Vojislav ; Petrovic
email: vpetrovic@aimme.es

Pedro Rosado
email: prosado@mcm.upv.es

Rafael Torres
email: rtorres@dimm.upv.es

Vojislav Petrović

Pedro Rosado Castellano

Rafael Torres Carot

A new computational method for MAT of injected parts integrated in part modelling stage

In this paper we present a simple and fast approach for MAT generation in discrete form. It is used for manufacturability analysis in part modelling stage of injected parts. The method is a volume thinning method based on straight skeleton computation, modified and applied in 3D on B-rep models in STL. The volume thinning of B-rep model is based on its boundary surfaces offset towards model interior. The surfaces' offset is done with an adequately proposed offset distance which makes some of non adjacent offset model surfaces overlap (they "meet" in mid-surface or MAT). Offset surfaces are used to reconstruct the topology of a new B-rep model (offset model). Overlapping surfaces in offset model are detected, separated and aggregated to MAT. For adequate MAT precision and adequate MAT radius function, we propose to treat B-rep model concave edges (vertices) as cylinders (spheres) of zero-radius and offset them in adequate way. On these bases, we present an iterative algorithm in which MAT is being constructed in incremental way by consecutive volume thinning of obtained offset models. MAT construction is finished when an empty offset model is obtained. An algorithm has been created and implemented in Visual C++. Some of obtained results are presented in this paper.

Introduction

Medial Axis (MA) and Medial Axis Transform (MAT) are thoroughly investigated and analyzed geometrical terms with very diverse scientific and engineering use. Many definitions of MAT can be found in scientific literature. [START_REF] Blum | A transformation for extracting new descriptors of form in Models for the Perception of Speech and Visual Form[END_REF] introduced MAT back in 1967, indicating its enormous capacity of shape abstraction. Sherbrooke et al (1996) offers a very precise definition of MAT. For a subset of 2D or 3D Euclidian space, denoted as S, Medial Axis (MA), denoted MA(S), is the locus of points inside S which lie at the centres of all closed discs (balls in 3D) which are maximal in S. The radius value function of MA(S) is a continuous, real-valued function defined on MA(S) whose value at each point on the Medial Axis is equal to the radius of the associated maximal disc (ball in 3D). The Medial Axis Transform (MAT) of S is the MA(S) together with its associated radius function. Though, MAT 2D is a set of lines while MAT 3D is a set of surfaces. MAT 3D is very appropriate for injected parts representation since it has an explicit thickness distribution. MAT 3D has been proposed as a useful shape abstraction tool (Quadros (2001)) in mould and die design, mesh generation, motion planning, etc. MAT 2D can be usefully applied in motion planning, flow analysis (Petrovic (2005)), etc. A model reconstruction based on MAT 3D [START_REF] Amenta | The power crust, unions of balls, and the medial axis transform[END_REF]) is very important in visual graphics and animation. Midsurface as a part of MAT 3D was successfully used in geometry recognition Locket et al (2005).

In this paper, a simple and fast approach for injected parts discrete MAT computation, for the purpose of manufacturability analysis [START_REF] Petrovic | [END_REF]), is presented. Many existing solutions to MAT generations are available. However, the However, computational time is increased if bigger number of plane surfaces is used.

[insert Figure 1 about here]

We choose to perform the offset with distance that is not random and constant like in straight skeleton computation. We opt for an accurately proposed offset distance. As it is explained in following section, this distance is computed in a way that it makes some of non adjacent offset model surfaces overlap (they "meet" in mid-surface or MAT). In this way we reduce the number of necessary offset steps. Overlapping zones are then detected, separated and aggregated to MAT.

Related work

As stated before, MAT 3D has many applications. MAT represents a solid model reduced in one dimension which is why it results easier to manage. Many researchers have worked in this area and many useful works are available. A continuous MAT 3D has a very high computational time. Therefore, for engineering applications a discrete form of MAT 3D consisted of plane surfaces is more viable. In continuing lines, we refer to principal MAT computing approaches and representative pieces of work.

One of principal approaches in MAT computation is a tracing approach (Sherbrooke (1996(), Turkiyyah (1997))). The algorithm consists in tracing seams from model vertices which intersect in so-called junction points. The junction points limit sheets that medial axis is formed of. The procedure is repeated recursively until all sheets of the medial axis have been traced. the Delaunay Triangulation of a set of objects is computed and transformed to the Voronoi Diagram, as its dual graph, MAT can be obtained. This procedure is mostly applied on a discrete solid model represented by a point cloud and a continuous or approximated MAT is computed (Hubbard (1996)). This concept is applicable in 2D also and not only on set of points, but on a set of line segments (Segment Voronoi Diagram) too (Karavelas (2004)).

Another interesting approach is to compute a discrete Voronoi diagram by rendering a three dimensional distance mesh for each member of a set of 2D/3D objects using graphics hardware (OpenGL) (Hoff III (1999)). It is a very interesting idea of using graphics hardware to accelerate the process of Voronoï Diagram computing and it is reported to be fast and efficient in 2D.

Yang et al (Yang (2004)) propose an iterative algorithm for MAT computing that relies on two primitive operations. The first operation identifies an initial point on MAT by tracing a maximal sphere of an arbitrary interior point. The sphere intersects MAT in a number of points which are added to MAT and serve as centres of new spheres. In that way, MAT grows in incremental way. The search of sphere intersection with MAT is based on distance query which is accelerated by using the PQP package. The authors report a very brief computational time and a possibility of accuracy-computational time trade-off.

The experience of the authors regarding the use of existing CAD/CAM systems in early stages of injected parts design is negative. There are two principal reasons for that.

The first one is the mathematical definition of MAT. The existing solutions generate MAT as a set of points or triangular elements. Hence, this MAT needs additional steps of data reworking to generate topological and geometrical information of generated MAT (for instance, a proper moulding analysis can not be done using MAT without completely defined topology of MAT surfaces). Secondly, the time consumption in MAT generation by existing methods is unacceptable for a real time analysis in early design stage. For engineering applications, such as DFM analysis, it is possible to have a precision to time consumption trade-off and yet have applications that are not affected at all by the precision loss. That is why we have designed an algorithm to perform the offset method over an STL format of an injected part model. It enables computation of MAT with less precision but with a proper topology and geometrical definition, completely valid for injected parts DFM analysis (see Amenta (2001)).The generated MAT is then used for a real time DFM analysis includes moldability, mould filling, welding lines and injection pressure (clamping force) analysis.

Proposed approach for MAT computation

As it was mentioned, an iterative algorithm is presented in which MAT is being constructed in incremental way by consecutive volume thinning of obtained offset models. In every step of iteration, we proceed with three sets of operations. The first set includes operations for determining a proper offset distance denoted as maximum offset to be concave if the vectorial product of those two surfaces' normals is opposite to the edge orientation (Figure 3). When part model surfaces (S) are offset and a new offset model is reconstructed upon offset surfaces (S off), the portion of surface limited by a loop of concave edges will not change its size. However, if a loop contains at least one convex edge, the portion of offset surface after reconstruction will be reduced if it is an exterior loop (EL). Yet, it will expand, if it is an interior loop (IL). The "contraction" of exterior loops and the "expansion" of interior loops imply that, if the offset distance is increasing, there is a moment in which exterior and interior loops of the surface overlap (Figure 4). Any further displacement of model surfaces would cause offset model incongruence due to intersection of reconstructed exterior and interior loops of offset surfaces.

[insert Figure 3 about here] [insert Figure 4 about here] Hence, in order to determine the exact value of maximum offset distance and prevent possible model incongruence, we offer following analysis. Figure 5 shows a surface S1 together with its four neighbours N1-4. Each pair of neighbour surfaces defines a bisector plane (B) which contains the edge shared by those two surfaces. Those bisectors intersect and derive directions that we denote as offset directions (A). Offset directions start at loop vertices. Points of every bisector are equally distanced from two surfaces that define that bisector. Therefore, the offset surfaces intersect at the same bisector. That means that the edges of reconstructed loop, no matter the offset distance magnitude, keep laying at the corresponding bisector. Also, the loop vertices keep laying at corresponding offset directions. The critical moment is when two offset directions intersect (P int). The edge defined by two points (P C1N3N4 and P C1N3N4) is being reduced while being offset and finally it is converted to a point, P int . In that moment the loop of S1 is offset in extremis. If we continue offsetting, the points swap their position and the loop overlaps itself (dashed line on Figure 5). Therefore, the distance between P int and the original S1 is the maximum offset distance regarding the edge E1. For each of loop edges, a distance is sought and the shortest of all distances is kept as the proper one for S1. This is done for each of model surfaces and finally a minimum of all maximum distances is kept.

[insert Figure 5 about here] Each offset direction is created by intersection of two bisectors. If a vertex is shared by three surfaces, corresponding three bisectors intersect at the same offset direction (geometrically it is the axe of a cone tangent to all three surfaces, f.e. N4, N5 and S1 on Figure 6). Nevertheless, if a vertex is shared by more than three surfaces (N2, N3, N4 and S1 on Figure 6), there will be more than one offset direction per vertex. However, for each edge, only one direction per vertex is valid and it results in an offset distance.

[insert Figure 6 about here]

In case of concave vertices, for each of them the shortest distance to model surfaces is sought. We consider only model surfaces for which the vertex is "interior" (the vertex projection on surface is situated at interior side of the surface, regarding the surface topology). One of vertex-to-surface distances of all vertices is the shortest one. Its halfvalue is the maximum offset distance for concave vertices. In order to offset a model surface, we establish a vector of the same direction as the surface topological normal, but of opposite orientation (Figure 7). Each loop vertex is displaced along that vector by the offset distance. In that way, we offset any surface when we offset its edges by displacing all vertices.

[insert Figure 7 about here] The loops of the obtained offset surface are just temporary: the proper loops are reconstructed by intersecting of the offset surface with its also offset neighbours (Figure 8). Provisional loops play an important role in limiting of intersection lines (IL). For the purpose of proper loops reconstruction, an infinite intersection line of the offset surface and a neighbour is restricted by these two surfaces' initial loops (Figure 9a). When the surface and its neighbours are offset, the offset surfaces are intersected, resulting in a number of limited intersection lines. The offset neighbours have been organized in a counter-clockwise order (neig. 1-8), considering also the neighbours created by concave edges and vertices offset. Though, limited intersection lines corresponding to all considered neighbours are organized in counter-clockwise order (IL1-8), too. Each line is then intersected with its previous one in row to obtain a proper initial vertex.

Likewise, the line is intersected with its following one to obtain a proper final vertex (Figure 9b). Some of intersection lines overlap partially or totally, so the overlapping part is eliminated from the loop. The initial and final vertices are then used to determine the line orientation vector. Finally, we have a proper reconstructed loop (offset loop)

MAT & offset solid determination

Once all model surfaces are offset and their loops are reconstructed, the offset model is completed (Figure 10). According to 'Offset distance computing' section, one or more edges are converted into a point when offset. Note that more than one edge can be characterized by the same maximum offset distance and, after offset, all of them are reduced to a point. They even may belong to the same loop which causes that some of offset surfaces disappear (Figure 11). Therefore, non adjacent surfaces may become neighbours after offset and may even overlap. Hence, the offset model must be checked for overlapping surfaces. Surface overlapping zones are then separated and aggregated to MAT. overlap, its overlapping part is detected, separated and aggregated to MAT model, while the rest of the surface is aggregated to the new offset model. Also for all convex edges, a surface that connects its two vertices with two corresponding offset vertices is constructed and also aggregated to MAT (Figure 12b). with one loop of three edges (Figure 12a). In that way, we manage fewer surfaces when the model is offset and we reduce MAT computation time.

3. Inverse elements relating. In order to perform necessary offset operations, inverse relations of the solid structure elements are formed (as shown by dashed connectors on Figure 13). With the model structure defined, a model plane "knows" which are its loops, edges and vertices. By forming inverse relations, a loop gets to "know" which plane it belongs to. Also, edges/vertices get to know which loops/edges share them. Inverse relations are essential in establishing of offset directions, in determination of surface neighbours and their order, etc. 4. Evaluation of solid elements convexity. As stated in 'Offsetting' section, the offset of concave edges are cylinders and the offset of concave points are spheres. The resulting cylinders and spheres are discretized in planar surfaces.

Hence, previous to offsetting, we must determine which edges and vertices are concave so as to offset them later. It was mentioned before that an edge is said to be concave if the vectorial product of their two surfaces normals is opposite to the edge orientation. In case of a vertex, it is considered concave if all edges that are starting or ending in that vertex are concave.

5.

Search for offset directions. For each of convex vertices, offset directions are found as exposed in Offset distance computing chapter. 6. Search for maximum offset distance. For all solid model edges, a maximum offset distance is sought. If both of its vertices are convex, an intersection is sought for all combination of offset directions (one of initial vertex and the other of final vertex). Finally, there will be one minimum distance per edge and, among all

Results & discussion

The exposed algorithm has been implemented in Visual C++. Classes for each of solid model elements (plane, loop, edge, vertex and vector) have been created. All to mid-surface which is a part of MAT [START_REF] Petrovic | [END_REF]). It is done for two reasons: mid-surface is used rather than MAT in manufacturability analysis and it can be related visually with corresponding model more clearly than MAT.

[insert Figure 14 In the following Table some basic information about examples and their MAT computing time is offered. The table shows that the key factor of computing time is not the number of B-rep model planes, but the number of necessary offset steps. That is why injected parts with their uniform thickness distribution are suitable for fast volume thinning. Therefore, computational time is relatively low if compared with some other methods (Yang (2004)). However, it guarantees low computational time in thin-walled part design while it may not be so superior in general application.

[insert Table 1 about here]

Conclusions

In this paper, a simple and fast approach for injected parts discrete MAT computation, useful in manufacturability analysis, is presented. In order to obtain its discrete MAT, injected parts are represented by also discrete B-rep model exported in STL format. The proposed approach is a step-by-step volume thinning method, based on straight skeleton computation in 2D. Some of straight skeleton computation concepts are modified and the modified concept is applied in 3D on a discrete B-rep model (STL format) of injected part. Volume thinning is very suitable in case of injected parts due to their thin-walled character. In addition, properly designed injected parts have a uniform thickness distribution. Hence, there is no need for many volume thinning steps and the volume thinning algorithm can be performed in reduced time.

This MAT generation solution comes as an answer to important shortcomings of existing solutions regarding elevated time consumption and lack of geometrical and topological definition. The principal field of application of the proposed approach is fast mid-surface computation in injected parts for its manufacturability analysis. MAT, as the authors generate it, has some limitations due to its lower precision. Yet, it has much less data than a solid model and it enables design analysis in much less time. Also, generated MAT is capable of offering sufficient data for principal manufacturability aspects analysis (parting directions analysis, fabrication cycle time, uniform thickness analysis) since these aspects can be well analyzed disregarding the lower precision. The 'design for manufacturability' analysis is performed in part modelling stage, which is why reduced time is so important. . List of Tables Table 1. Basic info related to MAT computation.

Figure 1

 1 Figure 1 illustrates how straight skeleton is constructed in 2D. A contour is offset

[

 On these bases, we present an iterative algorithm in which MAT is being constructed in incremental way by consecutive volume thinning of obtained offset models. After each step, a new offset model is obtained with some overlapping zones, which are aggregated to MAT. The vertices of overlapping zones are assigned with the offset distance accumulated in previous offset steps. This accumulated distance represents a local thickness in each vertex, which is used to establish a radius function (thickness distribution) when MAT is completed. MAT construction is completed when an empty offset model is obtained.

 Another approach in MAT computation is a computation of Delaunay Triangulation and its transforming to Voronoi Diagram. As Sherbrooke states (Sherbrooke (1996)), MAT is equivalent to the boundary of Constrained Voronoi Diagram cells. Therefore, if

 distance. The second set consists of operations necessary for model offsetting and reconstruction of offset model topology. The final set of operations detects overlapping zones of offset model, separates and aggregates them to MAT structure. The offset model, free of overlapping zones, can be offset again until the final offset model is empty. When the offset is made, model surfaces are displaced towards model interior. Every face has one or more loops of edges with their topological orientation. The orientation of edges is in accordance with surface topological normal which indicates model exterior. Every edge in a B-rep model is shared by two model surfaces. An edge is said

 distance has been determined, the model is offset. B-rep model plane surfaces result from the grouping of initial triangular plane surfaces of the model in STL. Therefore, B-rep model plane surfaces are limited by exterior and interior loops of edges, connected by vertices.

 edges defined by an initial and a final vertex. Reconstructed loops establish the limits of reconstructed offset surface.[insert Figure8about here][insert Figure9about here] Hence, all model surfaces are offset and, for each of them, a counter-clockwise organized list of neighbours is determined, one per each of surface loops. Afterwards, the offset surface is intersected with their offset neighbours. A list of intersection lines is then created in the same organized order and used to reconstruct corresponding offset surface loops.

[

 insert Figure 10 about here] [insert Figure 11 about here] Each of model surfaces is analyzed for overlapping with other surfaces. So as to filter out unnecessary checking, only surfaces of opposite topological normal and situated in of the same geometrical parameters are considered. If the surface doesn't overlap with any other surface, it is copied to a new offset model. If it does

[

 insert Figure 12 about here] Algorithm According to above exposed methodology, we propose an iterative algorithm. It is performed on a solid model with a structure shown on Figure 13. The model structure consists of planes, loops, edges and vertices, organized in hierarchical way. Solid has a direct relation with all its planes, edges and vertices. The algorithm steps consist of following procedures: 1. Model importation. A B-rep model of an injected part is designed in any CAD modeller capable of exporting it in STL format. B-rep in STL is consisted of plane triangular surfaces, representing an approximation of part's free-form surfaces. Model data are read form the STL file and organized in a structure that represents a solid model. In this structure, a solid model has a direct relation with all its planes, edges and vertices (full line connectors on Figure 13).

[

 insert Figure 13 about here] 2. Model surfaces grouping. Many triangular surfaces of B-rep in STL can be grouped in a single planar surface. In that way, we obtain one surface with various loops of multiple edges instead of larger number of triangular surfaces

 , one minimum distance. The later represents the maximum offset distance for convex vertices. For concave vertices, a vertex-to-plane shortest distance search is performed, as exposed in previous section. Finally, the distance used for offsetting in this step is the minor value of the maximum offset distance for convex and concave vertices.7. Model offsetting. The model is offset and its topology is reconstructed as exposed in 'Offsetting' section.8. MAT aggregation. After offsetting, an offset model is obtained. An overlapping check is performed, as commented in previous section, and overlapping zones are added to MAT structure, as well as the plane surfaces defined by original and offset convex vertices.The new offset model, free of overlapping zones, is used to repeat procedures 2-8. This iterative process ends when the obtained offset model is empty (it has zero surfaces).

 algorithm procedures are implemented in corresponding functions. The created code has been compiled, linked and executed on PC processor Intel Centrino 1.4GHz with 256 Mb RAM. It has been tested on real industry parts, which B-rep model was exported in STL with up to 1000 planes (a decent model precision, sufficient for manufacturability analysis). We present three examples with the corresponding model, offset steps and final MAT on Figure 14-Figure 16. Note that what is shown for each model corresponds

 about here] [insert Figure 15 about here] [insert Figure 16 about here]

 Quadros (2001) Quadros WR et al. Skeleton for Representation and

Figure 1 .Figure 2 .FigureFigure 11 .

 1211 Figure 1. Figure offsetting (a) and straight skeleton construction (b) in 2D

Figure 1 .

 1 Figure 1. Figure offsetting (a) and straight skeleton construction (b) in 2D (a) (b)

 Figure 13. Model surfaces grouping

29 of 39 http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk International Journal of Production Research

	neig.2 IL1 IL2 neig.1 R e neig.3 P neig.8 concave edge which is vec.5 offset in a cylinder, discretized in two planar surfaces (neig. 4 & 5) neig.6 IL6 neig.7 o r e r e v i overlapping part that is eliminated overlapping part that is eliminated offset loop original loop e w P e e r R e v i e w Figure 11. Surface that disappears when offset R e v i convex or concave, important functions: w • boolean that indicates if it is e edge orientation • RelacionVertRec, RelaciónArstRec belongs to, FugadoDe… • two pointer list of loops it • MiRecorteFugado,SoyRecorte • edge director, • pointer to final vertex, important functions: • pointer to initial vertex, • id • list of booleans that indicate variables: loops, ARISTA • list of pointers to neighbour • list of pointers to edges r • number of edges, number of neighbours, e exterior or interior, e variables: • boolean that indicates if it is • pointer to its plane, P RECORTE Figure 10. Overlapping zones detection offset model offset model free of overlapping zones model F o r S1 F … r • AgruparAlNucleo • ContornoExterior o • nº planes, nº edges, nº vertices • list of pointers to planes, • list of pointers to edges, • list of pointers to vertices • list of pointers to concave edges, • list of pointers to concave vertices, important functions: • AddVertice, AddArista, AddPlano • AgruparPlanos, DistanciaFuga • FugarPlanos,FugarAristas… PLANO (CARA) variables: • id • topological normal vector • loop number, • list of pointers to its loops important functions: Page F overlapping zones SOLID variables: SOLID MODEL STRUCTURE
	VERTICE variables: • id • coordinates x,y,z • list of pointers to the edges it belongs to, • list of pointers to the loops it belongs to,	O n l y O n l y O • CvxArista, • FugarAristaCcv, • SoyAristaFugadaDe,MiaAristaF ugada n l y
	important functions:	
	• DentroHull,	
	• BuscarFuga, • FugarVerticeCcv …	VECTOR variables: • vx,vy,vz
	Figure 12. Solid model structure

Page 32 of 39 http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk International Journal of Production Research

Table 1 .

 1 Basic info related to MAT computation.

		# of planes	# of planes	# of offset	total computation
		(model)	(mid-surface)	steps	time [s]
	Part 1	887	587	1	11.757
	Part 2	167	83	6	16.836
	Part 3	357	259	1	5.683

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.

uk International Journal of Production Research

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.ukInternational Journal of Production Research