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The non-linear behaviour of statically loaded concrete results mainly from the development of cracks. In addition, highly dynamically loaded concrete is influenced by the failure of micro pores. Several authors use a damage model to consider both effects. The objective of this work is to test the capability of a discrete crack model to simulate shock wave-loaded concrete. Discrete cracks are modelled using the element-free Galerkin method, which allows cracks to be implemented independently of the mesh. The discrete crack model is used in combination with a fracture process zone to simulate the cohesive behaviour of the cracks in concrete. The behaviour of the micro pores is described by a compression modulus, which depends on hydrostatic strain (Hugoniot curve). The strain rate effect is considered by modifying the failure surface for calculating crack development. Static and dynamic benchmarks with several concrete beams show good agreement with experimental results. Experiments with concrete loaded by contact detonation show the development of cracks below the crater. The simulation model used shows good agreement with the experimental crack pattern.

T P I R C S U N A M D E T P E C C A T P I R C S U N A M D E T P E C C A 1 Introduction
Security-sensitive buildings have to be designed against extreme dynamical loads. In addition to loads due to earthquakes and the impact of vehicles, restraining these structures against highly dynamic loads, mostly from terrorist attacks becomes more and more important. Detonation loads can be separated in contact detonations resulting from the detonation of an explosive which is in contact with the material and air blast loads resulting from a detonation at some distance. The main objective of this paper is the description of the behaviour of the concrete loaded by contact detonations.

Highly dynamic loading results in a high strain rate (up to 10 6 sec -1 ) and in high pressures. The aim of this work is to develop a simulation model for the failure of highly dynamic loaded concrete. A combination of a discrete crack model implemented with the element-free Galerkin method and a cohesive crack model is used.

The development of cracks results in the non-linear behaviour of concrete. A highly dynamic loading of concrete produces additional non-linear effects such as the failure of micro-pores and the increasing of the strength by increased strain rates.

Crack models for concrete

There are several methods that can be used to model the cracking of concrete. All can be divided into two main procedures: Discrete crack models and continua mechanical models. A comparison between the two procedures is given by Mosler [START_REF] Mosler | Embedded crack vs. smeared crack models: a comparison of elementwise discontinuous crack path approaches with emphasis on mesh bias[END_REF].

Examples of continua models are smeared cracks, plasticity and damage models, although only the latter two models are used often to describe highly dynamic loaded concrete. The cracks are represented in these models by decreasing stiffness. A classical combination of a plastic material law and the strain rate effect is given by Malvern [START_REF] Malvern | The propagation of longitudinal waves of plastic deformation in a bar of material exhibiting a strain-rate effect[END_REF] and is, for example, used by Tedesco [START_REF] Tedesco | A strain-rate-dependent concrete material model for ADINA[END_REF]. More sophisticated is the plasticity model of Malvar [START_REF] Malvar | A plasticity concrete material model for DYNA3D[END_REF], which is implemented in LS-DYNA and uses different failure surfaces for the failure modes. Several material parameters are used to fit the model to concrete. The hydrocode model of Holmquist, Johnson and Cook [START_REF] Holmquist | A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures[END_REF] looks only at highly dynamic effects and splits the strains into a hydrostatic and a deviatoric part. The deviatoric stresses are calculated by damage evolution, whereas the Hugoniot effect is considered by the calculation of the hydrostatic stress. The resulting stresses are multiplied with a strain rate factor. Similar models are proposed by Ockert [START_REF] Ockert | Ein Stoffgesetz für die Schockwellenausbreitung in Beton[END_REF], Riedel [START_REF] Riedel | Beton unter dynamischen Lasten -Meso-und makromechanische Modelle und ihre Parameter[END_REF] and in combination with SPH by Rabczuk [START_REF] Rabczuk | Simulation of high velocity concrete fragmentation using SPH/MLSPH[END_REF], [START_REF] Rabczuk | A three-dimensional large deformation meshfree method for arbitrary evolving cracks[END_REF].
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All these methods need additional approaches for failed concrete. Several investigations use element erosion to avoid disturbed elements. Alternatively, the failed parts can be switched in a discrete crack model. A comparison of the methods used after failure is presented by Song [START_REF] Song | A comparative study on finite element methods for dynamic fracture[END_REF].

Other possibilities of considering the non-linear behaviour are discrete crack models, which implement the discontinuity with a real crack. Therefore, the position and the size of a crack have to be calculated. Discrete cracks can be implemented in the finite element method by using, for example, remeshing algorithms. Comacho [START_REF] Comacho | Computational modelling of impact damage in brittle materials[END_REF] uses a fixed mesh of triangles with cohesive cracks between the elements. An effective stress intensity factor for mixed-mode fracture acts as a criterion for the development of the crack.

In contrast with these methods there are further models that allow cracks between the nodes. The eXtended finite element method (X-FEM) proposed by Moes [START_REF] Moes | A finite element method for crack growth without remeshing[END_REF] uses additional degrees of freedom for the description of the crack. To obtain better results at the crack tips, Belytschko [START_REF] Belytschko | Elastic crack growth in finite elements with minimal remeshing[END_REF] uses an asymptotical crack tip function with X-FEM. Pedersen [START_REF] Pedersen | Continous-discontinous modelling of dynamic failure of concrete using a viscoelastic viscoplastic damage model[END_REF] uses X-FEM with a viscoelasticviscoplastic damage model. The viscoplasticity describes the strain rate effect. In this study the element-free Galerkin method is used in combination with a cohesive crack model to describe the discontinuity of the cracks.

There are several ways of implementing cracks in mesh-free methods. The extended element-free Galerkin method (XEFG) proposed by Rabczuk [START_REF] Rabczuk | A meshfree method based on the local partition of unity for cohesive cracks[END_REF] is a combination of the local partition of unity method X-FEM and EFG. Degrees of freedom are added for all nodes concerned of a crack. Another possibility is the cracking particle method (Rabczuk [START_REF] Rabczuk | Cracking particles: a simplified meshfree method for arbitrary evolving cracks[END_REF], [START_REF] Rabczuk | A three-dimensional large deformation meshfree method for arbitrary evolving cracks[END_REF]), which adds crack planes through particles. The crack nodes are enriched to discretise the discontinuity. The method of phantom nodes (see Song [START_REF] Song | A method for dynamic crack and shear band propagation with phantom nodes[END_REF]) implements additional (phantom) nodes in each cracked element to describe the crack. A crack is then represented by two superimposed elements. The method can be used to describe shear bands. In this study, the element-free Galerkin method will be used to implement discrete cracks.

Shock wave loaded concrete

There are different possibilities of implementing the behaviour of the micropores in a constitutive relation for concrete. Some authors implement this effect in the form of an equation of state. Riedel [START_REF] Riedel | Beton unter dynamischen Lasten -Meso-und makromechanische Modelle und ihre Parameter[END_REF] proposes a constitutive law based on the model of Holmquist [START_REF] Holmquist | A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures[END_REF] which expands the hydrostatic part with a p-δ equation of state (see Herrmann [START_REF] Herrmann | Constitutive equation for the dynamic compaction of ductile porous materials[END_REF]) and combines the mesomechanical hydrostatic behaviour of the aggregates and the cement.

Another possibility is to use a nonlinear elastic material law, as it is presented [START_REF] Schmidt-Hurtienne | Ein dreiaxiales Schädigungsmodell für Beton unter Einschluss des Dehnrateneffekts bei Hochgeschwindigkeitsbelastung[END_REF]. The bulk modulus is changed depending on hydrostatic strain.
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Element-free Galerkin Method

The proposed simulation model uses discrete cracks to model the non-linear behaviour of concrete. The cracks are implemented using the element-free Galerkin method (EFG). In contrast to the finite element method, the interactions between the nodes are defined only by the distance between the nodes.

MLS Interpolation

Belytschko [START_REF] Belytschko | Element-free galerkin methods[END_REF] proposes the element-free Galerkin method (EFG), which approximates a field by using moving least-squares interpolation (MLS Interpolation). The following equation is used to approximate the displacement field:

u h (x) = n i=1 φ k i (x)u i = p T • a (1) 
The shape function φ is built from monomial functions p. A linear twodimensional example for p is:

p(x) = (1 x y) T (2) 
The vector a is calculated by the minimization of the interpolation error J i

J i (a, x) = n i=1 w i (x) • u i -p T i (x) • a 2 (3) 
The weight function w i depends on the distance x -x i . This weight function can be written as:

w i (x) = w i (s) with s = x -x i h i (4) 
A common spline function is used as the weight function:

w(s) = 1 -6s 2 + 8s 3 -3s 4 (5) 
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The shape functions φ k i can be calculated by using the derivation of equation (3). We define a matrix P with the coordinates of the nodes:

P =           p 1 (x 1 ) p 2 (x 1 ) . . . p m (x 1 ) p 1 (x 2 ) p 2 (x 2 ) . . . p m (x 2 ) . . . . . . . . . . . . p 1 (x n ) p 2 (x n ) . . . p m (x n )           (6) 
and a matrix W with the weight functions of the nodes w i :

W(x) =           w 1 (x) 0 . . . 0 0 w 2 (x) . . . 0 . . . . . . . . . . . . 0 0 . . . w n (x)           (7) 
By using the auxiliary matrices A and B:

A = P T W(x)P (8) B = P T W(x) (9) 
The derivation of J(a, x) can be written as:

∂J i (a, x) ∂a = A • a -B • u i = 0 (10) 
Then, the interpolation can calculated with:

u h (x) = p T (x) • A -1 • B • u i (11) 
The size of the radius of influence h i (see equation ( 4))is a variable parameter, which defines the number of nodes in support. If a too big value is chosen for this parameter, a large number of nodes lie in a supported area and the difference between the shape functions of two neighbouring nodes is therefore small. This results in an ill-conditioned interpolation; the possibility of numerical instability is high.

For the interpolation, the auxiliary matrix A has to be inverted. If the number of nodes in a supported area is smaller than the dimension of the problem, matrix A becomes singular. A is not singular if the nodes span two independent directions (for the 2D case). Experience shows that the size of the
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radius of influence h i should be chosen with approximately 4 to 10 nodes in the supported area.

Discretisation of the EFG method is the same as used for the finite element method with the changed shape functions in equation [START_REF] Mosler | Embedded crack vs. smeared crack models: a comparison of elementwise discontinuous crack path approaches with emphasis on mesh bias[END_REF]. Discretisation in the model presented is Lagrangian. There are several descriptions of the dimensionality to discretise a model in two dimensions. The EFG model described is used here with plain strain, plain stress and axial symmetric discretisations.

The procedure for EFG is the same as for finite elements (e.g. described by Bathe [START_REF] Bathe | Finite Element Procedures[END_REF]). A three-dimensional implementation shows that the calculation time increases rapidly due to the much bigger search effort.

The integration can be done with background rather than nodal integration. Background integration uses the well-known Gauss integration of cells that are developed by a quadtree structure (see Belytschko [START_REF] Belytschko | Element-free galerkin methods[END_REF]) or triangulation or are defined manually by the user.

Nodal integration is proposed by Beissel [START_REF] Beissel | Nodal Integration of the element-free Galerkin method[END_REF] and uses as the integration factor the portion of the volume (or area) associated with a node. The combination of nodal integration and explicit time integration sometimes results in problems with under-integration. To prevent this instability Beissel [START_REF] Beissel | Nodal Integration of the element-free Galerkin method[END_REF] proposes a stabilisation term. Another possibility to stabilise the nodal integration is to add stress points that are used additionally for the integration (see Belytschko [START_REF] Belytschko | Stability analysis of particle methods with corrected derivatives[END_REF]).

Rabczuk [START_REF] Rabczuk | Stable particle methods based on Lagrangian kernels[END_REF] compares both integration methods using a static solution as well as dynamic solutions. The best results in comparison with analytical results were obtained with background integration but this method is significantly more expensive than nodal integration.

Background integration is mostly used for EFG. This integration method will also be used here to prevent stability problems. In the case of an explicit time integration the computational times for background integration are in the implementation used not significantly higher than for nodal integration.

MLS Interpolation and Cracks

In this work, the cracks are implemented by cutting off the weight functions (and hence the shape functions) at the location of the crack (see figure 1, Belytschko [START_REF] Belytschko | Element-free galerkin methods[END_REF]). This method is widely used in combination with the EFG method and has the advantage of being relatively robust. The geometry of the cracks is stored here with the level set method (see Ventura [START_REF] Ventura | A vector level set method and new discontinuity approximations for crack growth by EFG[END_REF]).

The domain of the node is divided into two subdomains: subdomain B beyond
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the crack and subdomain A on the side of the node. In subdomain A the spline function w is the same as before; in subdomain B w is set to 0. Ventura [START_REF] Ventura | A vector level set method and new discontinuity approximations for crack growth by EFG[END_REF] proposes different methods for dividing the domain at a crack tip (e.g. visibility criterion). Herein, the diffraction method is used.

The implementation of a new crack results in smaller support for the nodes near to the cracks. To avoid a singular matrix A (see section 2.1) the radius of influence is updated in the case of a new or a longer crack. It could also be seen that the level set method used works very well with a small number of cracks. When using large numbers of cracks the effort of calculating the points affected by a crack is expensive.

Explicit Time Integration

The calculation of highly dynamic loaded structures requires such small time increments that an explicit time integration is reasonable. An explicit time integration is stable if the time step size is smaller then a critical value.

Menouillard [START_REF] Menouillard | Efficient explicit time stepping for the extended finite element method (X-FEM)[END_REF] shows that the stable time step of X-FEM elements is of the same order as that of the corresponding element without X-FEM extension. He suggests a time step of 2/3 of the stable time step of a corresponding element without X-FEM extension.

Menouillard [START_REF] Menouillard | Efficient explicit time stepping for the extended finite element method (X-FEM)[END_REF] also shows that the critical time step of X-FEM elements depends on the position of the crack. The critical time step increases when the crack is near a node. Figure 3 shows the influence of the location of the crack on critical time step. The location of the crack is described by using the distance to the next node s divided by the distance between the nodes l.

Lu [START_REF] Lu | Element-free Galerkin method for wave propagation and dynamic fracture[END_REF] shows that for the EFG method the time step is up to 1.7 times longer than that obtained by the finite element method.

The critical time step for the EFG method with cracks is calculated here by using the eigenfrequencies of the model. The critical time step Δt can then be calculated with the stability condition following the Newmark scheme:

Δt ≤ Δt c = 2 ω max (12) 
The resulting critical time step for the EFG method is shorter than for a calculation without cracks. The time step for a crack near a node correlates with the resulting critical time step for an X-FEM element shown by Menouillard (see figure 3).

Another problem when using discrete cracks with explicit time integration is the occurrence of node oscillations on the crack surfaces by the time the
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cracks develops. Global artificial viscosity can damp these oscillations. The parameters for artificial viscosity are similar to the parameters used for the finite element method.

Constitutive Law for Concrete

A combination of a discrete and a cohesive crack model is used to calculate the concrete. The cohesive crack model takes account of the non-linear behaviour of crack development. The reason for this non-linear behaviour is the lack of homogeneity at meso level (the dimension of the visible components of concrete). The cohesive part replaces the damage model, which is used by most authors to model the smoothing behaviour after cracking. Instead of a damage surface a failure surface is used for crack development. With this procedure, an elastic material model can be used for the concrete. In the case of highly dynamically loaded concrete, the elastic material law is extended with descriptions of the behaviour of the micro pores.

Table 1 shows the parts of the used constitutive law. 

T P I R C S U N A M D E T P E C C A ARTICLE IN PRESS 3.1 Constitutive Model -Bulk Modulus
The behaviour of concrete under hydrostatic load is affected by the behaviour of the micro-pores. Following a linear elastic hydrostatic loading the micropores fail (plastic loading). The compression stiffness decreases. Further compaction of the micro-pores results in increased stiffness. This effect is the reason if the wave is steeping up to a shock front.

But in most cases of shock waves the concrete is still loaded by a shock front.

The amplitude of a shock wave decreases very fast due to enormous local energy dissipation through the destruction of the micro-pores. This destruction results in a granular material.

Here, a nonlinear elastic material law should be used. The bulk modulus is changed depending on hydrostatic strain. Schmidt-Hurtienne [START_REF] Schmidt-Hurtienne | Ein dreiaxiales Schädigungsmodell für Beton unter Einschluss des Dehnrateneffekts bei Hochgeschwindigkeitsbelastung[END_REF] presents a volume function that considers the variation of the stiffness as a function of hydrostatic strain v . This volume function is used in this instance to calculate the compression modulus:

K tot = Y ( v ) • K (13) 
with:

K = E 3(1 -2ν) (14) 
The Poisson's ratio ν is chosen to 0.2. The Young's modulus E is chosen depending on the model.

The shape of the Y-function (figure 5) is calculated by

Y =            1 -a v • 1 -e -| v |-e v,th ev • 1 + | v |-e v,th bv•ev 2 for v < -e v,th 1 for v ≥ -e v,th (15) 
The following parameters are used:

e v,th = 0.008 (16) e v = 0.0223 a v = 0.7 b v = 3.5
At a certain point, all pores of the concrete are damaged and additional compaction of the micro pores is no longer possible. Ruppert [START_REF] Ruppert | Zur numerischen Simulation von hochdynamisch beanspruchten Betonstrukturen[END_REF] defines the density of the unloaded concrete without micro pores as ρ ref = 2.181 g/cm 3 .
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This corresponds to a value of Y = 4.8, which is used as a limitation of the Y-function.

Equation [START_REF] Rabczuk | A meshfree method based on the local partition of unity for cohesive cracks[END_REF] represents only the loading part. If unloading occurs after destruction of the micro-pores the maximum stiffness due to the increased stiffness of the existing granular material is used. The unloading volume function in plastically loaded concrete is higher than the initial stiffness. The function for the unloading path can be written as:

Y unloading =        1 for max Y loading = 1 AND min Y loading = 1 Y unloading,plast for max Y loading = 1 AND min Y loading < 1 max Y loading
for max Y loading > 1 (17) Investigations (see chapter 4.5) show that the numerical model represents the material by using Y unloading,plast = 1.5 (see also figure 21).

The failure of concrete under high hydrostatic loads also has to be considered. If the micro-pores of the concrete are destroyed, the concrete cannot react to a tension load. Furthermore, the shear modulus is reduced. If these effects are not considered, the dissipation of energy is too small and the amplitude of the wave does not decrease rapidly enough.

The reduced shear modulus is implemented with damage evolution as proposed by Ruppert [START_REF] Ruppert | Simulation of concrete structures under highly dynamic loadings[END_REF] 

D z = v v,max γ (18)
with the hydrostatic strain v and the hydrostatic strain capacity v,max = 0.09. The parameter γ defines the shape of the damage. A parameter study shows that a value of γ = 0.1 is suitable to represent the behaviour of the concrete.

After the crushing of the micro-pores the concrete cannot sustain a tension load. The concrete reacts like a granular material. Therefore, if crushed concrete is loaded by tension, the integration points and the integration cells are deleted. The mass of these cells is removed from the mass matrix due to the fact that the fragment is no longer connected with the remaining concrete. The energy of these cells is therefore also removed.

Failure Surface

A failure surface can be used for different objectives. Here, the failure surface proposed by Hsieh [START_REF] Hsieh | A plasticity-fracture model for concrete[END_REF] should effect the development of the cracks.

Hsieh [START_REF] Hsieh | A plasticity-fracture model for concrete[END_REF] has converted the failure surface of Ottoson [START_REF] Ottosen | A failure criterion for concrete[END_REF] into a form which
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allows easier adaptation to experimental results. The failure surface can be written as:

aJ 2 + b J 2 + cσ 1 + dI 1 -1 = 0 (19)
The parameters a, b, c, d can be calibrated with the biaxial experiments of Kupfer [START_REF] Kupfer | Behavior of concrete under biaxial stresses[END_REF] and the triaxial experiments of Mills [START_REF] Mills | Compressive Strength of Plain concrete under multiaxial loading conditions[END_REF]. The following values are used in this approach for equation [START_REF] Herrmann | Constitutive equation for the dynamic compaction of ductile porous materials[END_REF]:

a = 2.0108; b = 0.9714; c = 9.1412; d = 0.2312 (20) 
Because these parameters are developed by scaling with the compressive strength f c , the values are independent of the strength of the concrete. This failure surface will therefore be used in this investigation.

Strain Rate Effect

The strength of concrete depends on the strain rate. The strain rate effect is shown by experiments of different authors. An arrangement of several experiments is shown by Bischoff [START_REF] Bischoff | Compressive behaviour of concrete at high strain rates[END_REF] (figure 4).

The strain rate effect has different reasons:

• The strain rate effect with small strain rates is due to the inertia of the concrete around the crack. Bischoff [START_REF] Bischoff | Impact behavior of plain concrete loaded in uniaxial compression[END_REF] shows that the inertia effects linked to crack propagation also predominate for high strain rates. • Humidity in the micro-pores results in a deceleration of micro-crack development both under tension loading and under compression loading. Reinhardt [START_REF] Reinhardt | Joint investigation of concrete at high strain rates[END_REF] shows the influence of humidity on the tensile strength by increased strain rates by using SHB tests with wet and dry specimens. Under compression loading the humidity has a reinforcing effect. Under tension loading capillary forces in the micro-pores resist displacement. Therefore, the velocity of crack development is reduced. • Another reason for the increase in strength is the homogenisation of the micro-structure. Static loading results in stress peaks at the edges of the aggregates. These stress peaks are followed by local failure of the structure.

If the structure is loaded in the range of the wave velocity, however, the stress distribution is smoothed and thus the structure can sustain a higher load.

Experimental data are used in the CEB-bulletin 187 [START_REF] Ceb | Concrete Structures under Impact and Impulsive Loading -Synthesis Report[END_REF] to develop a bilinear function for the increasing of strength. Extrapolation of the bilinear function in a range without experimental data (over approx. 200sec -1 ) results in physical unrealistic values. Gebbeken [START_REF] Gebbeken | A new material model for concrete in high-dynamic hydrocode simulations[END_REF] introduces a hyperbolic function to regard the limitation of the increased strength in this range depending on the damage level (see figure 4).
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Hypothetically the maximum experimental value is set as limit. The dynamic strength is calculated by:

f incr = ˙ ˙ 0 δ for ˙ ≤ 30 sec -1 f incr = η ˙ 1 3 for ˙ > 30 sec -1 with ˙ 0 = 3 • 10 -6 sec -1 , δ = 1 10+ 1 2 f c , log η = 7δ -0.492 (21) 
f dyn f stat = min(f incr , 8.0) (22) 
The increasing strength is implemented by an expansion of the failure surface (for tension as far as for compression). Therefore, the strain rate has an influence of the initiation of the cracks and the development of the cracks. The increased strength is also regarded by the calculation of the additional forces in the fracture process zone.

Crack Development

Crack development proceeds in the following steps:

• Crack initialization:The basis for this decision is a failure surface. A Rankine criterion is sufficient if the concrete is loaded only by tension stresses, but it cannot represent the behaviour of concrete under triaxial loading. Therefore, in the proposed simulation model the failure surface of Hsieh, Ting, Chen [START_REF] Hsieh | A plasticity-fracture model for concrete[END_REF] is used (see section 3.2). • Decision whether a crack can growth: The same criterion as for the initialization is used. • Determination of the length of crack development: the simulation model uses a constant crack development length. The investigation in section 4.1 shows that a length of half the distance between the nodes is a good choice. • Determination of the direction of the crack: The direction orthogonal to the principle stress is used. This assumption is only true for MOD1 cracks. The examples (see chapter 4) show that the crack direction of MOD2 cracks is with this assumption represented precisely enough.

Knowledge of the stresses at the crack tip is necessary for the crack development criteria. The higher order continuity of the EFG method used obtains smoothed stress distributions at the crack tip. Therefore, the solution at the crack tip is similar to a non-local approach.

Dynamic loads sometimes cause a crack to close, making a contact formulation necessary. In this case the weight function has to be set to continuous again.
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The closed crack can then transmit all loads between the crack sides.

In order to find a solution for MLS interpolation there are certain limits for the cracks. Cracks near the edges, cracks parallel to the edges, parallel cracks with a low distance and single nodes cut by a crack result in a divergence of the solution. Crack geometries of this kind should be avoided in such algorithms for crack development.

Maximum Crack Velocity

The velocity of crack development in concrete is lower than the Rayleigh wave velocity. Experimental results of different authors are shown in figure 6. The results show a limit in the crack velocity in a range of 500 m/s. This is the same limit like postulated by Curbach [START_REF] Curbach | Crack Velocity in Concrete[END_REF]. This limit is also validated by new experiments by Steiner [START_REF] Steiner | Beton unter Kontaktdetonation -Experimentelle Untersuchungen[END_REF]. These experiments with concrete loaded by contact detonations show a crack velocity in a range of 300 m/s.

The numerical investigations presented use a crack velocity capacity of v crack,max = 500 m/s. By using a constant crack development length l crack (section 3.4), crack development is possible after a time period of:

t crack = l crack v crack,max (23) 

Fracture Process Zone

The process of crack development in concrete can be shown with a tension experiment (figure 2a). Shrinkage and creep generate micro-cracks in the cement paste. These micro-cracks grow when an external tension load is applied. Reaching 60% of the tensile strength, these micro-cracks are placed more and more in the direction normal to the loading (A). On reaching the tensile strength (B), most micro-cracks have joined. The tensile forces are only transmitted by a certain number of aggregates. After exceeding the tensile strength (C), a macro-crack has developed. The rough surfaces of the crack sides can still transmit forces between the crack surfaces (softening).

To describe this behaviour, Hillerborg [START_REF] Hillerborg | Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[END_REF] proposes a "'fictitious crack model"', which hypothesises that the material behaviour is elastic until the strength is reached. After exceeding the failure limit, the strain increases in a local zone.

In contrast with brittle failure, this zone can still transmit stresses between the crack sides.

The stress-strain relationship can be split into two parts: the part until the
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failure limit is reached and the part after exceeding the tensile strength. Because the position of the cracks is not known, the fracture process zone is not initialised before the crack is developed. Instead, the proposed simulation model uses an elastic material model (with a variable bulk modulus, see section 3.1) until the failure limit is reached (rigid cohesive model, see figure 2b). After cracking, additional forces are applied which represent the transmitted stresses of the fracture process zone (FPZ).

These so-called crack closure stresses represent the forces transmitted between the crack sides and are implemented as external loads at the nodes. A bilinear shape of the crack closure stresses is used:

σ ccs = (β t -1) • f t α t • w max w + f t for w < α t • w max ( 24 
)
σ ccs = - β t • f t w max (1 -α t ) w + β t • f t 1 -α t for w > α t • w max
The parameter α t is proposed by Roelfstra [START_REF] Roelfstra | Numerical method to link strain softening with failure of concrete[END_REF] in the following form:

β t = 0.25 for f c < 30 MPa (25) β t = 0.25 -0.0015 • (f c [M P a] -30) for f c > 30 MPa
The coefficient α t is set to 0.14 as also proposed from Roelfstra.

Then, the crack opening, which corresponds to a stress-free surface (w max ), can be calculated with:

w max = 2 • G f f t (α t + β t ) ( 26 
)
This form of the crack closure stresses provides a good representation of the experimental data.

Experiments with a Split Hopkinson Bar by Schuler [START_REF] Schuler | Spall experiments for the measurement of the tensile strength and fracture energy of concrete at high strain rates[END_REF] show that the values of the fracture energy depend on the strain rate. The fracture energy is duplicated at a strain rate of 100 sec -1 . This increase corresponds approximately to the increase in the strength at this strain rate. Experiments by Weerheijm [START_REF] Weerheijm | Concrete under Impact Tensile Loading and Lateral Compression[END_REF] do not show a dependency of fracture energy on strain rate.

Since detailed values are not available for the strain rate dependency of the fracture energy, the following assumption is used: the values of the strength in equation ( 24) are multiplied by the strain rate factor (see equation ( 21)); the values for the fracture energy are set as constant, whereas the maximum crack opening is calculated with the increased strength using equation [START_REF] Ventura | A vector level set method and new discontinuity approximations for crack growth by EFG[END_REF].
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ARTICLE IN PRESS 4 Validation and Examples

The simulation model is validated by the following examples.

Static Three-Point Bending Test

The static routine of the simulation model can be verified with a static threepoint bending test. An unreinforced concrete beam with an artificial crack on the bottom side of the specimen was tested by Körmeling [START_REF] Körmeling | Determination of the fracture energy of normal concrete and epoxy modified concrete[END_REF] to identify fracture energy. The geometry of this experiment is shown in figure 7.

The following material parameters are used: Young's modulus 20000 N/mm 2 , Poisson's ratio 0.20, tensile strength 2.4 N/mm 2 , fracture energy 113 N/m. The thickness of the specimen is 100 mm.

Numerical discretisation (plain strain) is achieved with three different meshes. Mesh1 uses a uniform mesh with a size of 5 mm. Mesh2 and mesh3 use a basis mesh of 10 mm. These meshes are refined in the region of the crack to 2.5 mm (mesh2) and 2 mm (mesh3). The meshes therefore use different numbers of integration cells through the height. While mesh1 is built with 25 elements through the height (26 nodes), mesh2 and mesh3 are built with, respectively, 40 and 50 integration cells through the height (41 resp. 51 nodes). By using the EFG method the refinement can be performed easily by cutting the integration cells. Triangular intermediate cells are not necessary.

The numerical investigations with bilinear softening in the fracture process zone show that there is a dependency on the mesh size (see figure 8). The coarser mesh shows a much higher load but a smaller softening part. The finer meshes represent the experiments much better.

Crack development is performed stepwise with a fixed crack development length (see chapter 3.4). The crack development length influences not only the development of the crack; it also has an influence on the fracture process zone. A shorter crack development length results in a better description of the cohesive behaviour due to the frequent updating of the crack. External forces resulting from the fracture process zone are also bigger. Therefore, the load capacity for a given displacement should be higher.

Due to this fact, the crack development length should be as small as possible to describe the crack geometry and the fracture process zone as accurately as possible. The crack development length should also consider other magnitudes used for the calculation or related to the concrete material. One magnitude used in the calculations is the distance between nodes and integration points.
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The shape functions are an approximation between the nodes. Because of this, a much shorter crack development length than the distance between the integration points is not suggested.

Concrete is a composite material made up of a cement paste and aggregates. Usually, the maximum size of the aggregates is in a dimension of 2 cm. Due to the fact that the presented approach uses a homogenized model for the concrete, a crack development length much smaller than the maximum size of the aggregates is not sensible. The investigations also show (figure 9) that the crack development length has a non-negligible influence on the numerical result. A length of half of the integration cell is suggested and used here. This choice leads to a good representation of the experimental results.

The load-displacement curve is not continuous. This is due to the fact that the discrete cracks develop with a constant crack development length, resulting in steps in the load-displacement curve. This corresponds with the failure of the aggregates in the experiment.

Shear Test

The development of curved cracks can be tested using the shear experiment of Arrea [START_REF] Arrea | Mixed-Mode Crack Propagation in Mortar and Concrete[END_REF]. The geometry and the material parameters are shown in figure 10.

The specimen has a thickness of 156 mm. The mesh is build with a distance of the nodes of 17 mm with an refinement near the proposed crack to 9 mm. The crack development size is chosen to 4.5 mm. The numerical crack pattern resulting by a calculation with a plain stress model compares well with the experimental pattern (figure 11). The crack patterns resulting from the use of a damage model (e.g. Akkermann [START_REF] Akkermann | Rotationsverhalten von Stahlbeton-Rahmenecken[END_REF]) or other discrete crack models (e.g. Prasad [START_REF] Prasad | Fracture mechanics model for analysis of plain and reinforced high-performance concrete beams[END_REF]) are steeper than the results with the proposed simulation model.

Dynamic Three-Point Bending Test

Experiments run by Du [START_REF] Du | Fracture process zone for concrete for dynamic loading[END_REF] show the behaviour of dynamically loaded cracks. Unreinforced concrete beams (geometrical and material data see figure 12, thickness 50.8 mm) are loaded with a falling weight (9.68 kg, altitude of fall 1 m). The beam has an implemented crack on the underside of the specimen. Strains are measured at three locations.

The results of these experiments can be used to validate the simulation model for dynamic crack development. The calculations are done with a plain strain discretisation. The mesh has a size of 6 mm; the crack development size is 3 mm. The numerical results of dynamic crack development show oscillations

T P I R C S U N A M D E T P E C C A ARTICLE IN PRESS
around the crack. The reason is discontinuous crack development. These oscillations can be reduced by using artificial viscosity.

The numerical results reflect the experiments with the measuring sensor on the bottom (SG1). The strains of the numerical calculation at the measuring sensor SG2 are somewhat delayed, but representation of the results is still good. The crack edges at the measuring sensor SG3 in the calculation are unloaded after the experiment and therefore the strain in the simulation is too large.

Shearing of a Plate under Detonation Load

Plates loaded by heavy air blast waves fail through shearing rather than bending. Experiments conducted by Albritton [START_REF] Albritton | Response of deep two-way reinforced and unreinforced concrete slabs to static and dynamic loading[END_REF] with reinforced concrete show the crack pattern illustrated in figure 14.

To simulate these experiments a specimen is loaded by a triangular load-time function with a maximum load of 20 MPa and a rising time of 0.05 msec. A background mesh with a distance between the nodes of 10 mm is used (plain strain). The strain rate effect is considered.

The following material parameters are used: Young's modulus 34500 N/mm 2 , Poisson's ratio 0.20, fracture energy 141.75 N/m, static tensile strength 4.14 N/mm 2 . The crack development length is chosen to 3 mm considering the distance between the nodes and the size of the aggregates. The maximum crack velocity is chosen to 500 m/sec.

Figure 15 shows the numerical crack pattern. The crack runs from the support into the specimen. Additional cracks develop on the right-hand side of the support due to the disregard of reinforcing in the numerical simulation.

Contact Detonation

The aim of this study is to calculate concrete loaded by contact detonation. The Institute for Reinforced Concrete Structures and Building Materials -Universität Karlsruhe (TH) has carried out experiments to identify the parameters of highly dynamic loaded concrete. The test specimens have a size of 1 m x 1 m x 0.5 m. The region of interest in the concrete body has no reinforcement. The specimen was loaded by a plane wave generator with a mass of 640 g TNT. This loading introduces a plane wave across a large charged area.
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Loading with this kind of charge does not destroy the test specimen. Different failure ranges can be identified in figure 16. The detonation results in a crater beneath the explosive. The concrete underneath the crater is highly compacted. Below this region concrete is damaged by cracks. The concrete between these cracks is not visibly damaged.

The costs of the element-free Galerkin method are much higher than those of mesh-free particle methods (e.g. Rabczuk [START_REF] Rabczuk | A three-dimensional large deformation meshfree method for arbitrary evolving cracks[END_REF]) due to the search effort, especially with cracks. Therefore, three-dimensional numerical modelling of the test specimen with the EFG method was not possible with reasonable effort. Therefore, the EFG method is used with an axial symmetrical approach (figure 18).

The convergence of the mesh is investigated with a smaller model (geometrical data see figure 17). A comparison of this model with experimental values is not possible. The results show (see also figure 17) that a distance from the node of 3 mm results in similar pressures to finer meshes. Therefore, the distance between the nodes in the region beneath the explosive is chosen for the full model as 3 mm and in the other regions as 6 mm. The model uses 10786 degrees of freedom.

The model is loaded with a pressure-time function applied to the nodes beneath the explosive according to the results of Plotzitza [START_REF] Plotzitza | Ein Verfahren zur numerischen Simulation von Betonstrukturen beim Abbruch durch Sprengen[END_REF], see figure 19. The boundary conditions are presented in figure 18. The following material parameters are used: Young's modulus 30000 N/mm 2 , Poisson's ratio 0.2, static tensile strength 3.6 N/mm 2 , maximum crack velocity 500 m/sec, crack development length 3 mm. The cracks are built by using the failure surface of Hsieh (see section 3.2). Cells and nodes, which are loaded over the pressure capacity and then loaded with hydrostatic tension, are deleted (see also section 3.1). This loading results in fragments which will not be considered here.

The variation in crack direction can be determined in a section through the specimen (figure 20). This section shows a maximum crack direction variation of 50 o , which is used as the limit for the calculations.

The experiments of Steiner [START_REF] Steiner | Beton unter Kontaktdetonation -Experimentelle Untersuchungen[END_REF], Herrmann [START_REF] Herrmann | Experiments on concrete under shock loading[END_REF] and Ockert [START_REF] Ockert | Ein Stoffgesetz für die Schockwellenausbreitung in Beton[END_REF] can be used to compare maximum pressures as a function of the distance from the top of the specimen. The experiments show fast decreasing pressure.

Figure 21 shows the maximum pressures using different unloading functions (parameter Y unloading,plast , equation 17). The numerical results with a value of Y unloading,plast = 1.5 represent the experimental results.

Rabczuk [START_REF] Rabczuk | A three-dimensional large deformation meshfree method for arbitrary evolving cracks[END_REF] also investigated these experiments using the cracking particle method (see Rabczuk [START_REF] Rabczuk | Cracking particles: a simplified meshfree method for arbitrary evolving cracks[END_REF]). The resulting maximum pressures as well as the resulting crack pattern are similar. The difference with this method lies in
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the fact that the EFG method results in a discrete crack pattern whereas the cracking particle method results in regions with cracked particles.

The numerical and experimental failure patterns show a region with deleted nodes beneath the explosive, representing the crater (figure 16). The amplitude of the pressure wave decreases very fast. The crack pattern resulting from the detonation load is affected by transverse tensile cracks. After reflection of the wave on the underside of the specimen, the cracks rotate and a spalling region develops. The experimental crack pattern compares well with the numerical crack pattern (figure 16, main cracks are highlighted).

Conclusion

This work presents a new approach which uses a discrete crack model (instead of a damage model) to calculate shock wave-loaded concrete. Discrete cracks are modelled using the element-free Galerkin method. The discrete cracks are combined with a strain rate-sensitive fracture process zone. The behaviour of the micro pores is considered by using a new description of the Y function which concerns also the maximum possible compression of the pores and the unloading part.

The results presented show that crack geometry for static and dynamic loading of concrete structures can be represented with the proposed model. The maximum pressures and the crack geometry resulting from loading concrete with contact detonation can be calculated using the proposed simulation model.

The simulation model presented here uses only two-dimensional approaches.

The extension of the element-free Galerkin method to a three-dimensional approach is possible. The computational costs increase when using threedimensional calculations due to the fact that the search effort is much more expensive. The most complex enlargement is the development of the crack in three dimensions. The crack line becomes a surface; the crack tip becomes a crack tip line. Gravouil [START_REF] Gravouil | Non-planar 3d crack growth by the extended finite element and level sets -part 2: Level set update[END_REF] shows that the level set method can also be used for the development of three-dimensional cracks. Also the fracture process zone has to be enlarged to the third dimension. To simplify the implementation of the three-dimensional fracture process zone, a specialised transparency or diffraction criterion for the crack tip could be used, which considers also the cohesive behaviour of the crack.

The advantage of the simulation method presented is the fact that the cracks are available as cracks and not as a zone of damaged elements. However, the calculation time seems to be much longer than a comparable model which using damage material. 
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