for general, continuous,
periodic self-similar boundaries which are not riblets. This first result is only a technical
improvement of previous results of [9, 6, 4] and involves a weak interpretation of the riblets
associated to continuous boundaries (gradientless formulation). In a second step, we remove
the periodicity assumption and prove that for arbitrary crystalline boundaries the rugosity
effect is again uniform. This second result relies on a fine use of the Young measures to
understand second order pointwise oscillations of the boundaries, i.e. the oscillations of
the normal fields of locally rescaled domains. Uniform behaviours are in general difficult to
capture for non-periodic structures. In our case, this is possible due to the very specific
crystalline structure. We also refer to the paper [3] for a different result involving uniformity
in a random geometric framework.

2 General settings and main results

Throughout the paper, we fix the dimension of the space N = 3. For simplicity, and
without losing generality, we shall assume that Ω is the cube (0, 1)2 × (−1, 0). Let us denote
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ϕε : (0, 1)2 → [0, 1] a family of lower semi-continuous functions such that (ϕε)ε converges
uniformly to zero as ε→ 0. We introduce the geometric perturbations of Ω,

Ωε =
{

(x1, x2, x3) | (x1, x2) ∈ (0, 1)2, −1 < x3 < ϕε(x1, x2)
}

, (3)

which are open sets approaching in a certain geometric sense Ω, as ε → 0. In this case, it
is convenient to replace in (2) the Hausdorff distance with the amplitude of the rugosities
‖ϕε‖∞. Note that discontinuity points on ϕε are a priori admissible and correspond to severe
”roughness points” of the boundary. Define D = (0, 1)2 × (−1, 2) so that

Ωε ⊂ D ∀ε > 0.

The non penetration condition. We denote H1(Ωε) the usual Sobolev space H1(Ωε,R
3).

For a function v ∈ H1(Ωε), the non-penetration condition v · nε = 0 on

Γε = {x ∈ ∂Ωε : x3 > 0},

has to be understood in a weak sense, as soon as the normal vector field nε is not properly
defined on Γε. Precisely, if ϕε is Lipschitz, the trace of v on Γε and the normal vector field
nε are pointwise defined a.e. If ϕε is only continuous, we say that v ∈ H1(Ωε) satisfies the
non-penetration condition provided that

∀ψ ∈ C1
c (D)

∫

Ωε

[(div v)ψ + v · ∇ψ]dx = 0. (4)

If ϕε is lower semi-continuous, the above form of the non-penetration condition is incomplete,
and special attention has to be given to discontinuity points. The following form of the non-
penetration condition turns out to be equivalent to (4) as soon as the boundary is represented
by a continuous graph, but captures also information at discontinuity points:

∀ψ ∈ H1(Ωε)

∫

Ωε

[(div v)ψ + v · ∇ψ]dx = 0. (5)

Rugosity effect and uniform decay rates. The rugosity effect reads: let vε ∈ H1(Ωε)
satisfy the non-penetration condition on Γε, such that (1Ωε

vε, 1Ωε
· ∇vε) converge weakly in

L2(D,R12) to (1Ωv, 1Ω · ∇v). Then v = 0 on Γ = (0, 1)2 × {0}.
The rugosity effect above is said to be uniform if the following estimate holds:

∃C > 0,∃ε0 > 0,∀ε0 > ε > 0,∀v ∈ H1(Ωε),v · nε = 0 on Γε (6)

∫

Γ

|v|2dS 6 C‖ϕε‖∞
∫

Ωε

|∇v|2dx. (7)

Notice that in this inequality, one does not require v to vanish on some part of the boundary.
As a consequence of the continuity of the trace operator, estimate (7) proves that the rugosity
effect holds, when ε→ 0.
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Provided that ϕε are equi-Lipschitz, one can replace in (6)-(7) the sum on Γ by the sum
on Γε

∫

Γε

|v|2dS 6 C ′‖ϕε‖∞
∫

Ωε

|∇v|2dx, (8)

which provides an upper bound in (2). If ϕε were not smooth, the trace on Γε is not defined.
In this case, one can expect only estimates of type (7).

Main results of the paper. We first consider periodic structures generated by

ϕε(x1, x2) = εϕ(
x1

ε
,
x2

ε
), (9)

where ϕ is a continous function on the two-dimensional torus in T 2 = [0, 1]2|{0,1} extended
by periodicity in R

2. We give a characterization of the continuous functions ϕ such that
(7) holds, removing the ”almost Lipschitz” hypothesis considered in [4]. Loosely speaking,
non-smooth boundaries should provide a stronger rugosity effect than the smooth ones! For
technical reasons we restrict our study only to continuous boundaries but in the final sec-
tion we shall discuss briefly boundaries with singularities generated by lower-semicontinuous
functions ϕ.

We say ϕ is a riblet if there exists (c1, c2) ∈ R
2 \ {0} such that for every (x1, x2) ∈ R

2

and every h ∈ R,
ϕ(x1 + hc1, x2 + hc2) = ϕ(x1, x2). (10)

If ϕ were differentiable, this would correspond to ∇ϕ · (c1, c2) = 0.

Theorem 2.1 (Characterization of the uniform rugosity effect) Assume that ϕ is a
continuous strictly positive function on T 2. The following statements are equivalent:

(i) there exist k > 0 and ε0 > 0 such that for every ε0 > ε > 0 and every v ∈ H1(Ωε)
satisfying the non-penetration condition on Γε (in its weak integral form), the following
inequality holds:

∫

Γ

|v|2dS 6 εk‖∇v‖2
L2(Ωε)

, (11)

(ii) ϕ is not a riblet.

In the case of lower-semicontinuous boundaries the characterization Theorem 2.1 can be
rephrased, but provides a less clear geometric criterion for the uniform rugosity effect.

The second result of the paper is concerned with arbitrary crystalline boundaries (the
periodicity assumption is removed). We prove that estimate (7) holds under a mild non-
degeneracy assumption, similar to the one introduced in [5]. Let us consider a finite set
K ⊂ R

2 which satisfies the non-degeneracy assumption

∀y1, y2 ∈ K, 0 /∈ [y1, y2]. (12)

This condition simply avoids the creation of riblets on a crystalline structure. A function
ϕ ∈ W 1,∞((0, 1)2) is admissible provided that

for a.e. y ∈ (0, 1)2 ϕ(y) ∈ [0, 1] and ∇ϕ(y) ∈ K.
4



For every admissible function ϕ we define the crystalline boundary

Γϕ =
{

(x1, x2, ϕ(x1, x2)) | (x1, x2) ∈ (0, 1)2
}

,

and the corresponding domain

Ωϕ =
{

(x1, x2, x3) | (x1, x2) ∈ (0, 1)2, −1 < x3 < ϕ(x1, x2)
}

.

Theorem 2.2 (Crystalline boundaries) There exist k > 0 and ε0 > 0 such that inequal-
ity

∫

Γ

|v|2dS +

∫

Γϕ

|v|2dS 6 k‖ϕ‖∞‖∇v‖2
L2(Ωϕ) (13)

holds for every admissible function ϕ verifying ε0 > ‖ϕ‖∞ > 0, and every v ∈ H1(Ωϕ)
satisfying the non-penetration condition on Γϕ.

From a technical point of view, the uniformity of the rugosity effect is related to the analysis
of the spectral abscissa of an elliptic operator in a family of infinite domains with ”wildly”
moving boundaries. The rugosity (Young) measures introduced in [5] provide a useful tool
for dealing with the crystalline case. For our purpose, their use has to be refined in order to
understand the local oscillations of the rescaled boundaries.

All results of the paper are given in H1 but they can be extended easily to W1,p spaces.
For instance, inequality (13) becomes

‖v‖Lq(Γ) + ‖v‖Lq(Γϕ) 6 k‖ϕ‖α
∞‖∇v‖Lp(Ωϕ), (14)

which holds for every for every admissible function ϕ ∈ W 1,∞((0, 1)2) such that ε0 > ‖ϕ‖∞ >
0 and every v ∈ W 1,p(Ωϕ,R

3) satisfying the non-penetration condition on Γϕ, where

1 < p < 3, 1 < q <
2

3 − p
, α = 1 − 3

p
+

2

q
.

3 Pointwise roughness and Young measures

A fine tool allowing to understand the rugosity effect is given by the general theory of Young
measures (see for instance [10, 13]). For the sake of clarity, we recall the fundamental theorem
of Young measures.

Theorem 3.1 (Fundamental theorem of Young measures) Let U ⊂ R
n be an open

set and K ⊂ R
m be a compact set. Consider a sequence (fk)k∈N ⊂ L∞(U,K). There exists

a subsequence (fkj
) and for a.e. y ∈ U a Borel probability measure Ry on R

m such that for
each F ∈ C(Rm) we have

F (fkj
) ⇀ F weakly- ∗ L∞(U),

where

F (y) =

∫

Rm

F (Z)dRy(Z) a.e. y ∈ U.

We call {Ry}y∈U a family of Young measures associated with the subsequence (fkj
).
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Remark 3.2 We recall that the family of Young measures {Ry}y∈U may be not unique for
a given sequence (fk)k∈N and satisfies the following property:

spt(Ry) ⊂ K a.e. y ∈ U.

In particular, for the crystalline framework when K is finite, the support of the measures
Ry is discrete.

Remark 3.3 Let (ϕk)k be a bounded sequence in W 1,∞((0, 1)2, [0, 1]). We assume, up to
renaming the indices, that there exists ϕ ∈ W 1,∞((0, 1)2, [0, 1]) such that

ϕk → ϕ uniformly on (0, 1)2, ∇ϕk ⇀ ∇ϕ weakly- ∗ L∞((0, 1)2).

We denote by {Ry}y∈(0,1)2 a family of Young measures associated with a subsequence of
(∇ϕk)k∈N. Then

∫

R2

ZdRy(Z) = ∇ϕ(y) a.e. y ∈ (0, 1)2.

This is a direct consequence of the fundamental theorem of Young measures, taking for F
the identity function.

Lemma 3.4 With the notations of Remark 3.3, let us denote

Ωk =
{

(x1, x2, x3) | (x1, x2) ∈ (0, 1)2, −1 < x3 < ϕk(x1, x2)
}

,

and consider uk ∈ H1(Ωk) satisfying the non-penetration condition

uk · nk = 0 on Γk = {x ∈ ∂Ωk : x3 > 0}
converging weakly in H1(D) to c = (c1, c2, c3) ∈ R

3.
Then for every g ∈ C(R2,R) we have

(c1, c2) ·
∫

R2

g(Z)ZdRy(Z) = c3

∫

R2

g(Z)dRy(Z) a.e. y ∈ (0, 1)2.

Proof Let ξ ∈ C(R2,R). We prove that for every ψ ∈ C∞
c ((0, 1)2,R),

∫

(0,1)2
ψ(y)

[

(c1, c2) ·
∫

R2

√
1 + Z2ξ(Z)ZdRy(Z) − c3

∫

R2

√
1 + Z2ξ(Z)dRy(Z)

]

dy = 0.

(15)
Taking into account that nk(y, ϕk(y)) is co-linear with (−∇ϕk(y), 1), the non penetration
condition on Γk yields

∫

Γk

ψ(y)ξ(∇ϕk(y))(−∇ϕk(y), 1) · uk(y, ϕk(y))dS = 0.

Performing a change of variables from Γk to Γ, we get
∫

(0,1)2
ψ(y)ξ(∇ϕk(y))∇ϕk(y) · (u1

k(y, ϕk(y)), u
2
k(y, ϕk(y)))

√

1 + ‖∇ϕk(y)‖2dy (16)

=

∫

(0,1)2
ψ(y)ξ(∇ϕk(y))u

3
k(y, ϕk(y))

√

1 + ‖∇ϕk(y)‖2dy

6



Without loss of generality, we may assume that uk belongs to H1(D) ∩ C∞(D,R3). Then
integrating on vertical lines and using the Cauchy-Schwartz inequality, we get

∫

(0,1)2
|uk(y, ϕk(y)) − uk(y, ϕ(y))| dy 6 ‖ϕk − ϕ‖∞‖∇uk‖L2(D) → 0 as k → +∞.

Passing to the limit in (16), we get (15). Since ψ is arbitrary, we finish the proof choosing

ξ(Z) = g(Z)√
1+Z2

. ✷

Lemma 3.5 Let (ϕk)k be a bounded sequence in W 1,∞((0, 1)2). Let (Ry)y∈(0,1)2 be a family
of Young measures associated to a subsequence of (∇ϕk)k, and N ∈ K. If

lim inf
k→+∞

∣

∣

{

y ∈ (0, 1)2 | ∇ϕk(y) = N
}∣

∣ > 0. (17)

then
|
{

y ∈ (0, 1)2 | N ∈ spt(Ry)
}

| > 0.

Proof Assume for contradiction that

|
{

y ∈ (0, 1)2 | N ∈ spt(Ry)
}

| = 0.

Since N /∈ spt(Ry) for a.e. y ∈ (0, 1)2, there exists r > 0 such that

Ry(B(N, r)) = 0 for a.e. y ∈ G.

Let ψ ∈ C∞
c (R2) such that spt(ψ) ⊂ B(N, r),

ψ(N) = 1, ψ(n) = 0 ∀n ∈ K \ {N}.

By definition of the Young measures, up to a subsequence,

ψ(∇ϕk) ⇀ 0 weakly ∗ in L∞((0, 1)2),

which yields
∫

(0,1)2
ψ(∇ϕk)dx→ 0,

that is,
lim

k→+∞

∣

∣

{

y ∈ (0, 1)2 | ∇ϕ̃ε(y) = N
}∣

∣ = 0

in contradiction with hypothesis (17).
✷
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4 Proof Theorem 2.1

In order to prove Theorem 2.1, we start with two general results involving lower semicontin-
uous boundaries.

First, we recall the following Poincaré Lemma, which does not require smoothness over
all the boundary. The proof of this result is standard, summing on vertical lines.

Lemma 4.1 (Poincaré Lemma for l.s.c. boundaries) Let ϕ : (0, 1)2 → [0, 1] be lower
semicontinuous. Then there exists a constant K > 0 depending only on ϕ, such that

∫

Ωϕ

|u|2dx 6 K

(

∫

Ωϕ

|∇u|2dx+

∫

Γ

|u|2 dS

)

∀u ∈ H1(Ωϕ) (18)

wher Ωϕ is the open set defined by

Ωϕ =
{

(x1, x2, x3) | (x1, x2) ∈ (0, 1)2, −1 < x3 < ϕ(x1, x2)
}

.

Lemma 4.2 Assume that ϕ : T 2 → [0, 1] is a continuous function and define ϕε by (9).
The following statements are equivalent:

(i) the only constant c ∈ R
3 satisfying

∀ψ ∈ C1
c (D)

∫

Ω1

c · ∇ψdx = 0 (19)

is c = 0;

(ii) there exists k, ε0 > 0 such that for every ε0 > ε > 0 and every v ∈ H1(Ωε) satisfying
the weak form of the non-penetration condition (4), the following inequality holds:

∫

Γ

|v|2dS 6 εk‖∇v‖2
L2(Ωε)

. (20)

Proof (i)⇒(ii) Considering a subdivision of (0, 1)2 in squares (Sε
i )i of size ε × ε parallel

to the axes, it is enough to prove the following:
∫

Sε
i ×{0}

|v|2dS 6 εk‖∇v‖2
L2(V ε

i ) (21)

where
V ε

i = {(x1, x2, x3) | (x1, x2) ∈ Sε
i , −ε < x3 < ϕε(x1, x2)} .

Performing a translation if necessary, we may assume that the square Sε
i coincides with

(0, ε) × (0, ε). Using the scaling function Hε : (x1, x2, x3) ∈ R
3 → (x1

ε
, x2

ε
, x3

ε
) ∈ R

3, (21) is
equivalent to

∫

Γ

|v|2dS 6 k‖∇v‖2
L2(Ω1), (22)

where Ω1 = Hε(V
ε
i ) is not depending on ε.
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Assume for contradiction that there exists a sequence vk ∈ H1(Ω1) satisfying the non-
penetration condition (4) and such that

∫

Γ
|vk|2 = 1 and ‖∇vk‖L2(Ω1) → 0. From Lemma

4.1 we get that ‖vk‖H1(Ω1) is bounded, so there exists v∗ in H1(Ω1) such that up to a
subsequence,

vk ⇀ v∗ weakly in H1(Ω1).

As a result, ‖∇v∗‖L2(Ω1) = 0 so there exists c ∈ R
3 such that

v∗ = c a.e. in Ω1.

Using the compactness of the trace operator from H1(Ω1) to L2(Γ), we get

∫

Γ

|v∗|2dS = 1

which implies that c 6= 0. This contradicts hypothesis (i) passing to the limit the non-
penetration condition (4) for vk.
(ii)⇒(i) Assume for contradiction that there exists c ∈ R

3 \ {0} such that (19) holds. Then
the function v ∈ H1(Ω1) defined by v = c satisfies the non-penetration condition in the
weak form (4), but contradicts inequality (11) for every k > 0.

✷

Proof of Theorem 2.1. (i)⇒(ii) Assume for contradiction that ϕ is a riblet in the sense
of (10). From Lemma 4.2, it is enough to show that a constant vector field of the form
v = (c1, c2, 0), with (c1, c2) ∈ R

2 \ {0}, satisfies (19) (or (4)). This would readily imply that
hypothesis (i) does not hold.

Since ϕ is a riblet, one may consider a sequence of smooth functions θn approaching
uniformly ϕ on R × {0} × {0} and construct a riblet from θn in the direction (c1, c2, 0).
Then, the weak form of the non-penetration condition can be written on the domain defined
by the smooth riblet associated to θn

Θn = {(x1, x2, x3) | (x1, x2) ∈ (0, 1)2, −1 < x3 < θn(x1, x2)}.

Since 1Θn
→ 1Ω1

in L1(R3), the passage to the limit of the non-penetration condition con-
cludes the proof.
(ii)⇒(i) We need the following result concerning the uniqueness of riblet structures associ-
ated to a non constant, periodic and continuous function.

Lemma 4.3 Let ϕ ∈ C(T 2) be a non-constant function, extended on R
2 by periodicity.

Assume there exist (c1, c2, c3), (c∗1, c
∗
2, c3) in R

3 \{0} such that for every (x1, x2) ∈ (0, 1)2 and
every h ∈ R,

ϕ(x1 + hc1, x2 + hc2) = ϕ(x1, x2) + hc3,
ϕ(x1 + hc∗1, x2 + hc∗2) = ϕ(x1, x2) + hc3.

(23)

Then either c3 = 0 and (c1, c2), (c∗1, c
∗
2) are co-linear, or (c1, c2) = (c∗1, c

∗
2).
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Proof Assume that (c1, c2) = α(c∗1, c
∗
2), for some α ∈ R. Then, relations (23) give directly

hc3 = hαc3 for every h ∈ R. Consequently, either c3 = 0, or α = 1.
Assume now that (c1, c2) and (c∗1, c

∗
2) are not co-linear. We will prove that ϕ is constant,

in contradiction with our hypothesis. Indeed, let (x1, x2) ∈ (0, 1)2. For every α, β > 0 we
define

(d1, d2) = α(c1, c2) + β(c∗1, c
∗
2). (24)

By formula (23) we get

ϕ(x1 + d1, x2 + d2) = ϕ(x1, x2) + (α+ β)c3. (25)

Since ϕ is continuous and periodic, and since (d1, d2) is arbitrary, (25) implies that c3 = 0,
i.e. ϕ is constant. ✷

Proof of Theorem 2.1 (continuation). Assume for contradiction that condition (i) in
Theorem 2.1 does not hold.

If ϕ is constant then (10) holds for every (c1, c2) ∈ R
2\{0}. Assume that ϕ is not constant.

From the proof of Lemma 4.2, there exists c = (c1, c2, c3) ∈ R
3\{0} such that (19) holds. We

prove that for every (x1, x2) ∈ (0, 1)2 and every h ∈ R such that (x1 +hc1, x2 +hc2) ∈ (0, 1)2,

ϕ(x1 + hc1, x2 + hc2) = ϕ(x1, x2) + hc3. (26)

Let ρ be the standard mollifier in R
3. For every ε > 0 we define ρε by

ρε(x) =
1

ε3
ρ
(x

ε

)

∀x ∈ R
3.

Let η ∈ (0, 1) be a given constant. We introduce the following open subset of D:

Dη = {x ∈ D | dist(x, ∂D) > η} .

We will prove that for every ε ∈ (0, η), every x ∈ Dη and every h ∈ R such that x+hc ∈ Dη,
the following equality holds:

1Ω1
∗ ρε(x+ hc) = 1Ω1

∗ ρε(x). (27)

Let ψ ∈ C1
c (D) such that supp(ψ) ⊂ Dη, and let ε ∈ (0, η). Applying (19) to ψ ∗ ρε ∈ C1

c (D)
we get

∫

D

1Ω1
c · ∇(ψ ∗ ρε)dx = 0

which yields
∫

D

(1Ω1
∗ ρε)c · ∇ψdx = 0.

Integrating by part we get
∫

D

∂(1Ω1
∗ ρε)

∂c
ψdx = 0. (28)

Since (28) holds for every ψ ∈ C1
c (Dη) and since 1Ω1

∗ ρε ∈ C∞(Dη), we obtain

∂(1Ω1
∗ ρε)

∂c
(x) = 0 ∀x ∈ Dη.

10



Consequently (27) is proved.
Let us denote Γ1 the upper part of ∂Ω1, namely

Γ1 =
{

(x1, x2, x3) | (x1, x2) ∈ (0, 1)2, x3 = ϕ(x1, x2)
}

.

We need the following result.

Lemma 4.4 Let φ : R → R be a function satisfying the following property:

∃b ∈ R, ∀x ∈ R, ∀y ∈ R φ(x) > y =⇒ ∀h ∈ R φ(x+ h) > y + hb. (29)

Then φ(h) = φ(0) + bh for every h ∈ R.

Proof On the one hand, for every ε > 0, we have φ(0) > φ(0) − ε, so that

∀h ∈ R, φ(h) > φ(0) − ε+ hb.

Making ε→ 0, we get
∀h ∈ R, φ(h) > φ(0) + hb.

Assume for contradiction that there exists x0 ∈ R such that

φ(h0) > φ(0) + h0b.

Then, using property (29), we get for a suitable ε > 0

φ(h0 + h) > φ(0) + h0b+ ε+ hb.

Taking h = −h0 we get a contradiction. ✷

We shall prove in the sequel that for every x ∈ D and for every h ∈ R such that
x+ hc ∈ D, we have

x ∈ Ω1 ⇒ x+ hc ∈ Ω1 ∪ Γ1,

or equivalently that property (29) is satisfied by the restriction of ϕ on any line parallel to
(c1, c2).

Let x ∈ Ω1 and h ∈ R such that x+hc ∈ D. There exists η > 0 such that x, x+hc ∈ Dη

so (27) holds for every ε ∈ (0, η). Since ϕ is continuous, Ω1 is open so there exists η1 > 0
such that B(x, η1) ⊂ Ω1. In particular, for every ε ∈ (0,min(η, η1)),

1Ω1
∗ ρε(x) = 1Ω1

(x) = 1.

To prove that x + hc ∈ Ω1 ∪ Γ1 we argue by contradiction. Suppose that x + hc ∈
D \ (Ω1 ∪ Γ1). Since ϕ is continuous, D \ (Ω1 ∪ Γ1) is open, so by the same argument as
above we obtain that there exists η2 > 0 such that

1Ω1
∗ ρε(x+ hc) = 0 ∀ε ∈ (0, η2).

This is a contradiction with (27) and (4).
11



Applying Lemma 4.4 to the function

h ∈ R → ϕ(x1 + hc1, x2 + hc2)

we get (26).
In order to prove that c3 = 0, we reproduce the previous argument for p periods of ϕ.

Let us fix p ∈ N
∗. We define the following subsets of R

3:

Ω′
1 = {(x1, x2, x3) | (x1, x2) ∈ (0, p)2,−1 < x3 < ϕ(x1, x2)} ,

D′ = {(x1, x2, x3) | (x1, x2) ∈ (0, p)2,−1 < x3 < 2} ,
Γ′ = {(x1, x2, x3) | (x1, x2) ∈ (0, p)2, x3 = 0} .

As above, there exists c′ = (c′1, c
′
2, c

′
3) such that

∫

Ω′

1

c′ · ∇ψdx = 0 ∀ψ ∈ C1
c (D′) (30)

and
(c′1)

2
+ (c′2)

2
+ (c′3)

2
= 1. (31)

We first prove that c′ = ±c. By (30) we get that for every (x1, x2) ∈ (0, p)2 and every h ∈ R

such that (x1 + hc′1, x2 + hc′2) ∈ (0, p)2,

ϕ(x1 + hc′1, x2 + hc′2) = ϕ(x1, x2) + hc′3. (32)

Since |c′| = |c| it is enough to prove that c′ and c are colinear. Recall the following relations:

ϕ(x1 + hc1, x2 + hc2) = ϕ(x1, x2) + hc3, (33)

ϕ(x1 + h∗c′1, x2 + h∗c′2) = ϕ(x1, x2) + h∗c′3, (34)

which hold for every (x1, x2) ∈ (0, 1)2 and every h, h∗ ∈ R such that (x1+hc1, x2+hc2), (x1+
h∗c′1, x2 + h∗c′2) ∈ (0, 1)2.

If c′3 = 0 then immediately c3 = 0. Assume that c′3 6= 0. Setting h∗ = h c3
c′
3

in (34), we get

that for every (x1, x2) ∈ (0, 1)2 and for h small enough,

ϕ(x1 + h
c3
c′3
c′1, x2 + h

c3
c′3
c′2) = ϕ(x1, x2) + hc3. (35)

Lemma 4.3 and relations (33)-(35) imply that ( c3
c′
3

c′1,
c3
c′
3

c′2) and (c1, c2) are colinear, which

yields
c3 (c1c

′
2 − c′1c2) = 0.

If c3 6= 0 by (33)-(34) we get that (c1, c2) 6= 0 and (c′1, c
′
2) 6= 0, so there exists λ ∈ R \ {0}

such that
(c1, c2) = λ(c′1, c

′
2).

Denoting h∗ = λh in (34) and using (33) we get

c3 = λc′3.

Thus c = λc′, with λ = ±1.
Finally, for every p ∈ N

∗ relation (32) holds with the same constant vector c. Since ϕ is
bounded, we get that c3 = 0 hence ϕ is a riblet. ✷
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5 Proof of Theorem 2.2

Proof of Theorem 2.2. Since Γϕ is a W 1,∞- parametrization of Γ, with bounded norm
independent on ϕ, it is enough to prove that there exists ε0 > 0 such that

∫

Γ

|v|2dS 6 k‖ϕ‖∞‖∇v‖2
L2(Ωϕ) (36)

for every admissible function ϕ ∈ W 1,∞((0, 1)2) such that ε0 > ‖ϕ‖∞ > 0 and every v ∈
H1(Ωϕ) satisfying the non-penetration condition on Γϕ.

We fix M > 0. The value of M depends only on K, and will be fixed later in the proof.
Let ΓM = (0,M)2 × {0},

ϕ̃(x1, x2) =
1

‖ϕ‖∞
ϕ(‖ϕ‖∞x1, ‖ϕ‖∞x2) ∀(x1, x2) ∈ (0,M)2.

and
Uϕ =

{

(x1, x2, x3) | (x1, x2) ∈ (0,M)2, −1 < x3 < ϕ̃(x1, x2)
}

.

Using the same scaling method as in the proof of Theorem 2.1 (formally for ε = ‖ϕ‖∞), it
is enough to prove the existence of a positive constant k such that

∫

ΓM

|v|2dS 6 k‖∇v‖2
L2(Uϕ) (37)

for every admissible function ϕ ∈ W 1,∞((0, 1)2) with ε0 > ‖ϕ‖∞ > 0 and for every v ∈
H1(Uϕ) satisfying the non-penetration condition

∫

Uϕ

[(div v)ψ + v · ∇ψ]dx = 0 ∀ψ ∈ C1
c ((0,M)2 × (−1, 2)). (38)

Assume for contradiction that there exists a sequence of admissible functions ϕk and a
sequence of functions vk ∈ H1(Uϕk

) satisfying (38) such that

∫

ΓM

|vk|2dS = 1 and ‖∇vk‖L2(Uϕk
) → 0. (39)

Since (ϕ̃k)k is uniformly bounded in W 1,∞((0,M)2), there exists a Lipschitz-continuous
function ϕ̃ ∈ C((0,M)2) such that, up to a subsequence,

ϕ̃k → ϕ̃

uniformly on (0,M)2 and weakly * in W 1,∞((0,M)2).
We now define

U :=
{

(x1, x2, x3) | (x1, x2) ∈ (0, 1)2, −1 < x3 < ϕ̃(x1, x2)
}

.

Clearly
1Uϕk

→ 1U in L1(R3). (40)
13



As a consequence of a lemma 4.1, there exists a constant C > 0 such that

∀k, ‖vk‖H1(Uϕk
) 6 C.

Define DM = (0,M)2 × (−1, 2). Since the family (Uϕk
)k is equi-Lipschitz, there exists a

family of extension operators

Pk : H1(Uϕk
) → H1(DM)

and a constant C > 0 such that

‖Pk‖ 6 C ∀k ∈ N.

As a consequence, vk (identified to Pk(vk)) is uniformly bounded in H1(DM), so there exists
v∗ ∈ H1(DM) such that, up to a subsequence,

vk ⇀ v∗ weakly in H1(DM). (41)

By (39), there exists c = (c1, c2, c3) ∈ R
3 such that

v∗ = c a.e. in Uϕ.

Using the compactness of the trace operator fromH1(U) to L2(ΓM), we obtain thatM2‖c‖2 =
1, hence c 6= 0.

At this point, we get from Lemma 3.4 that for every g ∈ C(R2,R)

(c1, c2) ·
∫

R2

g(Z)ZdRy(Z) = c3

∫

R2

g(Z)dRy(Z) a.e. y ∈ (0,M)2.

On the other hand, from Remark 3.3 we get

∫

R2

ZdRy(Z) = ∇ϕ̃(y) a.e. y ∈ (0,M)2,

while the non-penetration condition gives (in a purely geometric way, or as a consequence
of Lemma 3.4 for g ≡ 1)

−(c1, c2) · ∇ϕ̃(y) + c3 = 0, a.e. y ∈ (0,M)2. (42)

Finally, for every g ∈ C(R2,R)

(c1, c2) ·
[
∫

R2

g(Z)ZdRy(Z) −
∫

R2

ZdRy(Z)

∫

R2

g(Z)dRy(Z)

]

= 0, a.e. y ∈ (0,M)2. (43)

If for some y ∈ (0,M)2 the support of Ry contains two independent vectors of K, say N1

and N2, then we get (c1, c2) = 0. This can be proved by taking test functions g of the form

g(Z) = ag1(Z) + bg2(Z),
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where a, b ∈ R and gi are continuous functions equal to 1 on Ni and vanishing on K \ {Ni},
i = 1, 2. Consequently, from (42) we also have c3 = 0, in contradiction with M2‖c‖2 = 1.

We may assume that for a.e. y ∈ (0,M)2, the support of Ry contains only co-linear
vectors of K. Recall, that the non degeneracy hypothesis implies that all co-linear vectors
in K have the same sense. Since ∇ϕ̃(y) =

∫

R2 ZdRy(Z), there exists αy > 1 and Ny ∈ K
such that

∇ϕ̃(y) = αyNy.

For simplicity we choose Ny as the shortest vector in each family of co-linear vectors in K.
If c3 = 0 then from (42) all Ny coincide with some fixed vector v ∈ K, otherwise (c1, c2)

would vanish. Consequently,

∂ϕ̃

∂v
(y) > ‖v‖2 a.e. y ∈ (0,M)2.

Since K is finite, we can fix M > 0 depending only on K to conclude that ‖ϕ̃‖∞ > 1 and
get a contradiction.

Assuming now that c3 6= 0, we get from (42) that

−(c1, c2)αyNy + 1 = 0 for a.e. y ∈ (0,M)2.

This implies that there exists a half plane containing almost every Ny. Hence, we can repeat
the argument above with a suitable vector v contained in the half plane and such that v ·Ny

is bounded from below by a positive constant depending only on K. ✷

6 Further remarks on singular rough boundaries

Assume that the function ϕ : T 2 → [0, 1] is only lower semicontinuous and ϕε(x1, x2) =
εϕ(x1

ε
, x2

ε
). Notice that their sub-graphs are open sets. Due to the lower semicontinous

character, singular rugosities may occur around discontinuity points. In this case, the non-
penetration condition has to be weakened, in the sense of (5). Around discontinuity points
of ϕ, testing only with C1

c (D)-functions in (4) is not enough to capture the non-penetration
of a vertical obstacle.

If ϕ is lower semicontinuous, a suitable version of Lemma 4.2, in which the non-penetration
condition (4) is replaced by (5) can be interpreted as a characterisation of the uniform ru-
gosity effect. The main difficulty is to give a correct geometric interpretation of a riblet,
similar to the one obtained in Theorem 2.1.

The following geometry, which is not a riblet in the sense of (10), does not produce a
uniform rugosity effect:

ϕ : T 2 → R, ϕ(x1, x2) = 1 − x1
1

2
δ{x2= 1

2
}.

In fact, around the discontinuity points of ϕ, vertical surfaces of positive capacity have
a crucial influence on the rugosity effect. This kind of situation falls out from (10), and can
not be captured, from a technical point of view, by the proof of Theorem 2.1. Indeed, the
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convolution method used in Theorem 2.1 ignores sets of zero Lebesgue measure, even though
their capacity is strictly positive.

If the uniform rugosity effect does not hold, one we can prove, using the convolution
technique of Theorem 2.1, that if x ∈ Ω1, there exists ε > 0 and c = (c1, c2, 0) 6= 0 such that
for every h ∈ R

|Ωc
1 ∩B(x+ hc, ε)| = 0.

If for every x0 ∈ T 2, the value ϕ(x0) coincides with its approximate lower limit at x0

ϕ(x0) = ap lim
y→x0

ϕ(y),

then Lemma 4.4 can be used and ϕ is a ribblet. So Theorem 2.1 can be extended for lower
and approximate lower semicontinuous functions. An example of such a function is

ϕ : T 2 → R, generated by ∀(x1, x2) ∈ [0, 1)2 ϕ(x1, x2) = x1.
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