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Abstract

The present paper is devoted to the modeling of finite deformations of hyperelastic
bodies described by the Yeoh model under contact/impact conditions. A total La-
grangian formulation is adopted to describe the geometrically nonlinear behavior.
A first order algorithm is applied to integrate the equations of motion. For the finite
element implementation, an explicit expression of the tangent operator is derived.
Two numerical examples are presented to show the applicability of the developed
approach.
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1 Introduction

Problems involving contact and friction are among the most difficult ones
to solve in mechanics and at the same time of practical importance in many
engineering branches. A large number of algorithms for the modeling of contact
problems by the finite element method have been presented in the literature.
See for example the monographs by Wriggers [1] and Laursen [2] and the
references therein. De Saxcé and Feng [3] have proposed a bi-potential method
combined with an augmented Lagrangian formulation. Feng et al. [4] have
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successfully applied this method to the modeling of static contact problems
between Blatz-Ko hyperelastic bodies.

Regarding the time integration for implicit dynamic analysis in structural
mechanics, the most commonly used scheme is the second order scheme such
as Newmark, Wilson-θ, HHT [5]. A first order time scheme has also been
proposed by Jean [6] for time stepping in granular mechanics. Recently, Feng
et al. [7,8] have applied this scheme for the modeling of impact problems
between elastic bodies.

In nonlinear elasticity, there exist many constitutive models describing the hy-
perelastic behavior of foam-like or rubber-like materials [9–15]. These models
are available in many modern commercial finite element codes. The aim of
the present paper is to propose a finite element implementation of the Yeoh
model, in view of application to contact/impact problems involving large dis-
placements and large deformations.

2 Hyperelastic bodies and the Yeoh model

Rubber-like materials are usually taken to be hyperelastic and often undergo
large deformations. To describe the geometrical transformations in R3, the
deformation gradient tensor is introduced by

F = I +
∂u

∂X
with J = det(F) > 0 , (1)

where I is the identity tensor, X ∈ R3 the reference position vector and u ∈ R3

the displacement vector. The right Cauchy-Green strain tensor C and the
Green-Lagrange strain tensor E are defined as

C = FTF , E =
1

2
(C− I) . (2)

For a hyperelastic law, there exists an elastic potential function W (or strain
energy density function) which is a scalar function of one of the strain ten-
sors. Differentiation of W with respect to the Green strain gives the energy
conjugate second Piola-Kirchoff stress S:

S =
∂W

∂E
= 2

∂W

∂C
. (3)

The Yeoh model (called also the third-order reduced polynomial form) de-
scribes isotropic incompressible rubber-like materials [12]. The strain energy

2



TPIRCSUNAM DETPECCA

ARTICLE IN PRESS
potential is given by

W (I1) =
3∑

i=1

Ci0(I1 − 3)i. (4)

One particularity of this model is that it depends only on the first strain
invariant I1 = tr(C). It applies to the characterization of elastic properties
of carbon-black filled rubber vulcanizates. It has been demonstrated to fit
various modes of deformation using the data obtained from a uniaxial tension
test only. This leads to reduced requirements on material testing.

For numerical purpose, it proves useful to separate the deformation in volu-
metric and isochoric parts by a multiplicative split of a deformation gradient
as

F = FisoFvol, with Fvol = J1/3I, Fiso = J−1/3F . (5)

This decomposition is such that det(Fiso) = 1. It is easy to see that F and
Fiso have the same eigenvectors. The isochoric part of the right Cauchy-Green
strain tensor C can be then defined as

Ciso = J−2/3C . (6)

The first strain invariant of Ciso is then defined by I1 = J−2/3I1 which replaces
I1 in W (I1). In order to enforce the incompressibility constraint, another term
is also added so as to obtain finally the following strain energy function:

W (I1, J) =
3∑

i=1

Ci0(I1 − 3)i +
3∑

k=1

1

dk
(J − 1)2k , (7)

where Ci0 and dk are material constants. By expressing the strain energy
density in terms of the invariants of the right Cauchy-Green strain tensor,
Eq.(3) becomes

S = 2

(
3∑

i=1

iCi0(I1 − 3)i−1

)

J−
2
3

[

I−
I1

3
C−1

]

+

(
3∑

k=1

2k

dk
(J − 1)2k−1

)

J C−1 . (8)

The Cauchy stress (or true stress) tensor σσσ is calculated from the second
Piola-Kirchoff stress tensor S:

σσσ =
1

J
FSFT . (9)
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To construct the tangent stiffness matrix for the analysis of nonlinear struc-
tures by the finite element method, one has to determine the stress-strain
tangent operator D, which is a fourth-order tensor resulting from the deriva-
tion of S with respect to E in Eq.(8):

D= 4J−
4
3α

[

I−
I1

3
C−1

]

⊗
[

I−
I1

3
C−1

]

−
4

3
J−

2
3β

[

C−1 ⊗ I + I⊗C−1 −
I1

3
C−1 ⊗C−1 − I1 C−1⊗C−1

]

+ γ J2 C−1 ⊗C−1 + δ J
[
C−1 ⊗C−1 − 2C−1⊗C−1

]
. (10)

where

α=
3∑

i=2

i(i− 1) Ci0(I1 − 3)i−2, β =
3∑

i=1

i Ci0(I1 − 3)i−1,

γ=
3∑

k=1

2k(2k − 1)

dk
(J − 1)2k−2, δ =

3∑

k=1

2k

dk
(J − 1)2k−1 .

The coordinate-free symbols ⊗ and ⊗ used above are related to the corres-
ponding index symbols in the following way:

(A⊗B)ijkl = AijBkl, (A⊗B)ijkl =
1

2
(AikBjl + AilBjk) . (11)

3 Finite element formulation

3.1 Equations of motion

In the case of dynamic multibody contact problems with large deformations
of hyperelastic solids, the nonlinear relationship between strains and displace-
ments cannot be ignored. The total Lagrangian formulation is adopted in this
work to describe nonlinear behavior. It is well known that the strain tensor E
and the stress tensor S are both symmetric. Thus, we note hereafter E and S
in vector form as

E =
〈

E11 E22 E33 2E12 2E13 2E23

〉T

,

S =
〈

S11 S22 S33 S12 S13 S23

〉T

. (12)
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In the context of the finite element method and with Eq.(1) and Eq.(2), the
Green-Lagrange strain can be formally written with linear and nonlinear con-
tributions in terms of nodal displacements [14]:

E =
(

BL +
1

2
BNL(u)

)

u , (13)

where BL is the matrix which relates the linear part of the strain term to
the nodal displacements, and BNL(u), the matrix which relates the nonlinear
strain term to the nodal displacements. From Eq.(13), the incremental form
of the strain-displacement relationship is

δE =
(
BL + BNL(u)

)
δu . (14)

Without going into detail, nonlinear dynamic contact problems can be gover-
ned by the following equations of motion:

Mü + Au̇ + Fint − Fext −R = 0 . (15)

where Fext is the vector of external loads, R the contact reaction vector, M
the mass matrix, A the damping matrix, u̇ the velocity vector and ü the
acceleration vector. The vector of internal forces is defined by

Fint =
∫

V0

(
BL + BNL(u)

)T
S dV , (16)

where V0 is the domain of the initial configuration.

Equation (15) can be transformed to

M ü = F + R, F = Fext − Fint −Au̇ , (17)

to be solved with the initial conditions at t = 0,

u̇ = u̇0 and u = u0 . (18)

Taking the derivative of Fint with respect to the nodal displacements u yields
the tangent stiffness matrix:

K =
∂Fint

∂u
= Ke + Kσ + Ku , (19)

where Ke, Kσ and Ku stand respectively for the elastic stiffness matrix, the
geometric stiffness (or initial stress stiffness) matrix and the initial displace-
ment stiffness matrix:

Ke =
∫

V0

BT
LDBL dV , (20)

Kσ =
∫

V0

∂BT
NL

∂u
S dV , (21)
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Ku =
∫

V0

(
BT
LDBNL + BT

NLDBL + BT
NLDBNL

)
dV . (22)

where D denotes the usual material tangent matrix, deduced from the stress-
strain tangent operator D (Eq.(10)) due to its major and minor symmetry.

3.2 First order time integration

Equation (17) has to be integrated between consecutive time configurations
at time t and t + ∆t. Usually a Newmark scheme based on a second order
approximation is used. However, in impact problems, this scheme may lead to
no physical energy oscillation and no stable solution as shown in the second
numerical example of this paper. These phenomena are also discussed in [2,16].
At the moment of a sudden change of contact conditions (impact, release
of contact), the velocity and acceleration are not continuous in time, and
excessive regularity of constraints may lead to errors. For this reason, Jean [6]
proposed a first order time scheme which is used in this work. This scheme is
based on the following approximations:

∫ t+∆t

t
M du̇ = M

(
u̇t+∆t − u̇t

)
, (23)

∫ t+∆t

t
F dt = ∆t

(
(1− ξ) Ft + ξ Ft+∆t

)
, (24)

∫ t+∆t

t
R dt = ∆tRt+∆t , (25)

ut+∆t − ut = ∆t
(
(1− θ) u̇t + θ u̇t+∆t

)
, (26)

with the parameters 0 ≤ ξ, θ ≤ 1. The transient integration parameter θ
defaults to 0.5 (Crank-Nicholson method). If θ = 1, the method is referred to
as the backward Euler method. For all θ > 0, the system equations that follow
are said to be implicit. In addition, for the more limiting case of θ ≥ 0.5, the
solution of these equations is said to be unconditionally stable.

In the iterative solution procedure, all the values at time t + ∆t are replaced
by the values of the current iteration i + 1; for example, Ft+∆t = Fi+1. A
standard approximation of Fi+1 is

Fi+1 = Fi
int +

∂F

∂u
(ui+1 − ui) +

∂F

∂u̇
(u̇i+1 − u̇i)

= Fi
int −Ki ∆u−Ai ∆u̇ . (27)
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Finally, we obtain the recursive form of Eq.(17) in terms of displacements:

K̄i ∆u = F̄i + F̄i
acc + Ri+1 ,

ui+1 = ui + ∆u ,
(28)

where the so-called effective terms are given by

K̄i = ξKi +
ξ

θ∆t
Ai +

1

θ∆t2
Mi , (29)

F̄i
acc = −

1

θ∆t2
Mi

{
ui − ut −∆t u̇t

}
, (30)

F̄i = (1− ξ)
(
Ft
int + Ft

ext

)
+ ξ

(
Fi
int + Ft+∆t

ext

)
. (31)

To complete the time step, the velocity is updated according to

u̇t+∆t =
(

1−
1

θ

)

u̇t +
1

θ∆t
(ut+∆t − ut) . (32)

Equation (28) is strongly non-linear, because of large rotations and large defor-
mations involved. Besides, in multibody contact/impact problems, unilateral
contact and friction, characterized by inequalities, are non-smooth phenom-
ena. To solve this equation instead of considering all nonlinearities at the
same time, a strategy was proposed in [17] which consists in separating the
nonlinearities so as to overcome the complexity of calculation and to improve
the numerical stability. As ∆u and R are both unknown, Eq.(28) cannot
be directly solved. First, the vector R is determined using the bi-potential
method in a reduced system, involving only contact nodes. The reader can
refer to [3,4,17] for more details on the bi-potential method. Then, the vector
∆u is computed over the whole structure, using contact reactions as exter-
nal loadings. It is important to note that, as opposed to the penalty method
or Lagrange multiplier method, the bi-potential method neither changes the
global stiffness matrix nor increases the number of degrees of freedom. This
interesting feature makes it easy to implement contact and friction problems
in existing general-purpose finite element codes. In addition, the solution pro-
cedure is more stable because of the separation of nonlinearities and improved
numerical algorithms for calculation of contact reactions.

4 Numerical results

The algorithm presented above (named Bi-First) has been implemented in
the finite element code FER/Impact [18]. To illustrate the results of the con-
tact/impact simulation using the Bi-First algorithm, we consider here two
examples.
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4.1 Two-dimensional static contact

The first example studied concerns the indentation of a rigid circular cylinder
into an hyperelastic body relying on a rigid foundation. The radius of cylin-
der is 50 mm. The dimension of the deformable body is 280 × 80 mm. The
Yeoh model is considered and the material constants are: C10 = 0.235 MPa,
C20 = −0.007 MPa, C30 = 0.0008 MPa, d1 = d2 = d3 = 0.1. These values
correspond to a silicon material. The finite element discretization includes
445 four-node isoparametric plane strain elements and 506 nodes. Thirty load
steps are performed for this problem and a vertical displacement of 1 mm
is applied to the cylinder each step. Two coefficients of Coulomb friction are
used: µ = 0.4 between the cylinder and the body, µ = 0.1 between the body
and the foundation. Figure 1 shows the initial mesh and two computed de-
formed configurations when the applied displacements are equal to 15 and 30
mm. Figure 2 shows the distribution of the von-Mises stress. When the friction
between the body and the foundation increases slightly (µ = 0.2), the stress
concentration is moved slightly towards to cylinder as shown in Figure 3. It
is worth noting that the stress concentration is located inside the body rather
than on the boundary. Moreover, under the contact loading of the cylinder,
the body is partially separated from the foundation. The contact zone between
the cylinder and body is refined which allows for a better representation of
contact conditions (Figure 4). Figure 5 gives the evolution of applied load with
respect to the controlled displacement of the cylinder. The influence of friction
effects is obvious, only after 10 load steps.

Fig. 1. Initial mesh and deformed outlines
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Fig. 2. Distribution of von-Mises stress (µ = 0.1)

Fig. 3. Distribution of von-Mises stress (µ = 0.2)

Fig. 4. Refined mesh at contact region
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As a comparison, we also use the general purpose finite element program AN-
SYS for analysis of the same problem. Figure 6 shows the vertical displacement
uy of contact nodes between the body and the foundation corresponding to the
last load step. It demonstrates that our approach allows to satisfy accurately
the contact impenetrability condition, but it is not the case with ANSYS. Fi-
gure 7 depicts the load-displacement curves. The difference can be explained
by the penetration between the contact surfaces in the ANSYS solution.
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4.2 Three-dimensional dynamic contact

The problem consists of two three-dimensional hyperelastic blocks (Figure 8)
one impacting the other with relative tangential motion.

Fig. 8. Initial configuration and mesh

Normalized units are used in this example. The base of the larger block is fixed,
and the smaller block has an initial rigid-body velocity of {0.0, 2.0,−1.0} that
initiates a glancing impact. The larger block initially occupies the cubic space
defined by diagonal corner points {0, 0, 0} and {2.0, 2.0, 1.0} and the smaller
block is similarly defined by points {0.5, 0.0, 1.05} and {1.5, 1.0, 2.05}. The
density is 0.01. The Yeoh model is considered and the parameters of the model
are [19]: C10 = 0.3794, C20 = 0.0232, C30 = −0.0003, d1 = d2 = d3 = 0.01.
The total simulation time is 0.5 scaled time unit and the numerical parameters
are: ∆t = 0.005, ξ = θ = 0.5. To investigate the frictional effects on the
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energy dissipation, different coefficients of Coulomb friction are used: µ = 0.0
(frictionless), 0.4, 0.8.

Figures 9 and 10 show the deformed shapes at time t = 0.07 and t = 0.2 with
the friction coefficient µ = 0.4. The isocontours represent the distribution of
the von-Mises stress inside the blocks (the maximum value is 0.3821 unit of
stress). Similarly, Figures 11 and 12 show the case with µ = 0.8. The maximum
value of the von-Mises stress is 0.9823 unit of stress. These plots highlight the
impact of the friction coefficient on the stress level and relative slips. The case
with µ = 0.4 corresponds a sliding contact status while the case with µ = 0.8
corresponds almost a sticking contact status.

Fig. 9. Deformed shape and von-Mises
stress (µ = 0.4, t = 0.07)

Fig. 10. Deformed shape and von-Mises
stress (µ = 0.4, t = 0.2)

Fig. 11. Deformed shape and von-Mises
stress (µ = 0.8, t = 0.07)

Fig. 12. Deformed shape and von-Mises
stress (µ = 0.8, t = 0.2)

Figures 13-15 show the plots of the kinetic energy Ek, the elastic strain energy
Ee and the total energy Et (Et = Ek + Ee) versus time and friction coeffi-
cients. We observe that the total energy is quite well conserved in the case of
frictionless contact (Figure 15). However, in the case of frictional contact, the
total energy decreases. So the total energy is dissipated by frictional effects as
expected. It is worth mentioning that the dissipated energy is quantitatively
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determined. This result makes it possible to identify numerically the damping
and energy restitution coefficients in dynamics problems.

It is also interesting to examine another question: is the dissipated energy
proportional to the friction coefficient? The answer is negative according to
numerical results. The proof is illustrated in Figure 15 where we observe that
the dissipated energy is less for µ = 0.8 than for µ = 0.4. In fact, when
the friction coefficient increases, the friction forces increase too. However, the
tangential slips decrease. We know that the dissipated energy depends not only
on the friction forces but also on the tangential slips on the contact surface.
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In order to study the sensitivity of solution with respect to the integration
parameter θ, we consider the case of µ = 0.0. Figure 16 shows the evolution
of the total energy versus time from which we can see that augmentation of θ
leads to more dissipated energy. This dissipation is not physical but numerical.
It is obvious that the value of θ = 0.5 allows for a better conservation of energy.

 0.0225

 0.023

 0.0235

 0.024

 0.0245

 0.025

 0.0255

 0  0.1  0.2  0.3  0.4  0.5

T
ot

al
 e

ne
rg

y

Time

θ =0.5
θ =0.6
θ =0.8
θ =1.0

Fig. 16. Influence of the integration parameter θ

For the purpose of comparison, we consider the case of µ = 0.4 and we apply
two other time integration methods to solve the equation of motion (Eq.17):
the Newmark method and the HHT method [5]. The Newmark integration
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parameters are chosen as α = 0.25 and β = 0.5. These values correspond to
the trapezoidal rule which is commonly used in elasto-dynamics applications.
In the HHT time integration method, a numerical damping is introduced by
means of the amplitude decay factor (γ). Chung and Hulbert has shown some
interesting property of HHT for the numerical damping [20]. The value γ = 0.1
is used in this example.

Figure 17 shows the evolution of the total energy versus time. It is observed
that both Newmark and HHT methods are much less stable than the present
first order time integration method (with θ = 0.5). The HHT method provides
similar results as the Newmark method, but with more dissipated energy due
to the numerical damping. The performance of the present approach in terms
of CPU time, as compared to the Newmark and HHT methods, is reported in
Table 1, which shows the efficiency of the proposed method. It is noted that
these analyses were performed on a PC (Intel Core 2 Duo, 3 GHz).

Table 1
Comparison of CPU time (sec.)

Newmark HHT Bi-First
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Fig. 17. Total energy with different methods

5 Conclusion

In this paper, we have proposed a finite element implementation of the Yeoh
model and a numerical application to the case of large deformation con-
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tact/impact with Coulomb friction between rigid and hyperelastic bodies.
From numerical experiments, we have found that:

• The stress concentration is observed in the static contact problem.
• The total energy is well conserved for frictionless impact problem.
• The algorithm allows to determine quantitatively the physical energy dissi-

pation by friction.
• The dissipated energy is not a monotonic function of the friction coefficient.
• The proposed Bi-First algorithm is more efficient and more stable than the

Newmark and HHT algorithms.
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