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Campus Scientifique, 73376 Le-Bourget-Du-Lac, France

Abstract

This paper studies the stability of the trajectories of self-propelled bodies immersed
in a fluid at low Reynolds number, with respect to their dynamic shape deformation.
We consider both adherence and perfect slip boundary conditions on the moving body.
Using shape derivative arguments in association with recent higher order regularity
results for the Bogovskĭı operator, we bring the shape stability question to a finite
dimension dynamical system analysis.

1 Introduction.

The locomotion mechanisms of aquatic animals have aroused the interest of zoologists, en-
gineers and mathematicians for a long time. We refer to [24, 27] and the references therein
for a review of the works on this subject. Recently, researchers have tried to conceive un-
derwater vehicles that move by shape motion and do not require propellers. A pioneering
work in this direction was performed by Tryantafyllou and Tryantafyllou [34]. This type of
motion is called self-propelled motion. The principle is the following: the deformation of the
object causes a reaction of the fluid, which modifies the inertia and angular momenta of the
vehicle and sets the object in motion.

The modelling of self-propelled motion requires to couple the equations of motion of
the immersed body with the equations of motion of the fluid. The body is modeled as a
deformable solid and its movement is described by Newton’s laws of motion. Several works
consider a fluid in inviscid and irrotationnal flow, which implies that, after solving an elliptic
boundary value problem, one can bring the coupled system to a system of ordinary differential
equations involving only the degrees of freedom of the solid. This approach is developed in [7]
and [24], for instance. If we take into account the vorticity and viscosity effects, one relevant
model for the fluid consists in the stationnary Navier-Stokes equations. This case was studied
by San Mart́ın et al. [27], who proved the global existence and uniqueness of the trajectory of
a deformable solid on which a smooth deformation is imposed. Nevertheless, at low Reynolds
number, the vorticity effects are negligible with respect to the viscosity effects, so the Stokes
equations are well adapted to the description of the flow. As a result, Stokes equations are
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relevant to study the locomotion of micro-organisms, such as bacteria or certain species of
amœbae. Initiated by the pioneer works of Taylor [33], Berg and Anderson [4] and Purcell
[26], the study of swimming at low Reynolds number was the subject of many recent papers.
In [29], Shapere and Wilczek introduced a general geometric framework for low Reynolds
number swimming, that was developed by Cherman et al. [11] in the two-dimensional case.
Let us mention the work of Alouges, DeSimone and Lefebvre [1], who proved the global
controllability of a three-sphere swimmer immersed in a Stokes fluid.

In this paper, we consider a simplified model of self-propelled motion at low Reynolds
number. This model consists in a deformable solid immersed in a Stokes fluid, in a bounded
domain. The displacement of the solid is decomposed into a rigid part corresponding to a
global displacement, and a deformation part. We make the assumption that we can impose
the deformation and deduce the rigid part from the interaction between the solid and the
fluid. The location of the solid-fluid interface is an unknown, so we have to tackle a free
boundary problem. This difficulty has been recently investigated in several papers in the case
of rigid bodies immersed in a viscous incompressible fluid (see, for instance, Desjardins and
Esteban [15], San Mart́ın et al. [28], Feireisl [17] or Gunzburger et al. [19]), and in the case
of elastic or viscoelastic bodies (see, for instance, Coutand and Shkoller [12, 13], Chambolle
et al. [10], Desjardins et al. [16], and Boulakia [6]).

In this work, we give a new proof of the global existence and uniqueness of the trajectory
of a deformable solid on which the nonrigid part of the displacement is imposed, which is
immersed in a viscous incompressible fluid at low Reynolds number. The proof given in [27]
for a general viscous incompressible flow is based on the transformation of a non-cylindrical
problem into a cylindrical one, and on a fixed point argument. The principle of our proof
is similar to the approach adopted by Munnier [24] in the case of a potential flow: we use
the existence, uniqueness and regularity of the solution to the Stokes problem to bring the
coupled system of equations to a system of ordinary differential equations. To prove the
regularity of the corresponding operator, we need to establish the differentiability of the
weak solution to the Stokes problem with respect to both rigid and nonrigid deformations
of the solid, and to the boundary conditions at the solid-fluid interface. To this aim, we use
shape derivative methods that were introduced by Murat and Simon [25] and Soko lowski
and Zolésio [31]. Several difficulties arise here, due to the fact that we treat both classical
adherence conditions and perfect slip conditions which are not frequent in the literature.
Besides, to deal with boundary conditions that depend on the deformation of the solid, we
need high order regularity results for the Bogovskǐi operator which were recently proved by
Mitrea et al. [23].

One major interest of our approach is that, treating the deformation as a parameter
is the differential system, we are able to prove the stability of the trajectories of the solid
with respect to the imposed deformation. The stability of the trajectories is a crucial step to
perform a dynamical shape control of the immersed body. Although this goal is not achieved,
it was the first motivation of this work. A way to deal with this problem is to impose a
perfect slip condition at the solid-fluid interface, to consider small boundary deformations
and to produce dynamic boundary conditions by the rugosity effect (see Casado-Dı́az et
al. [9], Bucur et al. [8]).

The paper is organized as follows. After presenting the model in Section 2, we state our
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main results in Section 3. The proof to Theorem 1 is carried out in Section 4, and Theorem
2 is proved in Section 5.

2 Presentation of the model.

All results in this paper are valid in two or three dimensions. For the sake of simplicity we
present a two-dimensional model, which is adapted from [27]. However, the derivation of the
model and the mathematical study we perform in the next sections can be adapted to the
three-dimensional case without extra fundamental mathematical difficulties.

2.1 A kinematic model of self-propelled motion in a fluid.

We denote by Ω the domain occupied by the solid-fluid system, which is supposed to be a
bounded and regular open set. The state of the system at the initial instant is called the
reference configuration. We denote by S0 ⊂ Ω (resp.F0 := Ω \ S0) the domain occupied by
the solid (resp. the fluid) in the reference configuration. We suppose that ∂S0 is of class C3.
We assume that the solid is at positive distance from the boundary of Ω in the reference
configuration. Thus, there exists δ > 0 such that if we define the following subset of Ω:

Ω−δ = {x ∈ Ω | dist(x, ∂Ω) > δ} ,

then
S0 ⊂ Ω−δ.

We consider a reference frame with the origin at the mass center of S0, and a mobile frame
attached to the solid and which coincides with the reference frame at instant t = 0. In what
follows, we use the following convention. We reserve the letters x, y for space variables in
the reference frame, while x∗ stands for a space variable in the mobile frame. We write with
a star the vector fields whose components are expressed in the mobile frame.

We impose a smooth deformation of the solid, that is, we consider a time-dependant
vector field Θ∗ ∈ C1([0,∞), C3(S0,R2)) such that the deformation field X∗ in the solid is
defined by

X∗(y, t) = y + Θ∗(y, t), (y, t) ∈ S0 × [0,∞). (1)

We suppose that the deformation satisfies the following hypothesis:
(H1) For every t > 0, the mapping y → X∗(y, t) is a C3 diffeomorphism from S0 onto
S∗(t) := X∗(S0, t).

For every t > 0 we denote by Y ∗(·, t) the inverse of X∗(·, t). We define the deformation
velocity of the solid in Eulerian coordinates by

w∗(x∗, t) =
∂Θ∗

∂t
(Y ∗(x∗, t), t) t > 0, x∗ ∈ S∗(t).

We suppose that the volume of the solid is preserved during its movement, which leads to
the following constraint on w∗:
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(H2)

∫
∂S∗(t)

w∗(x∗, t)ds(x∗) = 0, t > 0.

Here we have denoted ds the surface measure on ∂S∗(t).
Since we aim to study self-propelled motions, it is natural to assume that the deformation

X∗ does not affect the linear and angular momenta of the solid. The expression of these
properties requires to define the density field ρ∗ of the solid. Let ρ0 be the density field of
the solid in the reference configuration S0. The local form of the mass conservation in the
solid yields the following expression of ρ∗:

ρ∗(x∗, t) =
ρ0(Y ∗(x∗, t))

det (∇X∗)(Y ∗(x∗, t), t)
t > 0, x∗ ∈ S∗(t). (2)

Since the origin of the reference system of coordinates coincides with the mass center of S0,
the conservation of the linear and angular momenta yields the following constraints on w∗:

(H3)

∫
S∗(t)

ρ∗(x∗, t)w∗(x∗, t)dx∗ = 0, t > 0,

(H4)

∫
S∗(t)

ρ∗(x∗, t)x∗⊥ · w∗(x∗, t)dx∗ = 0, t > 0,

where for every x = (x1, x2) ∈ R2 we denote by x⊥ the vector x⊥ = (−x2, x1).
Let X denote the motion of the solid. We assume that there exists a rigid displacement

XR such that
X(y, t) = XR(X∗(y, t), t), t > 0, y ∈ S0.

The rigid motion XR : R2 × [0,∞)→ R2 is given by

XR(x∗, t) = ξ(t) +Rθ(t)x
∗

where, for every t > 0, ξ(t) is the position of the mass center of the solid, θ(t) is the
angle giving the orientation of the solid with respect to a fixed axis in the reference frame
and Rθ(t) ∈ SO2(R) is the matrix associated to the rotation of angle θ(t). We denote by
S(ξ(t), θ(t), t) the domain occupied by the solid at instant t, that is,

S(ξ(t), θ(t), t) = Rθ(t)S∗(t) + ξ(t), t > 0.

The Eulerian velocity field of the solid is given by

uS(x, t) = ξ′(t) + θ′(t)(x− ξ(t))⊥ + w(x, t), t > 0, x ∈ S(ξ(t), θ(t), t),

where

w(x, t) = Rθ(t)w
∗(R−θ(t)(x− ξ(t)), t), t > 0, x ∈ S(ξ(t), θ(t), t).

The Eulerian density field of the body is given by

ρ(x, t) = ρ∗(R−θ(t)(x− ξ(t)), t), t > 0, x ∈ S(ξ(t), θ(t), t), (3)

with ρ∗ given by (2). The mass m of the body and its moment of inertia I(t) with respect to
an axis orthogonal to the plane of motion and passing by the mass center of S(ξ(t), θ(t), t),
are given by

m =

∫
S(ξ(t),θ(t),t)

ρ(x, t)dx, (4)
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I(t) =

∫
S(ξ(t),θ(t),t)

ρ(x, t)|x− ξ(t)|2dx, t > 0. (5)

Let us notice that from (2), (3), (4) and (5), we have

m =

∫
S0
ρ0(y)dy,

I(t) =

∫
S0
ρ0(y)|X∗(y, t)|2dy, t > 0.

In particular, since X∗ ∈ C1(S0 × [0,∞),Ω), the mapping t > 0→ I(t) ∈ R is of class C1.

2.2 The full system.

If there is no risk of confusion, we denote

S(t) = S(ξ(t), θ(t), t)

the domain occupied by the solid at instant t, and we define

F(t) = Ω \ S(t)

the domain filled by the fluid at instant t. We denote F0 = F(0). For k = 1, 2 we define

Hk(F(t)) = Hk(F(t))2

where Hk(F(t)) is the usual Sobolev space of order k. We denote by L2
0(F(t)) the subspace

of L2(F(t)) consisting of functions with mean value equal to 0.
We consider the following problem: find a real T > 0 and functions ξ ∈ C2((0, T ),R2) ∩

C1([0, T ),R2) and θ ∈ C2((0, T ),R) ∩ C1([0, T ),R) solutions to the system

mξ′′(t) = −
∫
∂S(t)

σ(u, p)n ds, t ∈ (0, T ), (6)

(Iθ′)′(t) = −
∫
∂S(t)

σ(u, p)n · (x− ξ)⊥ ds, t ∈ (0, T ), (7)

where for every t ∈ (0, T ), (u, p) ∈ H1(F(t))×L2
0(F(t)) is solution to the following problem:

−ν∆u+∇p = 0 in F(t), (8)

div u = 0 in F(t), (9)

u = 0 on ∂Ω, (10)

u · n = uS · n on ∂S(t), (11)

[σ(u, p)n]tan = 0 on ∂S(t). (12)

In the above system ν > 0 stands for the viscosity of the fluid, u and p denote the Eulerian
velocity field and the pressure field of the fluid, respectively. n stands for the unit normal
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to ∂S(t) oriented towards the solid. In (6)-(7), a prime stands for the derivation operator
with respect to time. The stress tensor field σ is defined by

σ(u, p) = 2νD(u)− pId

where D(u) is the symmetric part of ∇u defined by

D(u) =
1

2

(
(∇u) + (∇u)T

)
and Id is the identity matrix in M2(R).

Let us point out that the integrals in (6)-(7) require the H1 regularity of σ in the neigh-
borhood of ∂S(t), so that σn is properly defined in L2(∂S(t)), in the sense of trace. This
regularity will be discussed in Section 4.

Notice that (11)-(12) express a perfect slip condition at the solid-fluid interface. All the
results in this paper hold if we replace (11)-(12) by the adherence condition

u = uS on ∂S(t). (13)

System (6)-(12) is completed by the initial conditions

ξ(0) = 0, θ(0) = 0,

ξ′(0) = ξ̇0, θ
′(0) = θ̇0.

(14)

3 Statement of the main results.

We follow the notations in Section 2. Let us first define the set D of admissible deformations
Θ∗.

Let K ∈ (0, 1) be a given constant. Since C3(S0,R2) is a Banach space, (H1) holds for
every Θ∗ ∈ C1([0,∞), C3(S0,R2)) satisfying the following condition:

∀t > 0 ‖Θ∗(·, t)‖C3(S0,R2)) 6 K. (15)

Replacing K by a smaller positive value if necessary, we may assume that for every Θ∗ ∈
C1([0,∞), C3(S0,R2)) satisfying (15), the following property holds:

∀t > 0 S∗(t) ⊂ Ω−δ/2. (16)

The set D of admissible deformations is defined by

D :=
{

Θ∗ ∈ C1([0,∞), C3(S0,R2)) | ∀t > 0

‖Θ∗(t)‖C3(S0,R2)) 6 K,

∫
∂S∗(t)

w∗(x∗, t)ds(x∗) = 0,∫
S∗(t)

ρ∗(x∗, t)w∗(x∗, t)dx∗ = 0,

∫
S∗(t)

ρ∗(x∗, t)x∗⊥ · w∗(x∗, t)dx∗ = 0.
} (17)

Theorem 1. Let (ξ̇0, θ̇0) ∈ R3 and Θ∗ ∈ D. There exists Tmax > 0 such that:
6



• For every T ∈ (0, Tmax), system (6)-(12), completed with initial conditions (14), admits
one unique solution on [0, T ].

• The following alternative holds:

(i) Tmax =∞; or

(ii) limt→Tmax dist(S(t), ∂Ω) = 0.

• In the two-dimensional case, if the adherence condition (13) is imposed at the solid-
fluid interface, then Tmax =∞.

In the second result, D is endowed with the C1([0,∞), C3(S0,R2)) norm.

Theorem 2. Let (ξ̇0, θ̇0) ∈ R3 and Θ∗ ∈ D. Let (ξ, θ) be the maximal solution to (6)-(12)
associated to Θ∗, with initial conditions (14). Let (Θ∗n)n∈N be a sequence of deformations
converging to Θ∗ in D. For every n ∈ N we denote by (ξn, θn) the maximal solution associated
to Θ∗n with the same initial conditions. Then:

• There exists T1 > 0 such that (ξ, θ), (ξn, θn) exist on [0, T1] for all n ∈ N.

• The sequence (ξn, θn)n∈N converges to (ξ, θ) uniformly in C1([0, T ∗],R3), for any time
T ∗ such that the solution (ξn, θn) is well-defined on [0, T ∗] for any n.

4 Proof of Theorem 1.

In this section, the deformation Θ∗ ∈ D is given. To obtain the local existence and uniqueness
of the trajectories, we rewrite problem (6)-(12) as a system of second order differential
equations satisfied by the unknown functions ξ, θ, and apply the Cauchy-Lipschitz theorem.

Step 1. For every t > 0 and every (ξ, θ) ∈ R3 we denote by S(ξ, θ, t) the domain

S(ξ, θ, t) = ξ +RθS∗(t).

By (16), there exists an open subset W ⊂ R3 such that 0 ∈ W and

∀t > 0, ∀(ξ, θ) ∈ W , S(ξ, θ, t) ⊂ Ω.

For every t > 0 and every (ξ, θ) ∈ W we denote by F(ξ, θ, t) the domain

F(ξ, θ, t) = Ω \ S(ξ, θ, t).

We denote by α a quadruplet (ξ, θ, ξ̇, θ̇) in R6 and by U the admissible set for the parameter
α, defined by

U =W × R3. (18)

For every (α, t) ∈ U × [0,∞) we define (uα,t, pα,t) in H1(F(ξ, θ, t)) × L2
0(F(ξ, θ, t)) as the

solution to the following problem:
−ν∆uα,t +∇pα,t = 0 in F(ξ, θ, t),

div uα,t = 0 in F(ξ, θ, t),
uα,t = 0 on ∂Ω,

uα,t · nξ,θ,t = uSα,t · nξ,θ,t on ∂S(ξ, θ, t),
[σ(uα,t, pα,t)nξ,θ,t]tan = 0 on ∂S(ξ, θ, t),

(19)
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where nξ,θ,t stands for the unit normal to ∂S(ξ, θ, t) oriented towards S(ξ, θ, t). The function
uSα,t is defined by

uSα,t(x) = ξ̇ + θ̇(x− ξ)⊥ +Rθw
∗(R−θ(x− ξ), t), x ∈ ∂S(ξ, θ, t),

and L2
0(F(ξ, θ, t)) is the subspace of L2(F(ξ, θ, t)) consisting of functions with mean value

equal to 0.
Let us precise the sense of (19). For every (ξ, θ, t) ∈ W × [0,∞), we define the following

subspace of H1(F(ξ, θ, t)):

H1
tan(F(ξ, θ, t)) = {ψ ∈ H1(F(ξ, θ, t)) : ψ · nξ,θ,t = 0 on ∂F(ξ, θ, t), ψ = 0 on ∂Ω}. (20)

(uα,t, pα,t) ∈ H1(F(ξ, θ, t))× L2
0(F(ξ, θ, t)) is solution to (19) in the following sense:

div uα,t = 0 in L2(F(ξ, θ, t)),

uα,t satisfies the boundary conditions

uα,t = 0 on ∂Ω, uα,t · nξ,θ,t = uSα,t · nξ,θ,t on ∂S(ξ, θ, t)

in the sense of trace, and for every test function ψ ∈ H1
tan(F(ξ, θ, t)),

ν

∫
F(ξ,θ,t)

∇uα,t : ∇ψ dx−
∫
F(ξ,θ,t)

pα,t(div ψ)dx = 0. (21)

To state the local H2 × H1 regularity of (uα,t, pα,t) in the neighborhood of ∂S(ξ, θ, t), we
introduce an open subset Ω′ ⊂ R2 such that

S0 ⊂ Ω′ ⊂ Ω

and ∂Ω′ is at positive distance from ∂S0 and ∂Ω. We set

F ′0 = F0 ∩ Ω′. (22)

By classic regularity results for the Stokes problem with slip boundary conditions (see for
instance [32], [2]), problem (19) admits one unique solution (uα,t, pα,t) in H1(F(ξ, θ, t)) ×
L2

0(F(ξ, θ, t)). Furthermore, this solution satisfies

(uα,t, pα,t) ∈ H2(Xξ,θ,t(F ′0))×H1(Xξ,θ,t(F ′0)). (23)

We now define the operators

F : U × [0,∞)→ R2, G : U × [0,∞)→ R, (24)

by 
F (α, t) = − 1

m

∫
∂S(ξ,θ,t)

σ(uα,t, pα,t)nξ,θ,t ds,

G(α, t) = − 1

I(t)

(∫
∂S(ξ,θ,t)

σ(uα,t, pα,t)nξ,θ,t · (x− ξ)⊥ ds+ I′(t)θ̇

)
.
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With these notations, problem (6)-(12), completed by initial conditions (14), can be re-
written as follows: find T > 0 and functions ξ ∈ C2((0, T ),R2) ∩ C1([0, T ),R2) and θ ∈
C2((0, T ),R) ∩ C1([0, T ),R) solutions to the system

(ξ′′(t), θ′′(t)) = (F,G) (ξ(t), θ(t), ξ′(t), θ′(t), t) , t ∈ (0, T ),

(ξ(0), θ(0), ξ′(0), θ′(0)) = (0, 0, ξ̇0, θ̇0).
(25)

Remark 3. Since the dependance of S(ξ, θ, t), nξ,θ,t and (uα,t, pα,t) on the time parameter t
appears only through Θ∗(t) and (Θ∗)′(t) (via S∗(t) and the boundary conditions on ∂S(ξ, θ, t)
in (19)), system (25) could be written as

(ξ′′(t), θ′′(t)) = (F,G) (ξ(t), θ(t), ξ′(t), θ′(t),Θ∗(t), (Θ∗)′(t)) , t ∈ (0, T ),

(ξ(0), θ(0), ξ′(0), θ′(0)) = (0, 0, ξ̇0, θ̇0).
(26)

In this formulation, the couple (Θ∗(t), (Θ∗)′(t)) appears as the natural control variable for
system (26). However, since we aim to study the stability of the solid-fluid system with
respect to deformations Θ∗ ∈ D, which is an infinite-dimensional function space, the ana-
lyticity of (F,G) with respect to (Θ∗(t), (Θ∗)′(t)) is not well defined, to our knowledge. For
this reason, and to simplify the notations, we keep formulation (25) in the rest of the paper.

Step 2. To obtain the continuity of F,G and the local Lipschitz condition with respect
to α, we need to prove the regularity of the solution to (19) with respect to (α, t). To this
end, we introduce a C3-diffeomorphism Xξ,θ,t from Ω onto itself, which is defined in the next
paragraph.

The principle is to extend the deformation X∗ up to a neighborhood of S0 and to combine
this deformation with the flow of a Cauchy problem, so that the restriction of Xξ,θ,t to S0

coincides with the effective deformation of the solid, namely,

Xξ,θ,t(y) = ξ +RθX
∗(y, t), y ∈ S0. (27)

For every t > 0, we define Θ∗(t) ∈ C3(S0,R2) by

Θ∗(t) = Θ∗(·, t).

We consider an operator of extension

E : C3(S0,R2)→ C3(Ω,R2),

which is supposed to be linear and bounded, and satisfies

(EΘ∗(t))(y) = Θ∗(y, t), Θ∗ ∈ D, y ∈ S0.

The existence of E results from the regularity of ∂S0. Let τ be a C∞ function with compact
support in Ω−δ/2, that is equal to 1 in a neighborhood of Ω−δ. We define the extended
deformation X∗ by

X∗(y, t) = y + (EΘ∗(t))(y)τ(y) t > 0, y ∈ Ω. (28)
9



By definition of E and τ , and since Θ∗ ∈ D, the mapping X∗ ∈ C1([0,∞), C3(Ω,R2)).
Moreover, by continuity of E , supposing that the constant K that appears in the definition
of D is small enough, for every t > 0, the mapping X∗(·, t) is a C3-diffeomorphism from F0

onto F∗(t) := Ω \ S∗(t) such that

∀y ∈ F0 dist(y, ∂Ω) < δ/2⇒ X∗(y, t) = y. (29)

To deal with the rigid part of the displacement, for every (ξ, θ) ∈ W , we introduce χξ,θ the
flow of the following Cauchy problem:{

dχξ,θ
ds

(z, s) = zξ,θ(χξ,θ(z, s), s),

χξ,θ(z, 0) = z, z ∈ Ω,
(30)

where the function zξ,θ is defined for every (x, s) ∈ R2 × R+ by

zξ,θ(x, s) = (ξ + θ(x− sξ)⊥)τ(x).

Since zξ,θ is C∞ and for every s > 0, zξ,θ(·, s) has a compact support in Ω, problem (30)
admits a unique solution on the interval [0, 1]. One can easily check that for every z ∈ S0,
this solution is equal to

χξ,θ(z, s) = sξ +Rsθz, s ∈ [0, 1]. (31)

Since the mapping
(x, s, ξ, θ) ∈ R2 × R+ ×W → zξ,θ(x, s) ∈ R2

is of class C∞, the mapping

(z, ξ, θ) ∈ Ω×W → χξ,θ(z, 1) ∈ Ω

is of class C∞. Since zξ,θ has a compact support in Ω, χξ,θ(·, 1) is a C∞-diffeomorphism from
Ω onto itself. For every (ξ, θ, t) ∈ W × [0,∞) we now define

Xξ,θ,t(y) = χξ,θ(X∗(y, t), 1) y ∈ Ω. (32)

Applying (31) with s = 1, we get that Xξ,θ,t satisfies (27). Thus, for every (ξ, θ, t) ∈
W× [0,∞), the restriction of Xξ,θ,t to F0 is a C3-diffeomorphism from F0 onto F(ξ, θ, t). By
composition, the mapping

(ξ, θ, t, y) ∈ W ×F0 → Xξ,θ,t(y) ∈ R2 (33)

is of class C∞(W , C1([0,∞), C3(F0,R2))).
The crucial point in the proof of Theorem 1 is the following:

Proposition 4. The mapping

(α, t) ∈ U × [0,∞)→ σ(uα,t, pα,t) ◦Xξ,θ,t ∈ H1(F ′0)4

is of class C1.
10



Proof of Proposition 4. The proof is based on technics developed by Simon [30] and
Bello et al. [3] to prove the differentiability of the solution to a Stokes (resp. Navier-Stokes)
problem, with respect to Lipschitz deformations of the domain. The principle is to transform
a problem with constant coefficients posed on a moving domain, into a problem with vari-
able coefficients posed on a fixed reference domain, via an appropriate change of unknown
functions. Then the implicit function theorem is applied. The main difference with all pre-
vious works is that we impose no-slip boundary conditions, which requires to consider the
variation of the normal on ∂S0 induced by the diffeomorphism Xξ,θ,t. Besides, the boundary
conditions are inhomogeneous and depend on the parameters α and t. To deal with these
boundary conditions we use a lift operator to transform the nonhomogeneous problem into
an homogeneous problem with a source term. Another difficulty arises here: in order to
preserve the H2×H1 regularity of the solution in a neighborhood of the solid, we need a lift
operator involving Sobolev spaces of higher order that the well-known Bogovskǐi operator
(see for instance [5] or [18]). The existence of such operators, defined on a subspace of H3/2

with value in H1, was proved recently by Mitrea, Mitrea and Monniaux [23].
For every (ξ, θ, t) ∈ W × [0,∞) we denote by Jξ,θ,t ∈ C2(F0,R)4 the Jacobian matrix of

the restriction of Xξ,θ,t to F0. Using properties (29) and (33) and the Taylor formulas, we
obtain the following

Lemma 5. The mapping

(ξ, θ, t) ∈ W × [0,∞)→ Jξ,θ,t ∈ W 2,∞(F0)4

is of class C1.

In the next paragraph, we use the restriction of Xξ,θ,t to F0 to write problem (19) in the
reference domain F0. We denote by Jξ,θ,t the determinant of Jξ,θ,t. We can assume without
loss of generality that

Jξ,θ,t(y) > 0 ∀(ξ, θ, t, y) ∈ W × [0,∞)×F0.

Recall that F ′0 is defined by (22). The change of functions that we use is motivated by the
following result:

Lemma 6. Let (ξ, θ, t) ∈ W×[0,∞) and (u, p) ∈ H1(F(ξ, θ, t))×L2(F(ξ, θ, t)). Let (U, P ) ∈
H1(F0)× L2(F0) defined by

U = Jξ,θ,t J−1
ξ,θ,t(u ◦Xξ,θ,t), P = Jξ,θ,t(p ◦Xξ,θ,t).

The following results hold:

(i) p ∈ L2
0(F(ξ, θ, t)) if and only if P ∈ L2

0(F0),

(ii) (u, p) ∈ H2(Xξ,θ,t(F ′0))×H1(Xξ,θ,t(F ′0)) if and only if (U, P ) ∈ H2(F ′0)×H1(F ′0),

(iii) div u = 0 in L2(Xξ,θ,t(F0)) if and only if div U = 0 in L2(F0).

11



Proof of Lemma 6. To prove (i), notice that by change of variable x = Xξ,θ,t(y),∫
F(ξ,θ,t)

p(x)dx =

∫
F0

Jξ,θ,t(y)(p ◦Xξ,θ,t)(y)dy

=

∫
F0

P (y)dy.

Point (ii) results from the fact that the coefficients of Jξ,θ,t and J−1
ξ,θ,t are in W 2,∞(F0) and

that Xξ,θ,t is in C2(F0,R2). To prove (iii), we perform the following calculation. For every
ζ ∈ C1

c (F(ξ, θ, t)), using Green’s formula, change of variable x = Xξ,θ,t(y) and the chain rule
formula

∇(ζ ◦Xξ,θ,t)(y) = [Jξ,θ,t(y)]T ∇ζ(Xξ,θ,t(y)), y ∈ F0, (34)

we obtain that∫
F(ξ,θ,t)

(div u)(x)ζ(x) dx = −
∫
F(ξ,θ,t)

u(x) · ∇ζ(x) dx

= −
∫
F0

(u ◦Xξ,θ,t)(y) ·
([
Jξ,θ,t(y)−1

]T ∇(ζ ◦Xξ,θ,t)(y)
)
Jξ,θ,t(y) dy

= −
∫
F0

Jξ,θ,t(y)
([
Jξ,θ,t(y)−1

]
(u ◦Xξ,θ,t)(y)

)
· ∇(ζ ◦Xξ,θ,t)(y) dy

=

∫
F0

(div U)(y)(ζ ◦Xξ,θ,t)(y) dy.

Since the mapping
ζ ∈ C1

c (F(ξ, θ, t))→ ζ ◦Xξ,θ,t ∈ C1
c (F0)

is bijective, this proves (iii) by density in L2 of the C1 functions with compact support.
For every α = (ξ, θ, ξ̇, θ̇) ∈ U and every t > 0, we define the following change of functions:

Uα,t = Jξ,θ,tJ−1
ξ,θ,t(uα,t ◦Xξ,θ,t), Pα,t = Jξ,θ,t(pα,t ◦Xξ,θ,t), (35)

where (uα,t, pα,t) ∈ H1(F(ξ, θ, t)) × L2
0(F(ξ, θ, t)) is the solution to (19). This change of

functions was introduced by Inoue and Wakimoto [22] in the case Jξ,θ,t ≡ 1. By (23) and
Lemma 6, (Uα,t, Pα,t) has the following regularity:

(Uα,t, Pα,t) ∈ H2(F ′0) ∩H1(F0)×H1(F ′0) ∩ L2
0(F0). (36)

We will prove that (uα,t, pα,t) is solution to (19) if and only (Uα,t, Pα,t) is solution to the
following problem:

∑
i

(
−ν div (Li(ξ, θ, t)Uα,t) +

∑
j

∂j (Mij(ξ, θ, t)Pα,t)

)
∇X(i)

ξ,θ,t = 0 in F0,

div Uα,t = 0 in F0,
Uα,t = 0 on ∂Ω,

Uα,t · n0 = US
α,t · n0 on ∂S0,[∑

i

[(Li(ξ, θ, t)Uα,t) · n0]∇X(i)
ξ,θ,t

]
tan

= 0 on ∂S0,

(37)
12



in a sense that will be made precise below. In the above system, n0 stands for the unit normal
to ∂S0 oriented towards S0. For every (α, t) ∈ U × [0,∞), US

α,t ∈ C3(S0,R2) is defined by

US
α,t(y) = Jξ,θ,t(y)(DX∗t (y))−1

(
R−1
θ ξ̇ + θ̇X∗(y, t)⊥ +

∂X∗

∂t
(y, t)

)
, y ∈ S0,

where DX∗t stands for the Jacobian matrix of X∗(·, t). Notice that

Jξ,θ,t(y) = RθDX
∗
t (y), y ∈ S0.

M(ξ, θ, t) ∈ W 2,∞(F0)4 is defined by

M(ξ, θ, t)(y) =
[
Jξ,θ,t(y)−1

]T
, y ∈ F0. (38)

For i = 1, 2, Li(ξ, θ, t) ∈ L(H2(F ′0) ∩ H1(F0),H1(F ′0) ∩ L2(F0)2) is the bounded operator
defined by

Li(ξ, θ, t)U = Jξ,θ,tJ−1
ξ,θ,tM(ξ, θ, t)∇(J −1

ξ,θ,t∇X
(i)
ξ,θ,t · U) ∀U ∈ H2(F ′0) ∩H1(F0). (39)

Let us precise the sense of (37). We define the following subspace of H1(F0):

H1
tan(F0) = {φ ∈ H1(F0) : φ · n0 = 0 on ∂F0, φ = 0 on ∂Ω}.

(Uα,t, Pα,t) ∈ H1(F0)× L2
0(F0) satisfies (37) in the following sense:

div Uα,t = 0 in L2(F0),

Uα,t satisfies the boundary conditions

Uα,t = 0 on ∂Ω, Uα,t · n0 = US
α,t · n0 on ∂S0

in the sense of trace, and for every test function φ ∈ H1
tan(F0),

ν

∫
F0

∑
i

[
(Li(ξ, θ, t)Uα,t) · ∇

(
∇X(i)

ξ,θ,t · φ
)]

(y) dy

−
∫
F0

Pα,t(y)
∑
i

[(
M(ξ, θ, t)∇(∇X(i)

ξ,θ,t · φ)
)

(y)
](i)

dy = 0. (40)

To prove that problems (19) and (37) are equivalent via transformation (35), we need the
following result involving the spaces of test functions H1

tan(F0) and H1
tan(F(ξ, θ, t)) (defined

by (20), p. 8).

Lemma 7. For every ψ ∈ H1
tan(F(ξ, θ, t)), if we define the function φ : F0 → R2 by

φ(y) = Jξ,θ,t(y)−1(ψ ◦Xξ,θ,t)(y), y ∈ F0, (41)

then φ ∈ H1
tan(F0), and the mapping

ψ ∈ H1
tan(F(ξ, θ, t))→ φ ∈ H1

tan(F0)

is one-to-one and onto.
13



Proof of Lemma 7. Let ψ ∈ H1(F(ξ, θ, t)). Clearly, by the regularity of Xξ,θ,t, the function
φ defined by (41) belongs to H1(F0) and vanishes on ∂Ω in the sense of trace. We need to
prove the following equivalence:

ψ · nξ,θ,t = 0 on ∂S(ξ, θ, t) ⇐⇒ φ · n0 = 0 on ∂S0. (42)

By density of C1(F(ξ, θ, t)) in H1(F(ξ, θ, t)), we may assume that ψ ∈ C1(F(ξ, θ, t)). In-
troducing a parametrisation γ of ∂S0 and the corresponding parametrisation Xξ,θ,t ◦ γ of
∂Sξ,θ,t, one can express the unit normal nξ,θ,t as a function of n0 and of the first order space
derivatives of Xξ,θ,t as follows:

nξ,θ,t(Xξ,θ,t(y)) =
[Jξ,θ,t(y)−1]

T
n0(y)

| [Jξ,θ,t(y)−1]T n0(y)|
, y ∈ F0. (43)

Consequently, for every y ∈ ∂S0,

(ψ ◦Xξ,θ,t)(y) · nξ,θ,t(Xξ,θ,t(y)) = 0⇐⇒ (ψ ◦Xξ,θ,t)(y) · (
[
Jξ,θ,t(y)−1

]T
n0(y)) = 0

⇐⇒
(
Jξ,θ,t(y)−1(ψ ◦Xξ,θ,t)(y)

)
· n0(y) = 0

⇐⇒ φ(y) · n0(y) = 0.

This proves (42).
Let us prove that for every φ ∈ H1

tan(F0), if we define ψ ∈ H1
tan(F0) by (41), then (40) is

equivalent to (21). Noticing that for i = 1, 2,

ψ(i) ◦Xξ,θ,t = ∇X(i)
ξ,θ,t · φ (44)

and applying formule (34) to ζ = ψ(i) ◦Xξ,θ,t, we obtain the following chain rule:

∇ψ(i)(Xξ,θ,t(y)) = (M(ξ, θ, t)∇(∇X(i)
ξ,θ,t · φ))(y), y ∈ F0.

By change of variables x = Xξ,θ,t(y), we obtain∫
F(ξ,θ,t)

∑
i

∇u(i)
α,t(x) · ∇ψ(i)(x)dx

=

∫
F0

∑
i

(
Jξ,θ,tM(ξ, θ, t)∇(∇X(i)

ξ,θ,t · (J
−1
ξ,θ,tUα,t))

)
(y) ·

(
M(ξ, θ, t)∇(∇X(i)

ξ,θ,t · φ)
)

(y) dy

=

∫
F0

∑
i

[
(Li(ξ, θ, t)Uα,t) · ∇

(
∇X(i)

ξ,θ,t · φ
)]

(y) dy

and ∫
F(ξ,θ,t)

pα,t(x)(div ψ)(x)dx

=

∫
F0

Pα,t(y)
∑
i

[(
M(ξ, θ, t)∇(∇X(i)

ξ,θ,t · φ)
)

(y)
](i)

dy.

By Lemma 7, we conclude that problems (19) and (37) are equivalent.
14



Remark 8. System (37) can be obtained from equation (40) by the following formal com-
putations. If (Uα,t, Pα,t) is regular enough, then for every φ ∈ H1

tan(F0),∫
F0

∑
i

[
(Li(ξ, θ, t)Uα,t) · ∇

(
∇X(i)

ξ,θ,t · φ
)]

(y)dy

= −
∫
F0

∑
i

[
(div (Li(ξ, θ, t)Uα,t)) (y)∇X(i)

ξ,θ,t(y)
]
· φ(y)dy

+

∫
∂S0

∑
i

[
((Li(ξ, θ, t)Uα,t)(y) · n0(y))∇X(i)

ξ,θ,t(y)
]
· φ(y)ds(y)

and

−
∫
F0

Pα,t(y)
∑
i

[(
M(ξ, θ, t)∇(∇X(i)

ξ,θ,t · φ)
)

(y)
](i)

dy

=

∫
F0

∑
ij

[
∂j (Mij(ξ, θ, t)Pα,t) (y)∇X(i)

ξ,θ,t(y)
]
· φ(y)dy

−
∫
∂S0

P (y)
∑
ij

[
Mij(y)n

(j)
0 (y)∇X(i)

ξ,θ,t(y)
]
· φ(y)ds(y). (45)

Using definition (38), we obtain∫
∂S0

P (y)
∑
ij

(
Mij(y)n

(j)
0 (y)∇X(i)

ξ,θ,t(y)
)
· φ(y)ds(y)

=

∫
∂S0

P (y)(M(ξ, θ, t)(y)n0(y)) · (Jξ,θ,t(y)φ(y))ds(y)

=

∫
∂S0

P (y)n0(y) · φ(y)ds(y)

= 0.

To prove the regularity of the solution to problem (37) with respect to (α, t), we need to
lift the boundary condition. To this end, we introduce the following subspace of H3/2(∂S0)2:

G(∂S0) =

{
Γ ∈ H3/2(∂S0)2 |

∫
∂S0

Γ · n0 ds = 0

}
.

We consider a bounded operator

Π : G(∂S0)→ H2(F0)

such that for every Γ ∈ G(∂S0), if we define

K = ΠΓ,

15



then K satisfies the following constraints:
div K = 0 in F0,

K = 0 on ∂Ω,
K = Γ on ∂S0.

The existence of Π is proved in [23] (Corollary 1.4). For every (α, t) ∈ U × [0,∞), we define
Kα,t ∈ H2(F0) by

Kα,t = ΠUα,t.

Since Π is bounded and since the mapping

(α, t) ∈ U × [0,∞)→ US
α,t ∈ H3/2(∂S0)2

is of class C1, by composition, we get the following

Lemma 9. The mapping

(α, t) ∈ U × [0,∞)→ Kα,t ∈ H2(F0)

is of class C1.

We define the new unknown function

Vα,t := Uα,t −Kα,t.

Vα,t ∈ H2(F ′0)∩H1
tan(F0) and (Uα,t, Pα,t) is solution to (37) if and only if (Vα,t, Pα,t) is solution

to { ∑
i[−ν div(Li(ξ, θ, t)[Vα,t +Kα,t]) +

∑
j ∂j(Mij(ξ, θ, t)Pα,t)] ∇X(i)

ξ,θ,t = 0 in F0,

div Vα,t = 0 in F0.
(46)

Using (46) we can write (Vα,t, Pα,t) as a zero of a bounded operator depending on the
parameter (α, t) ∈ U × [0,∞). The definition of this operator requires to introduce the
following Banach spaces:

A = H2(F ′0) ∩H1
tan(F0)×H1(F ′0) ∩ L2

0(F0),
B = L2(F ′0)2 ∩ (H1

tan)′(F0)×H1(F ′0) ∩ L2
0(F0),

endowed with the norms:

‖(V, P )‖A = ‖V ‖H2(F ′0) + ‖V ‖H1(F0) + ‖P‖H1(F ′0) + ‖P‖L2(F0),
‖(f, g)‖B = ‖f‖L2(F ′0)2 + ‖f‖(H1

tan)′(F0) + ‖g‖H1(F ′0) + ‖g‖L2(F0).

In the definition of B, (H1
tan)′(F0) stands for the dual space of H1

tan(F0). We now define the
operator

H : U × [0,∞)× A→ B

by
H(α, t;V, P ) = (Q(α, t;V, P ), R(α, t;V, P )),

Q(α, t;V, P ) =
∑

i[−ν div(Li(ξ, θ, t)[V +Kα,t]) +
∑

j ∂j(Mij(ξ, θ, t)P )] ∇X(i)
ξ,θ,t,

R(α, t;V, P ) = div V.
(47)
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Remark 10. For every V ∈ H1
tan(F0), div V ∈ L2

0(F0), which justifies the definition of B.
Indeed, by Stokes formula, ∫

F0

div V dx =

∫
∂S0

V · n0 ds

= 0.

With these notations, system (46) can be rewritten in the following implicit form:

H(α, t;Vα,t, Pα,t) = 0. (48)

The final step is to prove that the mapping

(α, t) ∈ U × [0,∞)→ (Vα,t, Pα,t)

solution to (48) is of class C1. For this purpose, we apply the implicit function theorem. Let
(α∗, t∗) be a given point in U × [0,∞), with α∗ = (ξ∗, ξ̇∗, θ∗, θ̇∗). We introduce the following
notations:

X = Xξ∗,θ∗,t∗ , J = Jξ∗,θ∗,t∗ , J = Jξ∗,θ∗,t∗ ,
M∗ = M(ξ∗, θ∗, t∗), L∗i = Li(ξ

∗, θ∗, t∗),
F = X(F0), F ′ = X(F ′0),
(V ∗, P ∗) = (Vα∗,t∗ , Pα∗,t∗).

We will apply the implicit function theorem to the function H defined by (47), at point
(α∗, t∗, V ∗, P ∗) ∈ U × [0,∞)× A.

• H is a C1 mapping from U × [0,∞)× A into B. Indeed,

– since the mappings (ξ, θ, t) ∈ W × [0,∞) → Jξ,θ,t ∈ W 2,∞(F0)4 and (ξ, θ, t) ∈
W × [0,∞) → Jξ,θ,t ∈ W 2,∞(F0) are of class C1, by Lemma 9 and by continuity
of the product W 2,∞(F0) × H2(F ′0) ∩ H1(F0) → H2(F ′0) ∩ H1(F0), for i = 1, 2,
the mapping

(α, t, V ) ∈ U × [0,∞)×H2(F ′0) ∩H1(F0)

→ J −1
ξ,θ,t∇X

(i)
ξ,θ,t · [V +Kα,t] ∈ H2(F ′0) ∩H1(F0)

is of class C1. Recall that for i = 1, 2, Li(ξ, θ, t) is defined by (39) (p. 13). Since
the matrix inversion is a C∞ operation from GL2(R) onto itself and since the
derivation in Sobolev spaces is a bounded operator, we obtain that for i = 1, 2,
the mapping

(α, t, V ) ∈ U×[0,∞)×H2(F ′0)∩H1(F0)→ Li(ξ, θ, t)[V +Kα,t] ∈ H1(F ′0)∩L2(F0)2

is of class C1, and consequently, that the mapping

(α, t, V ) ∈ U × [0,∞)×H2(F ′0) ∩H1(F0)

→ (div (Li(ξ, θ, t)[V +Kα,t]))∇X(i)
ξ,θ,t ∈ L

2(F ′0)2 ∩ (H1
tan)′(F0)
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is of class C1. By the same arguments, that the mapping

(α, t, P ) ∈ U × [0,∞)×H1(F ′0) ∩ L2(F0)

→
∑
j

∂j (Mij(ξ, θ, t)P )∇X(i)
ξ,θ,t ∈ L

2(F ′0)2 ∩ (H1
tan)′(F0)

is of class C1. Consequently, Q is a C1 mapping from U× [0,∞)×A into L2(F ′0)2∩
(H1

tan)′(F0);

– R is independant on the variable (α, t) and induces a bounded operator from A
into H1(F ′0) ∩ L2

0(F0). In particular, R is of class C1.

• By definition, (V ∗, P ∗) satisfies

H(α∗, t∗;V ∗, P ∗) = 0.

• Let us prove that the operator Λ := D(V,P )H(α∗, t∗, V ∗, P ∗) is a bicontinuous isomor-
phism from A onto B. Λ is defined for every (V, P ) ∈ A by

Λ(V, P ) = (Λ1,Λ2)(V, P ),
Λ1(V, P ) =

∑
i[−ν div(L∗iV ) +

∑
j ∂j(M

∗
ijP )] ∇X(i),

Λ2(V, P ) = div V.

Clearly Λ ∈ L(A,B). We need to prove that Λ is invertible with continuous inverse.
Let (f, g) ∈ B. We need to prove that there exists one unique pair (V, P ) ∈ A such
that

(f, g) = Λ(V, P ),

that is, that there exists one unique solution to the problem{ ∑
i[−ν div(L∗iV ) +

∑
j ∂j(M

∗
ijP )] ∇X(i) = f in F0,

div V = g in F0.
(49)

Besides, we need to prove that this solution satisfies natural estimates with respect
to (f, g). To this end, we perform the opposite change of functions to (35) which
transforms problem (49) posed on the reference domain F0 into a Stokes problem
posed on F . The existence and uniqueness of the solution to problem (49) result
from the existence and uniqueness of the solution to the Stokes problem on F , via
transformation (35). Then we use classical estimates on the solution to the Stokes
problem with slip boundary condition and the regularity of the diffeomorphism X to
control the norm of (V, P ) in A by the norm of the source term (f, g) in B.

We define the functions v, p, f̃ , g̃ by the following relations:
v ◦X = J −1JV,
p ◦X = J −1P,

f̃ ◦X = J −1M∗f,
g̃ ◦X = J −1g.
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(f̃ , g̃) ∈ (H1
tan)′(F) ∩ L2(F ′)2 ×H1(F ′) ∩ L2

0(F) and (v, p) is solution to the following
problem:

find (v, p) ∈ H1
tan(F)× L2

0(F)

such that {
−ν∆v +∇p = f̃ in F ,

div v = g̃ in F . (50)

By the results in [32], problem (50) admits one unique solution, this solution has the
regularity

(v, p) ∈ H2(F ′) ∩H1
tan(F)×H1(F ′) ∩ L2

0(F)

and there exists a constant C > 0 depending only on (α∗, t∗) such that

‖v‖H2(F ′) + ‖v‖H1(F) + ‖p‖H1(F ′) + ‖p‖L2(F)

6 C
(
‖f̃‖L2(F ′)2 + ‖f̃‖(H1

tan)′(F) + ‖g̃‖H1(F ′) + ‖g̃‖L2(F)

)
.

(51)

By construction of X, the partial derivatives of X (resp.X−1) up to order 2 are uni-
formly bounded on F0 (resp.F). The domains F0 and F being bounded, there exist
two constant C1, C2 > 0 (depending only on (α∗, t∗)) such that

‖(V, P )‖A 6 C1

(
‖v‖H2(F ′) + ‖v‖H1(F) + ‖p‖H1(F ′) + ‖p‖L2(F)

)
, (52)

and
‖f̃‖L2(F ′)2 + ‖f̃‖(H1

tan)′(F) + ‖g̃‖H1(F ′) + ‖g̃‖L2(F) 6 C2‖(f, g)‖B. (53)

Finally, by inequalities (51)-(53), there exists a constant C > 0 such that

‖(V, P )‖A 6 C‖(f, g)‖B,

which proves that Λ is invertible in L(A,B).

By the implicit function theorem, the mapping

(α, t) ∈ U × [0,∞)→ (Vα,t, Pα,t) ∈ A

solution to (48) is of class C1 in the neighborhood of (α∗, t∗). Since (α∗, t∗) is arbitrary,
this mapping is of class C1 on U × [0,∞). Using Lemma 5 (p. 11), formula (35) (p. 12) and
Lemma 9, we obtain

Proposition 11. The mapping

(α, t) ∈ U × [0,∞)→ (uα,t ◦Xξ,θ,t, pα,t ◦Xξ,θ,t) ∈ H2(F ′0) ∩H1(F0)×H1(F ′0) ∩ L2
0(F0),

where (uα,t, pα,t) is the solution to problem (19), is of class C1.
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Proposition 4 results directly from this statement.
Step 3. Continuity of F , G and local Lipschitz condition with respect to α.
Recall that F,G are defined by (24) (p. 8). Using the change of variable formula in the

curvilinear integrals (see for instance [20] p. 190), we transform the integrals on ∂S(ξ, θ, t)
into integrals on the fixed boundary ∂S0. We denote by Jtan(Xξ,θ,t) the tangential jacobian
of Xξ,θ,t on ∂S0, defined by

Jtan(Xξ,θ,t) =
∣∣∣[J−1

ξ,θ,t

]T
n0

∣∣∣Jξ,θ,t.
For i = 1, 2, we obtain

F (i)(α, t) = − 1

m

∫
∂S(ξ,θ,t)

(σ(uα,t, pα,t))
(i) · nξ,θ,t ds

= − 1

m

∫
∂S0

(σ(uα,t, pα,t) ◦Xξ,θ,t)
(i) · (nξ,θ,t ◦Xξ,θ,t)Jtan(Xξ,θ,t)ds.

By formula (43) (p. 14), last equality can be written as follows:

F (i)(α, t) = − 1

m

∫
∂S0
Jξ,θ,t

(
J−1
ξ,θ,t(σ(uα,t, pα,t) ◦Xξ,θ,t)

(i)
)
· n0 ds. (54)

As a consequence of Lemma 5 (p. 11) and Proposition 4, the mapping

(α, t) ∈ U × [0,∞)→ Jξ,θ,tJ−1
ξ,θ,t(σ(uα,t, pα,t) ◦Xξ,θ,t)

(i) ∈ H1(F ′0)

is of class C1. Since the trace operator from H1(F ′0) into L2(∂S0)2 and the inner product
with the vector field n0 in L2(∂S0)2 are bounded and linear, we obtain that for i = 1, 2, the
mapping

(α, t) ∈ U × [0,∞)→ F (i)(α, t) ∈ R

is of class C1. In particular, F is continuous and satisfies a local Lipshitz condition with
respect to α. The continuity of G and the local Lipschitz condition result from the same
argument, and from the facts that the mappings

ξ ∈ R2 → (· − ξ)⊥ ∈ L2(∂S0)

and
t ∈ [0,∞)→ I(t) ∈ R

are of class C1.
Step 4. Rewriting of problem (25) as a first order differential system.
Problem (25) (p. 9) is equivalent to the following: find T > 0 and a function α ∈

C2((0, T ),R6) ∩ C1([0, T ),R6) such that{
α′(t) = Aα(t) +H(α(t), t) ∀t ∈ (0, T ),
α(0) = α0,

(55)
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where α0 = (0, 0, ξ̇0, θ̇0), A ∈M6(R) and H are defined by

A =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , H =


0
0
0
F (1)

F (2)

G

 .

By the results in Section 4, system (55) satisfies the assumptions of the Cauchy-Lipschitz
theorem. This proves the first two points in Theorem 1. The third point is a consequence
of the result by Hillairet [21].

5 Proof of Theorem 2.

To study the stability of the trajectories with respect to the deformation Θ∗, we treat Θ∗

as a parameter in the Cauchy problem (55). We use the same notations as in Section 4.
We consider the open subset U ⊂ R6 defined by (18) (p. 7) and define the following Cauchy
problem with parameter Θ∗: {

α′(t) = L(α(t), t,Θ∗),
α(0) = α0,

where α0 ∈ U is a fixed initial datum and L is defined by

L(α, t,Θ∗) = Aα +H(α, t,Θ∗), (α, t,Θ∗) ∈ U × [0,∞)×D.

Here we have treated Θ∗ as a variable in the definition of H given in Section 4. (Recall that
Xξ,θ,t depends on Θ∗ through formulas (28) and (32).) Adapting the method in Section 4
one can easily prove that L is continuous on U × [0,∞)×D.

Now we can prove Theorem 2. Let Θ∗ ∈ D be a given deformation and (Θ∗n)n∈N be a
sequence of deformations converging to Θ∗ in D. We denote by (CP )Θ∗ the Cauchy problem
associated to Θ∗ with initial datum α0, and by α the maximal solution to (CP )Θ∗ . For every
n ∈ N, we denote by (CP )Θ∗n the Cauchy problem associated to Θ∗n with the same initial
datum α0, and by αn the maximal solution to (CP )Θ∗n . By a standard topology argument,
the set

K = {Θ∗n, n ∈ N∗} ∪ {Θ∗}

is a compact subset of D. Since U is open, there exists r0 > 0 such that

B(α0, r0) ⊂ U .

Let us fix τ > 0 and define V0 ⊂ U × [0,∞)×K by

V0 = B(α0, r0)× [0, τ ]×K.
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By continuity of L, there exists M > 0 such that

‖L(α, t, χ)‖ 6 M, (α, t, χ) ∈ V0. (56)

Now fix T1 > 0 such that

T1 < min
(
τ,
r0

M

)
. (57)

By (56)-(57) and by the Cauchy-Peano theorem, for every n ∈ N, (CP )Θ∗ and (CP )Θ∗n admit
a solution defined on [0, T1]. By the results in Section 4, these solutions are unique on [0, T1],
and by maximality of α, αn, these solutions necessarily coincide with α, αn on [0, T1], which
yields

α(t), αn(t) ∈ B(α0, r0) ∀n ∈ N, ∀t ∈ [0, T1].

This proves the first point in Theorem 2. Now let T ∗ > 0 such that the solutions (ξn, θn) are
well-defined on [0, T ∗] for all n ∈ N. Since L is continuous on the compact K, there exists a
continuous function

η : R+ → R+,

such that

‖L(αn(t), t,Θ∗n)− L(αn(t), t,Θ∗)‖ 6 η (‖Θ∗n −Θ∗‖D) , t ∈ [0, T ∗]

and limu→0+ η(u) = 0. As a result, for every n ∈ N, αn is an εn-approximate solution to
(CPΘ∗), with

εn = η (‖Θ∗n −Θ∗‖D) .

By the results in Section 4, we can suppose that there exists k > 0 (depending on Θ∗) such
that the mapping

(α, t) ∈ B(α0, r0)× [0, T ∗]→ L(α, t,Θ∗) ∈ B(α0, r0)

is k-lipschitzian with respect to α. As a result, by Gronwall lemma (see for instance [14]),

‖αn(t)− α(t)‖ 6 εn
ekt − 1

k
, t ∈ [0, T ∗],

which yields

sup
t∈[0,T ∗]

‖αn(t)− α(t)‖ 6
ekT

∗ − 1

k
η (‖Θ∗n −Θ∗‖D) .

Taking the limit when n→∞, we get the second point in Theorem 2.
Acknowledgements. The author gratefully acknowledge the anonymous referee for his
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current version of the manuscript.
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