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 Several production planning tasks in printed circuit board (PCB) assembly 

 industry involve the estimation of the component placement times for 

 different PCB types and placement machines. This kind of task is, for 

 example, scheduling of  jobs or line balancing for single or multiple jobs. The 

 simplest approach to time estimation is to let the production time to be a 

 linear function of the  number of the components to be placed. To achieve 

 more accurate results, the model should include more parameters (e.g. the 

 number of different component types, the number of different component 

 shapes, the dimensions of the PCBs etc.). In this study we train multilayer 

 neural networks (MLPs) to approximate assembly times of two  different 

 types of assembly machines  based on several parameter combinations. It 

 turns out that conventional learning methods are prone to overfitting when 

 he number of hidden units of the network is large in relation to the 

 number of training cases. To avoid this and complicated training and 

 testing, we use Bayesian regularisation to achieve efficient learning and good 

 accuracy automatically. 

  
 Keywords: PCB assembly, placement machines, assembly time, production planning, 

 neural networks, multilayer perceptron, Bayesian framework. 

 

 

1.  Introduction 

     Automated placement of electronics components on printed circuit boards 

(PCBs) is performed by various placement machines of different types. Each machine 

type is able to handle a certain set of component types. The components have 

different characteristics (e.g. dimensions) and this is reflected in the design of 

placement machines. Different mechanical solutions lead to differed nominal operation 

speeds, and the same machine can be run at different speeds according to the handled 

components types. 

     Production of PCBs is performed mainly in assembly lines consisting of several 

placement machines of different types connected to each other by the means of PCB 

conveyors. In addition to placement machines, a production line includes several 
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other production machines, like glue dispenser, reflow-oven and special type 

component feeding systems. Assembly lines of such a high technology are very 

expensive and need to be utilized as efficiently as possible. 

     The aim of line balancing is to optimize the operations of the machines so that 

the number of PCBs processed in a time unit (throughput) is maximized, see 

Crama et al. (2002) and Smed et al. (2003). This task is usually accomplished by 

maximizing the throughput of the bottleneck machine, i.e. the machine consuming 

the longest production time per PCB. Optimization of whole assembly lines is too 

complex task to be performed using one-level approaches as presented by Smed et 

al. (2003). However, the complex optimization problems are connected to each 

other in such a way that they can be divided in a hierarchy of simpler ones. Since 

the single machine optimization is at the lowest level of this hierarchy, it has to be 

solved each time (for each different PCB type or for each group of PCBs of similar 

type) when higher level optimizations are made. Consequently rapid estimations, 

instead of time consuming optimization calculations of PCB assembly times, are 

needed to form the basis for higher level optimizations. 

     As first approach, the production time can be estimated from the nominal 

(empirical) component placement time. The total production time is the sum of a 

constant term for feeding to and fixing the next PCB on the placement position 

and from a term which is a product of the number of components and the average 

placement time per component. Benefits of this method are simplicity and 

immediate results. On the other hand, its accuracy is modest and it suits only for 

finding an initial approximate solution for line balance optimization. When a control 

software (i.e., result of the optimization) for an assembly robot has been implemented 

and tested in production, it becomes soon clear that there are situations where the 

above "rule of thumb" time estimate is not accurate enough. The optimization based 

on nominal component times may generate a low value for the objective (time) 

function but the observed real assembly times can be far from that and from optimal. 

     To get more detailed and accurate results, assembly engineering optimizer software 

is in broad use. Commercial software packages for assembly engineering 

optimization (direct from machine producers or from third party providers) are 

creating assembly lines of specific characteristics and choosing machines for selected 

component groups from a large collection of machine types. Optimizers obtain the 

particular assembly times from a built-in simulator for each particular machine type. 

The simulators use, among other things, information about the placement sequence, 

operation sequence, machine timings, component coordinates, and machine geometry.  

    Current simulators for assembly machines are relatively accurate; the usual error 

marginal of the placement machine simulators is less than 2 %. On the downside, a 

simulator does complex computations which take a substantial running time if 

excessive (feeder allocation and component placement sequence) optimization is 

needed. This limits the use of optimization in (multi-product) line balancing and 

production scheduling situations where results are needed in a short time. On the 

other hand, the accuracy of the estimates of the placement times is vital for the 

success of line balancing and scheduling; even the best possible optimizer is useless 

if its objective function is wrong or inaccurate. 

     Above considerations lead to the following question: How can we get rapid and 

accurate estimates on PCB assembly times? As a compromise between the two above 

methods for time estimates, multivariate linear regression model was derived for a 

rotary turret machine in Laakso et al. (2002). This model is based on the number of 

component types, the total number of placements and the dimensions of the PCBs. 
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The model achieved good results in spite of its underlying hypothesis of linear 

dependency of time on the parameters. It is therefore tempting to consider the power 

of non-linear time estimates to these data. 

     In this paper, we consider multilayer feedforward networks of type MLP for 

estimating the assembly times. We train MLPs to approximate the objective 

(assembly time) function using Bayesian regulation with two very different machine 

types. For a turret type machine we use the same simulated data as in Laakso et al. 

(2002). The training data for gantry type machine is based on real production 

obtained from two different PCB assembly factories. 

    We begin in Section 2. with literature review. Section 3 contains a short 

description of rotary turret type machines and gantry type machines. Two commercial 

optimizer-simulators Valor Trilogy (2005) and Siemens SIPLACE Pro (2007) which 

were used to evaluate the "true" assembly times for MLP training and testing are 

reviewed in Section 4. Non-linear estimation of assembly times by using MLP 

networks is presented in Section 5. Experiments with the MLP network are reported 

in Section 6. Concluding remarks appear in Section 7. 

 

 

2.  Literature review 

 

    Over the recent years, a rich body of papers have been published dealing with 

problems of optimizing manufacturing processes and scheduling operations in PCB 

assembly. For a comprehensive literature review on general manufacturing operations, 

see for instance Pinedo, M.L. (2005) and specially on PCB assembly operations, see  

Crama et al. (2002) and Smed et al. (2003). Optimization of the feeder setup and 

component pick-and-place sequence is very important for the efficient utilization of 

placement machines and lines. The component pick-and-place sequencing problem is a 

travelling salesman problem (TSP), which is strongly NP-hard. As a result og this, most 

practical problem instances can not be solved to optimality in a reasonable time. 

Therefore, a common practice is to operate with suboptimal machine control programs 

as produced by suitable heuristic methods. These heuristic algorithms can generate good 

solutions at a reasonable computational time, but their drawback is that they are not able 

to guarantee optimality. For a comprehensive literature review on heuristic methods 

used in assembly optimization, see for instance Reeves, C.R., (1995), Ayob, M., (2005), 

Ayob et al. (2002 and 2008). 

     In the everyday industrial practice planning of assembly processes is made using 

commercial assembly planning and optimization software, like Valor Trilogy (2005) or 

Siemens Siplace Pro (2007). This kind of proprietary software use heuristic algorithms 

to solve the general assembly problem. But, there is no information available about how 

these software operate and which heuristic algorithms are used in them. It is only known 

that the optimizer software use separate programs tuned for each particular placement 

machine type. The running times for the optimization procedures are typically from 

minutes until several hours. In the general case the optimization includes both pick-and-

place sequencing and component-to-feeder assignment which make the PCB assembly 

optimization still more complex to solve, see Leipälä, T. and Nevalainen, O. (1989). 

      When considering possible methods for estimating operation times of manufacturing 

machines one can trust on statistical techniques. Common non-linear regression 

methods are well known in classical statistics literature, see for instance Hald, A. 

(1967).  In recent years, neural networks have gained much popularity due to their 

flexibility, versality and simplicity in usage. There are many different types of neural 
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networks supporting non-linear regression e.g. MLP (multi-layer perceptron), RBF 

(radial basis function) and SVM (support vector machine), for a comprehensive study of 

this topic, see for instance Bishop, C.M. (1995). Each one of these methods has its own 

strengths and weaknesses. It turns out that conventional learning methods are prone to 

overfitting when the number of hidden units of the network is large in relation to the 

number of training cases. To avoid this and complicated training and testing, one can 

use Bayesian regularisation in MLP to achieve efficient learning and good accuracy 

automatically, see for instance MacKay, D.J.C. (1992a and 1992b) and Neal, R.M. 

(2004). The number of the neurons in the hidden layer determines the flexibility (the 

number of free parameters) of the model. Hornik et al. (1989) have showed that 

"feedforward networks with as few as one hidden layer are capable of approximating 

any Borel measurable function from a finite dimensional space to another to any desired 

degree of accuracy, provided sufficiently many hidden units are available".  

      When working with neural networks, there are two different operation phases; 

constructing the optimal layout and parameters of the network on the basis of the 

training data, and using the constructed network to determine the output for a new input. 

The training phase may take a long time (many hours) but it is done off-line. More 

importantly the use of a given neural network is very fast which is a necessity in the 

context of line balancing where one has to determine the assembly time of numerous 

different subsets of the components on the machines of the production line. The neural 

network model has also the further advantage of being adaptive; one can use the 

measured true assembly times to quickly retrain the model parameters. 

  

3.  Operation principles of placement machines 

    While different placement machine types normally include parts with rather 

similar functionality, many details of the machine design cause that each type should 

be analyzed separately. Here we concentrate on two rather different, well known and 

widely used machine types and discuss their design on the level which is necessary 

for understanding their main time factors. 

 

3.1. Turret type placement machine 

    Turret-type placement machines (Figure 1) have been used in particular for high 

volume production. In the following, the discussion refers to the high-speed 

Universal HSP 4795/96 placement machine. The main body of this older machine 

type includes a conveyor belt, a PCB holding table and a rotary turret placement head 

for holding the vacuum nozzles. The feeder unit moves horizontally in the x-direction 

on the plane of the PCB holding table and comprises the required component reels. 

The number of component reels in the feeder unit is limited and each reel occupies a 

certain number of storage places, called feeder slots. This number depends on the 

width of the particular feeder reel. The task of the feeder unit is to bring the proper 

reel to the pick-up position where the placement head picks up a component with the 

appropriate vacuum nozzle. After that, the turret rotates stepwise around the vertical 

axis until the nozzle is at the placing position (which is 180° from the pick-up 

position). The intermediate positions are for inspection, rotation etc. of the 

components. Because the rotary turret contains several placement heads, there are 

several components ready in the turret and the feeder movement is performed a given 
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number of turret rotation steps prior to the actual placement operation. Because the 

printing position is fixed, the table holding the PCB must  

 

         

 

 --------->      INSERT FIGURE 1 HERE    <------------- 

 

 

 

 

      Figure 1. Main components of a turret type placement machine (top view). 

 

 

be moved by two independent step motors to the proper location for placing the 

component. Usually for heavy components the speed of the holding table must be 

limited so that the components will stay in their proper places during the table 

movements. These components are usually placed last so that the limited speed does 

not need to be used with the smaller components.  

    The turret rotates on steps, and each step lasts a fixed time during which the feeder 

unit and the holding table can move freely (i.e., their movements are simultaneous to 

the rotation step and do not increase the total time for the assembly task). 

Mathematically speaking, we have the maximum or Chebyshev metric (L4), where 

the largest time of component rotation, x-transfer, y-transfer and feeder transfer gives 

the final time of a particular placement operation. The control program tries to 

minimize the assembly time and, consequently, arranges the feeder tapes and the 

pick-up and placement operations so that 

    1. the feeder and PCB movements are short enough to be carried out during the 

rotation steps, and 

    2. if this cannot be realized, the overall length of the movements is short and long 

jumps occur parallel in both the feeder unit and the holding table. 

    Obviously, we can get accurate time estimates of the placement operations either 

by performing and observing the operations in the device in question itself or by 

simulating the operations using an optimizer-simulator. High time costs often rule out 

both of these methods in everyday practise and that is why there is a need for rapid 

and accurate estimators. 

 

3.2. Gantry type placement machines 

    Nowadays, turret machines have been frequently replaced with collect-and-place 

machines. These are equiped with (one or more) gantries which carry rotating heads 

that collect the components from feeders and place them to the PCB. Collect-and-

place machines can usually manipulate also bigger components that are not accepted 

by turret machines.  The two-gantry placement machines of Siplace S-Series (Fig. 2) 

are typical examples of this design. Each gantry carries a collect-and-place revolver 

head with either 12 or 6 nozzles according to the component heights (max. 

component height for 12-nozzle-head is 6 mm and for 6-nozzle-head 8,5 mm). Both 

head types can collect a number of components and then place them sequentially on 

the PCB which is motionless during the placement operation. The placement heads 

operate in parallel on the two gantries and have their own stationary feeder slots and 
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own nozzle trays for both changeover and storage of nozzles. The heads can be 

equipped with the same or different type nozzles to handle different component 

types.  

 

         

 

 --------->      INSERT FIGURE 2 HERE    <------------- 

 

 

 

 

 

    Figure 2. Main components of the Siplace S-Series two-gantry placement  

         machine (1: gantries, 2: feeders, 3: revolver heads, 4: nozzle, 5: PCB). 

 

4.  Optimizing simulators for assembly engineering 

     To get an idea about how much time is needed to simulate and optimize the 

assembly operations of a single placement machine, we take a closer look on two 

commercial assembly engineering software packages. In both software packages the 

optimization process is similar. The process is complex and time consuming in 

practice but simple in theory; initial information on the assembly equipment 

configuration (e.g., assembly lines, placement machines, heads, nozzle changers, etc.) 

functions as raw data. This information is given as an input to the optimizer software 

which optimizes the configuration of the production line (feeders, nozzles etc.) and 

generates the placement programs/rules for the machines. 

 

4.1. Optimizing simulator for rotary turret machine 

    The "Line Engineering Package" is a part of the "Trilogy" assembly engineering 

software of Valor Corporation Ltd, see Valor Trilogy (2005). The software package 

contains machine specific optimizers, also for our case, the Universal HSP 4795/96 

turret machine. The Line Engineering Package operates on three optimization levels. 

At level 1 the optimizer generates a quick-and-dirty control program for the 

placement machine. This option suits for testing prototypes when the amounts of 

PCBs are small or the result of this optimization level is used as an initial solution for 

higher level optimization. The running time is typically tens of seconds and it is 

limited to one minute. At level 2 the optimizer is suited for normal production 

situations when the PCB batches are of a reasonable size. The running times are 

typically few minutes and they are restricted to one hour. The optimizer determines 

four reasonable feeder setups and chooses among them the most promising one. 

Level 3 is for the optimization of mass production and it takes typically one working 

day. The optimizer performs a full-scale optimization of the feeder setup. The 

difference of the value in objective function in comparison to level 2 is typically one 

percent. The training dataset has been generated by Laakso et al. (2002) using the 

level 2 optimization (includes reasonable component-to-feeder allocation) and the 

optimization time has been restricted to one hour per PCB job.  

   The line engineering package bases its operation on a machine simulator tuned for 

each particular machine type. When the solutions found by the package are carried 
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out in a real placement machine, the observed time differs slightly from the simulator 

(usually less than two percent) but the difference is stochastic with a zero mean. 

Nevertheless, the simulator assumes that the machine operates in ideal conditions 

(e.g. all components are accepted by the optical quality check and component reels in 

the feeder are in the sequence they are needed) and there are no production interrupts 

caused by some real world phenomena.  

 

4.2. Optimizing simulator for gantry type machines 

    To simulate and optimize the assembly times for Siemens gantry type Siplace 

placement machines we used real data from PCB factories and Siemens' own, in-

house optimization software, see Siemens Siplace Pro (2007). Siplace Pro assembly 

line control and optimization software converts basic CAD data into placement 

programs on Siemens Siplace placement machines and lines. Siplace Pro includes an 

optimizer as a separate program having another data model to optimize the placement 

programs at the machine and line level. There are various optimization scenarios: 

optimize setups for a single product, multiple products in a single family setup, or 

multiple products in multiple family setups. There are, similar to Valor's Trilogy 

package, also 3 different optimization levels. The running time for the optimization 

procedure can be limited by giving the number of the optimization steps or by giving 

a maximum running time. The training datasets for gantry type machines has been 

generated by Siplace Pro using the level 3 optimization (which includes also feeder 

allocation optimization) and the optimization time has been limited to ten minutes per 

PCB job. 

 

5. Non-linear regression estimation of assembly times 

    Even though the PCB assembly time can be roughly estimated by using linear 

models, it is actually a non-linear function of the input parameters. As can be seen in 

Figure 8 (left panel), the input-output mapping seems to be rather smooth and 

continuous. However, it is also obvious that a linear estimator of the processing time 

is not sufficient. Therefore we now turn our attention into non-linear regression 

models. 

    Artificial neuron (perceptron) networks with linear activation function are known 

to be closely related to linear regression models. The need to be able to handle more 

complex dependencies has resulted in development of the perceptron models that 

include more layers and apply a non-linear function to make the activation of the 

perceptrons non-linear, scaled and differentiable. 

    The perceptron computes a single output from multiple real valued inputs by 

forming a linear combination according to its input weights and then putting the 

output through some nonlinear activation function, see Figure 3. The operation of the 

perceptron can be mathematically described as y = Ν(∑ wixi + b) = Ν(w
T
x + b), where 

w denotes the weight vector, x is the vector of inputs, b is the bias and Ν the 

activation function.  
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  --------->      INSERT FIGURE 3HERE    <------------- 

 

 

              Figure 3. Artificial neuron (perceptron).  

 

    In this study, we evaluate the feasibility of a standard neural network based 

approach to the estimation of assembly times by using an MLP network in the 

regression. Our multilayer perceptron network (Figure 4) consist of three layers, there 

is one input layer (k input variables = k neurons), one hidden layer having n neurons 

and one output layer (1 output variable = 1 neuron). The number of the neurons in the 

hidden layer determines the flexibility (the number of free parameters) in the model. 

The three layer model is selected because Hornik et al. (1989) has showed that 

feedforward networks with as few as one hidden layer are capable of approximating 

any Borel measurable function from a finite dimensional space to another to any 

desired degree of accuracy, provided sufficiently many hidden units are available". 

We calculate later on in Section 6.2.2 how many hidden units are sufficiently.  

 

    

 

 

  --------->      INSERT FIGURE 4 HERE    <------------- 

 

 

 

       Figure 4. MLP network having one hidden layer. 

 

    Input values of the input layer are fed as such into the layer upstream, into the 

hidden layer. Once the neurons for the hidden layer are computed, their activations 

are fed upstream to the output neuron. In a fully connected multilayer feedforward 

network, each neuron in one layer is connected by a weight to every neuron in the 

layer upstream. A bias is also associated with each of these weighted sums. The 

activation functions of the hidden layer are sigmoids whereas the activation function 

of the output neuron is linear. 

    When the network structure is fixed, there still exists a large variety of different 

algorithms and heuristics that can be used in the training of the neural network. The 

problems that are faced in the learning, i.e. estimation of the network parameters, 

include overfitting to the training data (the network learns the characteristics of the 

training data but is not able to generalize), slow learning rate and getting stuck in 

local minima of the cost function that the learning algorithm is minimizing (sum of 

squared errors). 

      One known way to avoid the overfitting problem is to use Bayesian framework 

having automated regularisation in practical MLP network calculations. The 

Bayesian framework presents uncertainties in the values of the parameters as 

probability density functions. Before presenting the data, the parameters are 

described by a prior probability density, which is typically quite broad to reflect the 

fact that we have little idea of what values the parameters should take. Once the data 

are presented, we can compute the corresponding posterior probability density. Since 

some values of the parameters are more consistent with the data to be presented than 

others, we find that the posterior distribution is narrower than the prior distribution. 

This phenomenon is known as Bayesian learning and is illustrated in Figure 5. 
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--------->      INSERT FIGURE 5 HERE    <------------- 

 

 

 Figure 5.   A prior distribution of weights p(w) and the posterior  

                  distribution p(wD). The most probable weight vector wMP                 

       corresponds to the maximum of the posterior distribution. 

 

    In our experiments, we used the Bayesian regularisation of the network 

parameters, which is roughly equivalent to a technique called weight decay. The 

regularisation aims at keeping the weights small, and therefore prevents overfitting. 

As the training algorithm we used a scaled conjugate gradient method which is a 

faster substitute for the classical gradient descent algorithm. The classical gradient 

descent algorithm adjusts the weights in the steepest descent direction (negative of 

the gradient), the direction in which the error function is decreasing most rapidly. It 

turns out that, although the function decreases most rapidly along the negative of the 

gradient, this does not necessarily produce the fastest convergence. In the conjugate 

gradient algorithms a search is performed along conjugate directions, which produces 

generally faster convergence than steepest descent directions.  

    The number of neurons in the hidden layer should be selected so that the model has 

good generalization properties, that is, its prediction error for testing data (not used in 

training of the model) is as low as possible. We estimate the suitable number of 

neurons in Section 6.2.2. Because our data sets are quite small, we were forced to use 

the leave-one-out (LOO) validation of the generalization error in our experiments. 

 

6.  Experiments 

    Because the two machine types of Section 3 are suited for different kinds of PCB 

assembly tasks, we had tree different sets of training data for placement time 

estimations. For the turret type machine the data set was taken from an earlier study 

Laakso et al. (2002) and for the gantry type machine two sets of real production data 

were obtained from two different PCB assembly factories. 

 

6.1 Training data 

    The data we use in the context of rotary turret machine were originally generated 

by Laakso et al. (2002) for studying multivariate linear regression estimators. The 

data were formed by creating artificial PCBs for placing n components having c 

different component types on a square-like PCB with a side length of l millimetres. 

The locations of the components on the PCB were chosen by sampling the x- and y-

coordinates independently and uniformly from the interval [0, l]. The parameter 

values were n � {50,100, 400, 700, 1000}; c � {1, 30, 100}; l � {0, 50, 200, 500}. 

The generated assembly tasks were then simulated using the level 2 optimizer of the 

"Line Engineering Package" for each instance of the 70 PCB jobs. The simulation 

results were considered as the "true" placement times, which we use to train MLPs to 

estimate the times. 

    The two training data sets for gantry type machine were real proprietary 

production data, obtained from two different PCB assembly factories. The first 
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dataset (dataset 1) contained 63 different PCB jobs that were rather homogeneous 

since there were a lot of different versions of the same product. The second dataset 

(dataset 2) contained only 10 jobs which were from a rather different type of 

electronic product, in comparison to the jobs in the first dataset. Dataset 2 was not 

used alone since it is too small for the MLP to be used as training material. Each of 

these jobs was then optimized using the level 3 optimization of the Siplace Pro 

software to get the objective function ("true" placing times). The benefit of using this 

kind of real world assembly data is that the MLP can be trained using realistic inputs 

with corresponding simulated placing times. 

   

6.2  Estimators for rotary turret type machine 

     Both linear regression models (univariate and multivariate) and the training data 

were taken directly from the earlier study made by Laakso et al. (2002) to be 

compared with our non-linear MLP estimator. 

6.2.1 Estimators based on linear regression 

    Two linear regression estimators for the HSP 4795/96 turret type assembly 

machine were presented in the study by Laakso et al. (2002). Both of these were 

based on Valor Line Engineering Package simulations. The univariate linear 

regression model for the assembly time (t) is of the form 

  t = 0.117 ⋅ n + 6.991,        (1) 

where n is number of components to be assembled. The model explains 85.1 percent 

of the time variation. A multivariate linear regression model is of the form 

  t = 0.115 ⋅ n + 0.163 ⋅ c + 0.000536 ⋅ l - 6.467,   (2) 

where c is number of different component types and l the side length of the PCB. 

This model explains 92.2 percent of the time variation. Graphical results of this 

multivariate linear regression (green line) compared with simulated "true values" 

(blue line) and with absolute error values (red line) are shown in Figure 6. 

 

                    

 

  --------->      INSERT FIGURE 6 HERE    <------------- 

 

 

 

 

 Figure 6. Multivariate linear regressions on assembly times for rotary turret 

      machine (HSP 4795) by formula (2). 

6.2.2 Estimator based on non-linear regression 

    In our experiments with non-linear estimators, we first tested how many hidden 

neurons our MLP model should use for non-linear regression of the PCB assembly 

times. The input features of the MLP were the same as in the multivariate linear 

regression in Laakso et al. (2002). In the training of the MLPs we used the Netlab 

toolbox for Matlab functions software created by Nabley, I., (2005).  
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  --------->      INSERT FIGURE 7 HERE    <------------- 

 

 

 

   Figure 7. The effect of the network complexity (number of hidden neurons) on the  

  error magnitude of the estimation. Sum of the squared errors (SSE) is 

  given for 16 network models. The solid line (with dots) corresponds to 

  the mean of the predictive distribution. Dashed lines represent the 

  standard deviation of the predictive distribution around the mean. 

 

   We estimated a suitable network complexity (number of neurons in the hidden 

layer) by using the leave-one-out (LOO) validation method. As the learning of the 

network is stochastic, we repeated the validation 10 times for each network structure. 

The results of the model complexity estimation measured in terms of the sum of the 

squared errors (SSE) are summarized in Figure 7. The model which gives the best 

results has complexity of 12 hidden neurons. The errors here are the differences 

between the "true" assembly times and estimated assembly times measured in 

seconds. To get more information about the behaviour of the 12 hidden neurons 

model we calculated also some other statistical characteristics of the models MSE 

(Mean squared error), MAE (Mean absolute error), RSE (Relative squared error) and 

RAE (Relative absolute error) for this model, see Table 1. 

 
Table 1 .  Compar ison o f stat is t ical  character i s t ics for  mul t ivar ia te  l inear  

  regress ion (2)  and the MLP model  for  rota ry turret  machine ( seconds) .  

  

 

 

 

  --------->      INSERT TABLE 1 HERE    <------------- 
 

 

      

    Assembly times of the input data, the MLP model with 12 hidden neurons and the 

multivariate linear model are shown in Figure 8 for different number of component 

types. As it can be observed, the dependency between the input variables and the 

output variable is non-linear. The amount of non-linearity increases as the number of 

different component types in the assembly grows; if there is only one component 

type, the assembly time is in practice linear with respect to the two other input 

variables. 

        

 

 

 

 

 

 

 

 

  --------->      INSERT FIGURE 8 HERE    <-------------  
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Figure 8.  The input-output mappings of the test data of the MLP network for rotary 

      turret machine. The columns of panels show the dependency of the      

      assembly times on different combinations of system parameters (number of 

      components, number of component types and PCB side length) for input

      data, MLP network having 12 hidden neurons and the multivariate linear 

      model (2). 

 

 

 

  --------->      INSERT FIGURE 9 HERE    <------------- 

 

 

 

      Figure 9.   Results of the MLP model having 12 hidden neurons for rotary turret 

  machine compared to the true values. 

 

         In Figure 9  the results of MLP having 12 hidden neurons are presented on the 

same visual manner as earlier for the multivariate linear model (Figure 6). The model 

having 12 neurons was found in Figure 7 to have the smallest generalization error. The 

graphs of the true values (blue) and the MLP approximations (green) are so closely one 

on the other that they can not be seen separately.  

    These results show that we can make apparently good assembly time estimations 

using MLP networks. However, one should note here that our data set from Laakso et 

al. (2002) was artificially created for a particular machine type as described in 

Section 6.1. 

  

6.3  Estimators for gantry type placement machines 

     Preliminary test showed that the use of a combination of datasets 1 and 2 as a 

training data resulted in less accurate results than the use of dataset 1. That is why we 

decided to do two sets of tests, one for dataset 1 and the other for the combination of 

dataset 1 and 2. Dataset 2 was not used alone since it is all too small for the MLP to 

be used as training material. We tested the multivariate linear regression and MLP 

techniques with more parameters and multiple input parameter combinations to find 

the best combination.  

     
Table 2 .  Input  parameters used for  the  gant ry type machine calculat ions.  

 

 

  --------->      INSERT TABLE 2 HERE    <------------- 

 

 

 

     The accuracy of the estimation was measured with three error values; MSE, MAE 

and MAX. MAX is the maximum value of the estimation error which is the absolute 

difference in seconds between the correct value and the estimated value. 
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6.3.1  Estimators based on linear regression 

    Some key results from the multivariate linear regression with different input 

parameter combinations from Table 2 are shown in Table 3. It is natural that the 

accuracy of the linear estimators decreases with the number of different job types 

since presumably the variance of the jobs will also increases due to the use of 

different component shapes. That is especially the case when dataset 2 is used in 

conjunction with dataset 1. However, the same effect can be later seen also with the 

non-linear MLP. 

 
Table 3 .  MSE,  MAE, MAX and the square o f  Pearson product  moment correla t ion 

(r
2
)  o f the es t imated  placing t ime for  di f ferent  input  parameter  combina tions 

in  the  mul t ivar iate  l inear  regression.  Symbols a to  f  re fer  to  the parameters 

of Table 2 .   

 

 

  --------->      INSERT TABLE 3 HERE    <------------- 

 

 

  

        As it can be seen from Table 3, the parameter combination a, b, d, e, f seems to 

be the best (at least when looking at the MSE value) for both datasets. The best 

parameter combinations include the inputs e or f, so it is rather obvious that the 

variance in the component sizes affects the placement speed. That is probably 

because the usage of the nozzles may not be optimal when there are a lot of different 

sized components that require nozzles that can be used to place only a small subset of 

all components. The differences between some of the input parameter combinations 

are marginal and it is difficult to say which combination would give the smallest 

errors with a greater amount of data. The dependency between the number of 

components and placing time is shown in Figure 10. It is clear that the total number 

of components heavily dominates in the regression of the total placing time but 

improvements can be achieved by selecting additional input parameters. 

 

  

 

 

 

  --------->      INSERT FIGURE 10 HERE    <------------- 

 

 

 

 

 

 

 

         Figure 10. Dependency between the number of components and the placement  

     time (asterisk = dataset 1 and square = dataset 2). 

 

6.3.2 Estimator based on non-linear regression 

    MLP (one hidden layer with 12 neurons) was trained and tested in the same way as 

in Section 6.2.2. Table 4 shows some of the results obtained with the MLP. 
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       Table 4 .   MSE, MAE and MAX of the es t imated p lacing t ime for  d i f ferent  input  

        parameter  combinat ions in the MLP. Symbols a  to  f  re fer  to  the 

        features o f Table  2 .  

 

 

 

  --------->      INSERT TABLE 4 HERE    <------------- 

 

 

 

 

 

    The results for MLP are interesting since for most input combinations the accuracy 

decreases a lot when the dataset 2 is included in the training set. Also the best input 

combination is different when the dataset 2 is included. It must be noted that for 

dataset 1+2 the linear regression performs generally better than the MLP. The reason 

for the bad performance of the MLP may derive from the sparseness of the training 

set. Also the data may be so intense in certain areas that the MLP is distorted by 

those “clusters”. 

     The Bayesian regularisation of the network parameters in the combination with 

the scaled conjugate gradient turned out to be somewhat problematic in our case due 

to the high number of inputs in comparison to the size of the training data. For high 

number of inputs the number of the regularisation cycles was reduced from three to 

two which decreases the accuracy of the estimation. 

    The two data sets included a number of cases where there was a basic PCB type 

and its minor variants. We therefore clustered the data in order to remove the possible 

effect of intense data spots in MLP training. When doing this, the number of clusters 

should be rather high so that only the most intense data spots would be identified as a 

single cluster. Clustering was done so that each identified cluster was replaced by a 

single data point which was the arithmetic mean of the points belonging to the 

clusters.  

 

 

 

 

  --------->      INSERT FIGURE 11 HERE    <------------- 

 

 

 

 

                    

  Figure 11. The effect of clustering to the error values in MLP with  

        datasets 1+2 for gantry type machine. 

 

    We tested the MLP with different numbers of clusters using the input combination 

a, b, e, f (this combination had the best average accuracy for both input datasets), see 

Figure 11 for a summary of results. It appears that clustering gives no actual benefits 

since there is no remarkable improvement on the estimation accuracy while the 

cluster count is high. When 73 clusters are used the case is the same as without 

clustering because there are total 73 objects in dataset 1+2. Significant decrease of 
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the amount of clusters will naturally decrease the accuracy since objects that have a 

rather large distance from each other are placed into the same cluster. 

 

7  Conclusions 

     Production control in fast-paced electronic assembly industry requires proper 

solutions for production scheduling and line balancing to ensure that the promised 

dead lines are met and expensive machines are used efficiently. To solve these 

problems in a short time a fast single machine placement time estimation scheme is 

needed. Not only that the estimation must be fast enough it must also be accurate 

since better estimation leads to better line balancing. Methods presented in this paper 

are directed for factory scheduling where heavy machine level optimizations are all 

too slow or need information that is not yet available. 

         We introduced the use of multi-layer perceptron neural network for the placement 

time estimation in PCB component assembly. The method was compared to multivariate 

non-linear regression for two rather different machine types. For the rotary turret the 

new method was clearly superior to the multivariate linear regression (Table 1). This 

mirrors the non-linearity of the processing times as demonstrated in Figure 8. For gantry 

type machines the results show the importance of a proper training set. When having a 

relatively homogeneous training set (dataset 1) the MLP neural network works again 

efficiently (Table 3 compared to Table 4). With very heterogeneous data (datasets 1+2) 

multivariate non-linear regression gives somewhat smaller MSE. On the other hand, this 

kind of data is an extreme case which is not very suited for modelling any how. 

     When considering the practical usability of MLP neural networks it is observed that 

the application of the technique includes four steps; collecting a training data set, 

selecting a proper network layout and optimizing the network weights, using the 

network in an application (like line balancing or cost accounting), and adapting the 

network to new observations. Out of these the first step, collecting a proper training set, 

has been most challenging to us. While there are plenty of machine data available from 

producers, creating a well-founded set of observations (PCB assembly definition along 

with observed manufacturing time) has to be done with care. Of course, this note holds 

also for the competitors of the neural network approach. The second step, selecting the 

layout and optimizing network weights, is standard one and when the layout has been 

chosen the same general structure can (hopefully) be used longer time. The step takes 

several hours but this is again true for other techniques, too. The third step, using the 

network, is fast as the application of the ready network can be written as a function. 

This even makes it possible to use the method in conjunction of exact mathematical 

optimization software; research on exact line balancing is currently going on in our 

group. A further advantage of the neural network approach is the possibility to retrain 

(step four) the network weights in an easy manner when more production data have 

been collected. This naturally presupposes the preservation of the general layout of the 

network. 

     As a topic of further studies one should consider the modelling of so-called fast and 

slow components in the same neural network. For turret machines one may have to slow 

down the machine speed in order to avoid unwanted displacements of some heavy 

components due to high accelerations of the PCB holding board. Modelling of two 

operation speeds with the same network seems to be possible but needs some care. An 

other open question is the consideration of the capacities of the placement heads (to 

hold different nozzle types) in relation to the number and kind of component types of 
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PCBs. In the current version the head capacity is fixed but one might let it be a 

parameter in order to generalise the model. 
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