
HAL Id: hal-00565300
https://hal.science/hal-00565300

Submitted on 11 Feb 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hardware code generation from dataflow programs
Nicolas Siret, Matthieu Wipliez, Jean Francois Nezan, Aimad Rhatay

To cite this version:
Nicolas Siret, Matthieu Wipliez, Jean Francois Nezan, Aimad Rhatay. Hardware code generation
from dataflow programs. Design and Architectures for Signal and Image Processing (DASIP), 2010
Conference on, 2010, United Kingdom. pp.113 -120, �10.1109/DASIP.2010.5706254�. �hal-00565300�

https://hal.science/hal-00565300
https://hal.archives-ouvertes.fr

HARDWARE CODE GENERATION FROM DATAFLOW PROGRAMS

Nicolas Siret1, Matthieu Wipliez2, Jean-François Nezan2, Aimad Rhatay1

1 Lead Tech Design, F-35700 Rennes, France
2 IETR, INSA Rennes, F-35043, Rennes, France

ABSTRACT

The elaboration of new systems on embedded targets is
becoming more and more complex. In particular, multimedia
devices are now implemented using mixed hardware and soft-
ware architecture, which improve the computational power
but also increase the design complexity and the time to mar-
ket. New design flows have been developed to help designers
in the development of complex architecture. These design
flows are often based on the use of languages with a higher
level of abstraction. RVC-CAL is a dataflow programming
language which provides the good features in this context. An
RVC-CAL dataflow program can be compiled to various tar-
get software languages (e.g. C, Java, LLVM) with the Open
RVC-CAL Compiler (Orcc). In this paper, we will present
a new hardware code generator that generates a high-quality
portable VHDL code with hierarchical architecture from a
RVC-CAL dataflow program in a matter of seconds. The pa-
per explains the underlying principles of the hardware code
generator, and presents the results obtained from an Inverse
DCT described as an RVC-CAL dataflow program.

Index Terms— RVC-CAL, Code generation, Hardware
Synthesis, VHDL.

1. INTRODUCTION

New embedded systems, such as mobile phones, are currently
offering more and more complex interactive contents, e.g.
wireless telephony, multimedia applications, Internet surfing
and Global Positioning Systems. To cope with the demand
of new and complex contents, technological evolution must
enable the integration of innovative designs in new System
on Chip (SoC). These designs, which are usually made up
of hardware IPs, embedded processors and software IPs, im-
prove the computational power but increase the time needed
to market the products and the related Research and Develop-
ment cost.

New design flows have been developed to help designers
by offering them adequate methods and functional hardware
and software IPs. These design flows encourage the use of
languages with a higher level of abstraction and the genera-
tion of hardware and software codes [1, 2] from abstract de-

signs. Thus, companies such as Cadence1 or Synopsys2 pro-
vide their own design flows and code generators from Sys-
temC designs. However, these tools are expensive and com-
plex to use, especially when compared to mainstream hard-
ware synthesizers.

Dataflow programming is an innovative method which en-
ables new and complex architecture to be designed at a high
level of abstraction. This method facilitates programming be-
cause it allows usual low-level difficulties, such as cycle accu-
racy and embedded memory management, to be abstracted. A
dataflow-based design flow requires adequate tools: a simula-
tor, a debugger and a multi-target code generator. Our purpose
is to optimize the potential of the dataflow language RVC-
CAL, by providing these tools.

In this paper, we focus on the hardware code generation of
the multi-target code generator called Open RVC-CAL Com-
piler (Orcc). Orcc is an open source compiler that can gener-
ate code in various languages (e.g. VHDL, C, Java, LLVM)
using a dataflow-oriented Intermediate Representation with
simple semantics. This paper introduces the Orcc hardware
code generator and the method to generate a readable, inde-
pendent, target and an optimized VHDL code. The proposed
approach is comparable to an existing RVC-CAL code gener-
ator called CAL2HDL. Results are validated on a subset of a
MPEG-4 decoder case study, namely the IDCT provided by
the abstract RVC-CAL design.

In section II the background of the research is introduced;
section III presents the Orcc front-end and the intermediate
representation; sections IV and V introduce the hardware
back-end and the generated code; sections VI and VII outline
practical results and perspectives for future works.

2. BACKGROUND

The increasing complexity of co-design architecture is an im-
portant problem that requires the use of new design flows.
These flows encourage the use of hardware and software code
generators to cope with the difficulty of programming at vari-
ous levels of abstraction. This section presents both the usual
code generators and our approach.

1C-to-silicon compiler
2Synphony High Level Synthesis from Language and Model-based De-

sign

2.1. Related work

The main purpose of code generators is to allow designers
to program complex designs at a single level of abstraction
with one language, usually SystemC. SystemC is a set of
C++ classes and macros, generally described as a system-
level modeling language with features for hardware descrip-
tions. An event-driven simulation kernel provided with Sys-
temC enables designers to simulate sequential and concurrent
processes in a real-time environment. As a result, SystemC
designs can be simulated and validated at a high level of ab-
straction using proprietary tools and later convert them into
low level programs. The time required to market complex ar-
chitecture can also be reduced using other SystemC features,
e.g. architectural exploration, performance modeling, high-
level synthesis-verification, etc.

SystemC to Verilog (or VHDL) translation requires a
compliant SystemC model [3], a design file which defines the
hardware constraints and sometimes technological libraries
which define the hardware target. The SystemC to hardware
translator proceeds in two steps: (1) parsing of the input
model to an Intermediate Representation (IR) and (2) gener-
ating a hardware description from the IR. The parsing process
detects the instances, the Inputs/Outputs (I/Os) and the code,
and prints them in intermediate files. Various transformations
are performed during this process, e.g. blocking and non-
blocking assignments to signals, management of arrays, etc.
Once resolved, the intermediate code is directly printed into
Verilog using the design file and the technological libraries
(if available) to set hardware directives.

Today, results presented by code generators suppliers
show benefits in terms of time to design, RTL quality and en-
gineering effort. Despite these advantages, several difficulties
are still present. The major one is the considerable number of
possibilities offered by SystemC which requires the designers
to make multiple choices on specific elements (e.g. mapping,
technological target., etc.). As a result, highly skilled individ-
uals are necessary to precisely define the application, to make
decisions on the multiple choices offered, to program and to
validate the application in SystemC.

To avoid the difficulties encountered with SystemC, other
code generators have been developed. They generate hard-
ware or software code from common language (C), abstract
models (UML) or graphical programming models (Ptolemy).
However, they are always less developed, less efficient or
more complex to use.

2.2. Reconfigurable Video Coding

The Reconfigurable Video Coding (RVC) standard [4] aims
at providing a system-level model of specification for existing
and future MPEG standards. In this way, RVC improves the
flexibility and the re-usability of codec features and facilitates
the support of multiple codecs. RVC defines a reference lan-
guage for the development of RVC applications called RVC-

CAL, an actor-oriented dataflow language that enables the de-
scription of complex designs at a high level of abstraction.
Contrary to SystemC, it imposes several rules (dataflow pro-
graming) to designers which reduce the complexity of new
applications development.

RVC provides both a normative standard library of ac-
tors and a set of MPEG decoder descriptions expressed as
networks of actors. RVC-CAL is supported by a simula-
tor [5], an hardware code generator called CAL2HDL, and
a multi-target code generator called Open RVC-CAL Com-
piler (Orcc) [6]. As shown in the example presented Fig.
1, an RVC-CAL dataflow program is built according to the
Reconfigurable Video Coding (RVC) standard [7], in other
words, as an abstract block diagram in which blocks define
processing entities called actors or Functional Units (FUs),
and connections between FUs represent dataflow.

[01101…]

Bitstream

Parsing Movement

Bitstream
v

Movement Image

i

d

e

o

Fig. 1. Occurence of a MPEG-4 RVC decoder

An RVC-CAL actor communicates with other actors
through input and output ports connected to FIFOs. Actors
contain state variables, functions, procedures, and actions that
may be identified by a tag. Tags are hierarchical: two actions
tagged a.b and a.c respectively can be referred to the tag
a. The only entry points of an actor are its actions; functions
and procedures can only be called by an action. Additionally,
an actor may have a Finite State Machine (FSM) whose tran-
sitions are tags (which means there can be several candidate
actions per transition), as well as a set of priority inequalities
that establish a partial order between tags (meaning that each
priority inequality may concern sets of actions).

Figure 2 presents an actor named “Clip” that performs a
clipping operation, which is traditionally done in video de-
coders after an inverse Discrete Cosinus Transform to clip the
values of pixels at a given interval. The behavior expressed
in this actor is as follows. When a boolean token arrives on
the SIGNED port, the read signed action fires, reads the to-
ken and stores it in the sflag state variable, and initializes
a counter named ‘‘count’’. The sflag variable config-
ures the clip as signed if true and unsigned otherwise. At
this point only the limit action can fire, regardless of whether
there are tokens on the SIGNED port, because ‘‘count’’
is not negative. Each time this action fires, it reads a token on
I, decrements the counter, clips the value read to [−255, 255]
signed mode or to [0, 255] unsigned mode, and outputs the
clipped value on O. When count reaches −1, the cycle can
start again.

Previous research [8] on CAL2HDL have shown profits in

actor Clip ()
int(size=10) I, bool SIGNED ==> int(size=9) O :

int(size=7) count := -1;
bool sflag;

read_signed: action SIGNED:[s] ==>
guard count < 0
do

sflag := s;
count := 63;

end

limit: action I:[i] ==> O:[if i > 255 then 255
else if i < min then min else i end
end]

var
int min = if sflag then -255 else 0 end

do
count := count - 1;

end

priority
read_signed > limit;

end

end

Fig. 2. The Clip actor in RVC-CAL.

terms of performance and RTL quality. However, CAL2HDL
is not a satisfactory solution for various reasons. First of all, it
generates a design which is platform-dependent and can only
be used on Xilinx FPGAs. Then, the time to generate the Ver-
ilog design increases dramatically with the design complexity,
i.e. a few seconds for a simple design like an IDCT and more
than twenty minutes for a complete MPEG-4 Simple Profile
decoder. Moreover, the design hierarchy is lost during the
parsing operation, the final design is flattened and the gener-
ated Verilog is unreadable, which makes low-level debugging
nearly impossible. Finally, the code generator itself is com-
plex and difficult to update. To overcome these limitations,
our approach aims at offering a new and effective hardware
code generator by adding a new back-end to the Orcc Com-
piler.

2.3. Open RVC-CAL Compiler (Orcc)

Orcc is an open-source compiler written in Java and available
as a feature for the Eclipse environment. It can generate code
in various software target languages (e.g. C [9], Java, LLVM)
from RVC-CAL dataflow programs. As shown in Fig. 3, Orcc
compiles a dataflow program in two steps: (1) the front-end
transforms the source program into an Intermediate Repre-
sentation (IR), and (2) a back-end for a given language trans-
forms the IR into this language.

3. INTERMEDIATE REPRESENTATION OF
RVC-CAL ACTORS

In the context of co-design and heterogeneous computing
more generally, it is advisable to be able to compile RVC-

Abstract model (CAL and XDF)Abstract model (CAL and XDF)

ORCC frontend

OPEN RVC-CAL COMPILER

ORCC

templates

Actor and network

templates

templates

Testbench and script

templates

Flattened C design

VHDL design

Hierarchical

VHDL design

Abstract model (CAL and XDF)Abstract model (CAL and XDF)

ORCC frontend

ORCC backends

VHDL design

Hierarchical

VHDL design

Compilation and

simulation scripts

Fig. 3. Open RVC-CAL Compiler design flow

CAL actors into several more traditional languages, hardware
and software alike (C, Java, VHDL, etc.). Compiling actors
into any of these languages requires the code of actors to
undergo several transformations. Indeed, several high-level
functional constructs in RVC-CAL have no direct equiva-
lent in lower-level languages like C and VHDL. RVC-CAL
does not distinguish between assignments to local and state
variables, but Hardware Description Languages (HDLs) gen-
erally do. The language also has concepts that are orthogonal
to some Abstract models, e.g. Finite State Machines (FSMs)
must be expressed using specific constructs (such as gotos
or switchs) in most software languages, while FSMs are
first-class citizens of mainstream HDLs.

The number of target-specific transformations that must
be programmed to compile actors into different target lan-
guages can be minimized by using an Intermediate Represen-
tation (IR) of actors. This IR would express the same struc-
tural and semantic information as RVC-CAL using constructs
available in virtually any language so as to ease the translation
into other languages.

The Open RVC-CAL Compiler compiles a dataflow pro-
gram by first compiling the RVC-CAL actors to an IR, here-
inafter named “Orcc IR”, and then compiling the IR into a
given target language with target-specific transformations.
The Orcc IR keeps much of the structural information of
RVC-CAL, although not necessarily in the same way:

• State variables, functions, and procedures in the source
code are state variables and functions in the IR.

• Each RVC-CAL action is transformed into two func-
tions in the IR, one that contains the action’s schedule
test, and another that contains the body of the action.

• The partial order of actions expressed by priorities be-
comes a total order of actions in the IR (see [9] for more
details).

• The source FSM is translated into an FSM in the IR,

with the difference that the latter has expanded refer-
ences to actions.

The semantic information expressed by functions, proce-
dures, and actions is transformed using a lower-level language
with the following semantics:

• The high-level RVC-CAL functional expressions con-
taining function calls, conditionals or list generators are
translated into an equivalent lower-level IR expression.

• The assignment statement is differentiated into assign-
ments to local variables and load/store to memory op-
erations.

• Functional tests and list generators become imperative
statements.

Orcc contains a Java implementation of the IR along with
common transformations (copy propagation, dead variable re-
moval, etc.)

4. HARDWARE CODE GENERATION

This section presents our method to generate a complete hi-
erarchical hardware description from an RVC-CAL dataflow
program. Our code generator transforms the target-agnostic
IR of actors to an IR that respects a valid subset of VHDL
semantics, from which VHDL code is printed. Each network
is translated into a VHDL description. Finally, benchmark
scripts are generated for each actor and network. The method
described in this paper are implemented in the Orcc tool as
the VHDL back-end.

4.1. Transformation of the IR

The transformation first eliminates dead code and dead vari-
ables, if any. Then, it renames the variables, e.g.

• temp variable VHDL−−−→ instance process variable.

Finally, conditional actions, types of variables and CAL
expressions are transformed from the IR shape into a VHDL
shape, e.g.

• if (condition) VHDL−−−→ if (condition = ’1’) then

• bool variable VHDL−−−→ variable : std logic

• list (variable) VHDL−−−→ array(size(list)) of type(variable)

• variable = if (condition) VHDL−−−→ if(condition) then vari-
able = ’1’ else variable = ’0’ end if.

4.2. Printing Actors and Networks

Hardware code for actors and networks is generated from the
IR of actors and networks with templates. A template con-
tains chunks of text interleaved with code or references to
data. Using templates is more flexible compared with other
programming approaches such as println-based ones. Us-
ing templates enables the model-view separation. The syntax
of the generated code is thus independent from the model of
the code so that the structure, the syntax or the layout of the
generated code can be changed more easily. As presented in
Fig. 4, a template defines all the necessary VHDL instruc-
tions; it also contains the header (e.g. libraries) and the footer
(e.g. note) which are usually inserted in each VHDL program.
We use the StringTemplate template engine to print code us-
ing templates.

ACTOR TEMPLATE

ieee

work

Libraries definition

Signals and constant

Actor’s I/Os

Clock, reset

entity definition

FSM management

Scheduler process

Execution process

FSM management

Architecture definition

NETWORK TEMPLATES

ieee

Libraries definition

Signals

network’s I/Os

Clock, reset

entity definition

Signals assignment

Instances instantiation

FIFOs instantiation

Signals assignment

Architecture definition

Fig. 4. Architecture of the actor and networ templates

The actor template defines the libraries, the entities, the
signals, the architectures and the processes of the gener-
ated VHDL code. The libraries printed are the ieee library
(std logic and numeric std packages) in addition to
the work library (orcc package). The inputs and outputs
of the original actor can be retrieved in corresponding VHDL
entity but additional control signals are added to the VHDL
entity : send and acknowledgment for each actor’s input and
ready, write for each actor’s output. The VHDL architec-
ture is printed according to the core of the RVC-CAL action.
RVC-CAL constants are translated into constants in VHDL,
global variables into signals, local variables into variables
and lists into array of signals, or array of constants. The
process in the VHDL code contains an FSM if the original
actor contains a FSM.

Like the actor template, the network template holds all
the necessary instructions to print the networks. The libraries
printed are the ieee library and the work library. The net-

work entity is printed using the same network’s I/Os and two
additional inputs (clock and reset). The VHDL architecture
generated from a network instantiates actors, sub-networks,
and FIFOs between all the instances, as shown in Fig. 5.

actorFIFO FIFO

FIFO

actorsactors

FIFOs

Sub-network
FIFO

FIFOs

actor FIFOFIFO

Fig. 5. Schematic representation of a network printed with
Orcc-VHDL

4.3. Printing Testbenches and Scripts

In addition to hardware code, the code generator generates
one test bench file for each actor and network, as well as a
simulation script. This script can be executed by a simulator
like Modelsim in order to launch a simulation of the whole
network with a single click. The test bench template is written
in the same way as the actor and the network template. As
shown in Algorithm 1, it also contains the actor or the network
instantiation, but also the code to test the VHDL entity.

Algorithm 1 Structure of the testbench template
1: libraries definition −− both ieee and work
2:
3: entity definition −− entity is empty
4:
5: architecture
6: if (instance is network) then
7: print Network Instantiation()
8: print NetworkInput Testbench()
9: print NetworkOutput Testbench()

10: else
11: print Actor Instantiation()
12: print ActorInput Testbench()
13: print ActorOutput Testbench()
14: end if
15: end architecture

The testbench template is built so as to generate a code
which requires only stimulus text files to be used, which
makes generated test benches easy to use with any VHDL
simulator. As a matter of fact, we have been using the test
benches to validate the back-end by comparing the inputs
and outputs of the VHDL code and the reference inputs and
outputs of the C code generated with orcc from the original
RVC-CAL program.

The generated scripts are also printed using templates.
When processing a design, VHDL compilers and synthesiz-
ers load and instantiate components in a depth-first order. As
a result, our script must compile actors and networks in the
same order: actors first and then networks that contain only
actors, followed by networks that contain these networks, and
so on.

5. STRUCTURE OF THE GENERATED CODE

The quality of the generated code is another major objec-
tive of our approach. To this end, the code must be generic,
VHDL93 compliant and understandable in order to be used
and modified by designers. In this section, we present the
characteristics of the generated code.

5.1. Structure of the generated code from an actor

As presented in Fig. 6, the architecture of the VHDL gener-
ated instances is similar to the hand-coded one: the VHDL en-
tity contains the input and output ports; the RVC- CAL global
variables are transformed into VHDL signals; the VHDL ar-
chitecture contains the core of the process and the local vari-
ables are used only inside a process in order to avoid the use
of memory. The entity of an actor is defined by the I/Os of
the RVC- CAL model in addition to a clock and a reset port.
The architecture of an actor is always made up of two parts: a
combinatorial process and a sequential process.

ieee

work (orcc_package)

Libraries and packages

clock and reset

inputs and outputs

Entity

combinatorial process

-- Scheduler

Architecture

and reset

inputs and outputs

Entity

sequential process

-- Executer

VHDL ACTOR

Fig. 6. Architecture of a VHDL actor

The combinatorial process tests if it is possible to execute
an action (see section 3), e.g. if necessary data are present
in the input port of the actor. RVC-CAL inputs of an actor
constitutes the sensitivity list of the process so that the pro-
cess is activated only if those inputs are modified. The tested
signals are are associated a count value which defines the it-
eration number of an action. The sequential process contains
the core of an actor. In fact, each action of an RVC-CAL ac-
tor is printed in the process and the code operation is kept.
As shown in Algorithm 2, a single action is executed each cy-
cle; this is due to RVC-CAL global variables which are trans-
formed into VHDL signals so that they are updated on a clock
cycle.

Algorithm 2 Test which process can be executed
1: architecture
2: −− local variables
3:
4: process(sensitivity list)
5: all actions wait;
6: if (action 1 is executable) then
7: action 1 go
8: else
9: if (action 2 is executable) then

10: action 2 go
11: else
12: if (action 3 is executable) then
13: action 3 go
14: else
15: if (action n is executable) then
16: −− etc
17: end if
18: end if
19: end if
20: end if
21: end process
22: end architecture

Our method allows a high throughput of one data per cycle
using local variables to execute the compute operations, and
global variables to memorize necessary operators in the ac-
tion. In fact, the instantaneously update of local variables en-
ables us to manage more than one operation per cycle. Since
most of the operations are arithmetic operations, the local
variables are defined as integer with a size defined on the
RVC- CAL model (32 bits if no size is given). Special in-
structions needed to process algorithms are defined in a pack-
age called orcc package. Precisely, the package contains the
following functions:

• binary and, binary or and binary xor −→ Process a
logical and, or and xor operations respectively between
two operators.

• binary not −→ Processes a logical not operation on an
operator.

• div −→ Processes a division between two operators.

• get mod −→ Processes a modulo operation between two
operators.

• shift left and shift right −→ Process a binary shift left
and shift right operation respectively on an operator.

• concatenation −→ Processes a concatenation between
two operators.

5.2. Structure of the generated code from a network

The network instances are printed according to Fig. 5 pre-
sented in section 4. The code is made up of four parts: the def-
inition of usual libraries, the entity definition, the signal decla-
ration and the entity instantiations. The actors, sub-networks
and FIFOs instantiations are printed using the instance n : en-
tity library.instance shape. This allows reducing the code size
and testing the presence of all instances during the compila-
tion in addition to be compliant with the VHDL93 standard.

Once optimized, the actors can operate at high frequency,
i.e. more than 150MHz on a usual FPGA. However, perfor-
mance of a design is restrained by the inter-connection be-
tween actors. In other words, FIFOs limit the maximal oper-
ating frequency and the logical use. To ensure good perfor-
mance while reducing the logical use, the FIFOs are fitted to
requirements defined in the RVC-CAL model. Two kinds of
FIFOs are used in a VHDL network: a high performance FI-
FOs which use a single register and regular FIFOs which use
embedded memory.

Algorithm 3 Management of data transmission in FIFOs
1: if register is empty then
2: if (data send from an actor n) then
3: store the data from actor n
4: send an acknowledgment to actor n
5: send a ready to actor n +1
6: end if
7: else
8: if (data send from an actor n) then
9: if (data load from an actor n+ 1) then

10: store the data from actor n
11: send an acknowledgment to actor n
12: send a ready to actor n +1
13: else
14: send a ready to actor n +1
15: end if
16: end if
17: end if

Hhigh performance FIFOs use an arbiter to manage the
register and the actors. Thus, actors can process simultane-
ously without data loss because an action is executed when
it has the permission from the FIFO’s arbiter. As presented
in Algorithm 3, permission is sent by the arbiter if restricted
conditions are validated.

5.3. Structure of the generated code for the testbenchs

To facilitate the debug of a RVC-CAL model, a test bench is
generated for each instance (i.e. actors and networks). As
presented in Fig. 7, the testbench is built so it is as simple as
possible to use. It requires input files which contain the data
to be tested and automatically reports the errors between the
outputs of the instance tested and the reference files.

Actor or network

TESTBENCH

Output reference file

Stimulus file Input process:

Send data to instance

Output process:

Test data from instance

Actor or network instantiation

ESTBENCH

Report error

(if present)

process:

Send data to instance

Output process:

Test data from instance

Fig. 7. Automatical test of an instance using a stimulus file
and a reference file

The input and output processes are made up of FSM (i.e.
one FSM per input/output) which read the stimulus file corre-
sponding to the port of an actor and send/test the data. When
the data tested from the actor and the stimulus file are not
equal, an error is automatically printed in the console window
using the dedicated instructions: assert, report and severity.

6. RESULTS

Results are provided with a classical IDCT design made up
of five actors. The generated code has not been optimized in
any way, and the results presented are obtained using common
simulators and synthesizers.

6.1. Simulation and Functional Verification

The design was tested on a MPEG-4 media video (CIF reso-
lution) with the VHDL backend. Even if the MPEG-4 RVC-
CAL can be entirely generated, the simulations and synthesis
are restricted to the IDCT network. In fact, the IDCT is made
up of actors which use the majority of the RVC-CAL code
possibilities while remaining short. As introduced in Fig. 8,
the VHDL design keeps the same ratio between input and out-
put tokens (labeled throughput on the figure) as the RVC-CAL
model. In terms of latency, eleven cycles are required between
the first data received by the network and the first data sent.

Actor CAL

Scale

Combine

ShuffleFly

Shuffle

Final

Total

throughput
VHDL throughput

(per cycle)

1 1

1 1

0,5 0,5

0,5 0,5

1 1

0,25 0,25

Fig. 8. Ratio between input tokens fired and output tokens
produced (abstract throughput)

The classical arithmetic operations, the FSM and the
memory (the list in RVC-CAL) work as well as the FIFOs
which ensure that no data is lost in transmission. The halved
throughput of shuffleFly and shuffle is due to their FSM,
which first stores the input data and then sends the output.

An efficient and understandable VHDL/C design can be
generated in a few seconds from complex RVC-CAL models,
thus, the objectives of our approach are achieved. The simu-
lation results are good and similar to those obtained with the
existing hardware code generators. Contrary to CAL2HDL
(see, section II), the time taken to generate is only a few sec-
onds, regardless of the design complexity and the generated
code is always understandable regardless of an actor’s com-
plexity and the model’s hierarchy is kept.

6.2. Hardware Synthesis and Occupation

The IDCT model case study is an interesting way to evalu-
ate the interest of our approach. Indeed, it is a design made
up of different kinds of actors that use the majority of the in-
structions, e.g. arithmetic operations, lists that are converted
into memory type (RAM or ROM) and state machines that
are converted into VHDL FSM. Results presented on Fig. 10,
were obtained using Xilinx ISE on a Xilinx Virtex 4 platform
(ML402 evaluation platform) for it is a CAL2HDL compliant
platform.

0

100

200

300

400

500

600

Scale ShuffleFly Final IDCT

Maximum frequency (MHz)

ORCC

CAL2HDL

0

100

200

300

400

500

600

700

800

900

Scale ShuffleFly Final IDCT

Slices use

ORCC

CAL2HDL

Fig. 9. Design performances

Comparing the results highlights a profit in terms of slice
use for the actors and a profit in terms of frequency for the
design with the Orcc generator. The increase of the slice use
compared to CAL2HDL is due to the FIFO coding. In fact,
we chose to focus on the performance of the design, coding a
quick FIFO, despite the fact that it uses more slices. The FIFO
is hand-coded, which means it could be changed to be smaller
but slower if lower slice consumption is desired. The slice
use will also be reduced in future stages of development by
improving the management of complex hardware operations
e.g. memory management.

7. CONCLUSION AND FUTURE WORK

This paper has presented a method to generate a high-
performance, target independent VHDL code from a dataflow
program expressed using the RVC-CAL language. This en-
ables a design flow that uses Orcc-VHDL as the code genera-
tor. This design flow enhances the reuse of IPs, improves the
management of hardware/software interfaces and facilitates
the Research and Development of co-design architecture.
Moreover, the generated code is target-independent and op-
timized so as to offer good performance while reducing the
logical use.

Results show that the IDCT implemented in hardware is
functional and provides good results in terms of throughput
(i.e. until one data per cycle) and operating frequency (i.e.
more than 100MHz). In addition, the various specific in-
structions (e.g. list) and elements (implicit FIFOs) are im-
plemented through dedicated hardware structures (e.g. RAM,
ROM, registers) while the code architecture is adapted using
processes (both combinatorial and sequential), functions and
procedures. Compared to the state of art, the use of an inno-
vative intermediate representation allows the back-end to fit a
specific application or a specific target. Finally, as presented
in the paper, the hardware code is efficient, scalable and gen-
erated in few seconds whatever the design complexity.

Several optimizations are studied to improve the possi-
bilities offered by the Orcc-VHDL back-end. In the case of
co-design architecture, the IPs could be generated in hard-
ware or software directly with the correct interface. It could
be possible for the designers to develop and validate their en-
tire application in CAL and to directly generate the co-design
architecture. Another interesting area of future research in-
volves managing the frequency of each actor depending on
their throughput. The electrical consumption would be re-
duced adapting the frequency of various fields of actors (e.g.
a frequency of f MHz for the slowest and frequency of f/n for
the quickest with n = 2, 4, 8, etc). Finally, we are investigat-
ing the translation of higher-level RVC-CAL constructs such
as for-loops and multi-token reads and writes into optimized
low-level VHDL code.

References
[1] Wen Quan, “System-level co-design methodology

based on platform design flow for system-on-chip,” in
Computer-Aided Industrial Design and Conceptual De-
sign, CAIDCD, 2006.

[2] A. Kumar and P R. Panda, “Front-End Design Flows for
Systems on Chip : An Embedded Tutorial,” in Interna-
tional Conference on VLSI Design, VLSID, 2010.

[3] J. Castillo, P. Huerta, and J.I. Martnez, “An Open-Source
Tool for SystemC to Verilog Automatic Translation,” in
Latin American Applied Research, 2007.

[4] M. Mattavelli, I. Amer, and M. Raulet, “The Reconfig-
urable Video Coding Standard [Standards in a Nutshell],”
Signal Processing Magazine, vol. 27, no. 3, pp. 159 –
167, 2010.

[5] Shuvra S. Bhattacharyya, Gordon Brebner, Jörn W. Jan-
neck, Johan Eker, Carl von Platen, Marco Mattavelli, and
Mickaël Raulet, “OpenDF: a dataflow toolset for recon-
figurable hardware and multicore systems,” SIGARCH
Comput. Archit. News, vol. 36, no. 5, pp. 29–35, 2008.

[6] J.W. Janneck, M.Mattavelli, M.Raulet, and M.Wipliez,
“Reconfigurable video coding: a stream programming
approach to the specification of new video coding stan-
dards,” in Proceedings of the first annual ACM SIGMM
conference on Multimedia systems, MMSys, 2010.

[7] S. S. Bhattacharyya, J. Eker, J. W. Janneck, C. Lucarz,
M. Mattavelli, and M. Raulet, “Overview of the MPEG
Reconfigurable Video Coding Framework,” Springer
journal of Signal Processing Systems. Special Issue on
Reconfigurable Video Coding, 2009.

[8] J.W. Janneck, I.D. Miller, D.B. Parlour, G. Roquier,
M. Wipliez, and M. Raulet, “Synthesizing hardware
from dataflow programs: An MPEG-4 simple profile de-
coder case study,” Springer journal of Signal Processing
Systems. Special Issue on Reconfigurable Video Coding,
2009.

[9] Matthieu Wipliez, Ghislain Roquier, and Jean-Franois
Nezan, “ Software Code Generation for the RVC-CAL
Language ,” Springer journal of Signal Processing Sys-
tems, 2009.

