
HAL Id: hal-00565290
https://hal.science/hal-00565290v1

Submitted on 11 Feb 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Classification and transformation of dynamic dataflow
programs

Matthieu Wipliez, Mickael Raulet

To cite this version:
Matthieu Wipliez, Mickael Raulet. Classification and transformation of dynamic dataflow programs.
Design and Architectures for Signal and Image Processing (DASIP), 2010 Conference on, 2010, United
Kingdom. pp.303 -310, �10.1109/DASIP.2010.5706280�. �hal-00565290�

https://hal.science/hal-00565290v1
https://hal.archives-ouvertes.fr

CLASSIFICATION AND TRANSFORMATION OF DYNAMIC DATAFLOW PROGRAMS

Matthieu Wipliez, Mickaël Raulet

IETR/INSA
UMR CNRS 6164

F-35043 Rennes, France
Email: mwipliez@insa-rennes.fr
Email: mraulet@insa-rennes.fr

ABSTRACT
Dataflow programming has been used to describe signal pro-
cessing applications for many years, traditionally with cyclo-
static dataflow (CSDF) or synchronous dataflow (SDF) mod-
els that restrict expressive power in favor of compile-time
analysis and predictability. Dynamic dataflow is not restricted
with respect to expressive power, but it does require runtime
scheduling in the general case. Fortunately, most signal pro-
cessing applications are far from being entirely dynamic, and
parts with static behavior need not be dynamically scheduled.
This paper presents a method to automatically analyze and
classify blocks of a dynamic dataflow program within more
restrictive dataflow models when possible, and to transform
the blocks classified as static to improve execution speed by
reducing the number of FIFO accesses. We used this method
on actors of two dynamic dataflow descriptions of an MPEG-
4 part 2 decoder, and study how classification and transfor-
mation increases decoding speed.

Index Terms— Dataflow Programming, Classification,
RVC-CAL, Abstract Interpretation

1. INTRODUCTION

The arrival of multi-core in the desktop computing market has
renewed the interest in multi-processor programming. There
are many different techniques to write multi-processing pro-
grams, depending on memory architecture (shared or dis-
tributed), architecture (uniprocessor or multiprocessor), num-
ber of cores (single core, multi-core, many-core), etc. Most of
these techniques constrain program design in a way that make
it difficult to use a different technique, should the program
be ported to a different architecture than initially planned.
Dataflow programming is a portable platform-agnostic alter-
native that allows an algorithm to be described so that paral-
lelism is made explicit.

A dataflow description consists in a directed graph where
vertices (or actors) process data and edges carry data, with
the requirement that vertices cannot share data. Actors can
only communicate with other actors through ports connected

to edges. The semantics of a dataflow program are defined
by a Model of Computation (MoC) that dictates conditions
for existence of a valid schedule, bounded memory consump-
tion, proof of termination, and other properties. MoCs go
from Synchronous Dataflow (SDF) with total compile-time
predictability with respect to scheduling, memory consump-
tion, termination, to dynamic dataflow where those properties
are not predictable in the general case, with increasing expres-
siveness, for instance see [1–6].

The Reconfigurable Video Coding (RVC) [7] standard de-
fines existing MPEG video standards as dynamic dataflow
programs in which actors are written in a language called
RVC-CAL. These dataflow programs can be automatically
translated and ported to a wide range of platforms and lan-
guages, from hardware to multi-core software [7]. Contrary
to SDF and a few other MoCs, RVC-CAL has a much greater
expressive power, but this also means that runtime schedul-
ing is mandatory in the general case, which severely impacts
execution speed.

Fortunately, most signal processing applications are far
from being entirely dynamic, and parts with static behavior
need not be dynamically scheduled. The problem is to detect
actors that behave statically or quasi-statically, since dynamic
dataflow has an expressive power equivalent to a Turing ma-
chine [4], which means it is not possible to prove the termi-
nation of a dynamic dataflow program in general. This paper
makes the following contributions:

• we present a method to automatically classify an ac-
tor as static, cyclo-static, or quasi-static (section 3).
As shown on Fig. 1, classification is the first step
towards high-performance implementation of dataflow
programs. It is mandatory to allow other optimizations
to take place.

• we describe an algorithm to transform actors classified
as “not dynamic” to reduce scheduling overhead when
executing those actors (section 4). The transformation
we describe may be used to transform actors into other
actors that will not only execute faster, but will also fa-

cilitate the application of later optimizations. Indeed,
actor merging consists of creating composite actors
from several actors, and our transformation changes
actors so that they can be merged more easily. The
last optimization that can be used to achieve the max-
imum throughput for a dataflow application is multi-
processor mapping and scheduling techniques for stati-
cally schedulable subsets (for an example see [8–10]).

classification

transformation

merge

mapping

actors

static cyclo-static

quasi-static dynamic

Fig. 1. Towards an efficient implementation of dynamic
dataflow programs using classification and transformation.

2. BACKGROUND

2.1. Dataflow Programming with RVC-CAL

This section presents the model of the programs that we clas-
sify and transform. Formally, the dataflow programs we
are dealing with are Dataflow Process Networks (DPNs) [6].
DPNs are related to Kahn Process Networks (KPNs) [11] as
both models contain blocks (processes in a KPN, actors in
a DPN) that communicate with each other through unidirec-
tional, unlimited FIFO channels. Reading from a FIFO is
blocking (if a process or an actor attempts to read data from a
FIFO and no data is available, it must wait), whereas writing
to a FIFO is non-blocking, i.e. the write returns immediately.
Programs that respect one model or the other must be sched-
uled dynamically [6, 12]. Contrary to Kahn processes, actors
can test an input port for the absence or presence of data ; an
actor need not be suspended when it cannot read, which in
turn means that scheduling a DPN does not require context-
switching nor concurrent processes.

MPEG has recently defined a standard called Reconfig-
urable Video Coding (RVC) [7] to describe existing and fu-
ture video standards with dataflow programming. A dataflow
program consists of a hierarchical DPN where actors are de-
fined with the RVC-CAL language, a Domain-Specific Lan-
guage (DSL) for signal processing. An RVC-CAL actor may
have input and output ports connected to FIFOs, parameters,
state variables, functions and procedures, actions that may be
identified by a tag, a Finite State Machine (FSM) whose tran-

sitions reference tagged actions, and a set of priorities that
establish a partial order between action tags.

Contrary to most non-dataflow languages, dataflow pro-
grams do not admit a single entry point. A dataflow network
has one entry point per actor, which means the program may
start from any actor in the network. The only entry points
of an actor are its actions; functions and procedures can only
be called by an action. An action computes data by reading
tokens from input ports and writing tokens to output ports.
The patterns of tokens read and written by a single action are
called input pattern and output pattern respectively. Addition-
ally an action has guards that must be true for an action to be
executed. Apart from these specific features, the body of an
action is like a procedure in most imperative programming
languages, with local variables and imperative statements.

An actor is executed (or fired) by selecting a fireable ac-
tion and firing it. An action is fireable iff: (1) the current FSM
state allows the action to fire (or there is no FSM and this
condition is always true), (2) there are enough tokens for the
action to fire, (3) the guards of the action evaluate to true.

actor Clip ()
int(size=10) I, bool SIGNED ==> int(size=9) O :

int(size=7) count := -1;
bool sflag;

read_signed: action SIGNED:[s] ==>
guard count < 0
do
sflag := s;
count := 63;

end

limit: action I:[i] ==> O:[if i > 255 then 255
else if i < min then min else i end
end]

var
int min = if sflag then -255 else 0 end

do
count := count - 1;

end

priority
read_signed > limit;

end

end

Fig. 2. The Clip actor in RVC-CAL.

Figure 2 shows an actor named “Clip” that performs a
clipping operation. This operation is traditionally done in
video decoders after an inverse Discrete Cosinus Transform
to clip the values of pixels to a given interval. The actor
has the following behavior. When a boolean token arrives
on the SIGNED port, the read signed action fires, reads the
token and stores it in the sflag state variable, and initial-
izes a counter named count. The sflag variable config-
ures the clip as signed if true and unsigned otherwise. At
this point only the limit action can fire, regardless of whether
there are tokens on the SIGNED port, because count is non-

negative. Each time this action fires, it reads a token on I,
decrements the counter, clips the value read to [−255, 255] in
signed mode or to [0, 255] in unsigned mode, and outputs the
clipped value on O. When count reaches −1, the cycle can
start again.

2.2. Classification of an RVC-CAL Actor: An Example

Figure 3 shows the behavior of the “Clip” actor expressed
with Cyclo-Static Dataflow (CSDF) [2]. Within this model,
the number of tokens produced and consumed by an actor
changes periodically according to a production/consumption
sequence. For instance, the consumption sequence on IN has
a zero followed by 64 ones: On its first invocation, the actor
will not consume any token on the port, and for the next 64
invocations, it will consume one token on the port each time.
The advantage of expressing an actor as CSDF is that it can
be statically scheduled because the number of tokens the actor
will consume and produce is known at compile-time.

SIGNED

Clip

IN [0, 1, 1, ..., 1]

[1, 0, 0, ..., 0]

OUT
[0, 1, 1, ..., 1]

64

Fig. 3. Behavior of the “Clip” actor.

The problem is then how to classify actors into Mod-
els of Computation (MoCs) more constrained than dynamic
dataflow so that as many actors as possible can be statically
or quasi-statically scheduled.

2.3. A Taxonomy of Dataflow Models of Computation

This section presents a taxonomy of Models of Computation
(MoCs) (Fig. 4) that can model the different types of behavior
that actors can exhibit. The actors in the Video Tool Library
of the RVC standard can behave statically, cyclo-statically,
quasi-statically, or dynamically. We present the MoCs in the
literature that are suitable to model these types of behaviors.

SDF

CSDF
PSDF
DPN

expressiveness analyzability

-

+ -

+

Fig. 4. Dataflow Models of Computation.

Dataflow MoCs are defined as subsets of a general model
called Dataflow Process Networks (DPNs). The taxonomy

shown on Fig. 4 reflects the fact that MoCs are progressively
restricted from DPN towards SDF with respect to expressive-
ness, but at the same time they become more amenable to
analysis. We first study the rules of DPN, and then present the
models that can be used to model static, cyclo-static, quasi-
static, and dynamic RVC-CAL actors.

Dataflow models respect the semantics of DPNs: A
dataflow model is a directed graph whose vertices are actors
and edges are unidirectional FIFO channels with unbounded
capacity, connected between ports of actors. Each FIFO chan-
nel carries a sequence of tokens. Executing a DPN boils down
to executing repeatedly the actors in the graph, possibly ad in-
finitum. An actor executes (or fires) when at least one of its
firing rules is satisfied. Each firing may consume and produce
tokens. An actor can have N firing rules, where each one rep-
resents an acceptable sequence of tokens. Additionally an ac-
tor has a firing function that takes a sequence of tokens and
produce a sequence of tokens.

Synchronous Dataflow (SDF) [1] is the least expressive
DPN model, but it is also the model that can be analyzed
more easily. Schedulability and memory consumption of SDF
graphs can be determined at compile-time, and algorithms
exist that can map and schedule SDF graphs onto multi-
processors in linear time with respect to the number of ver-
tices and processors [8]. Any two firing rules of an SDF actor
must consume the same amount of tokens, and all firings must
produce the same amount of tokens on the output ports. This
definition is actually included in Lee’s denotational semantics
for SDF [6], which states that SDF actors have a single firing
rule. Our definition simply allows SDF actors to have several
firing rules as long as they have the same production/con-
sumption rate, which in practice makes it easier to describe
SDF actors that have data-dependent computations.

Cyclo-static Dataflow (CSDF) [2] extends SDF with the
notion of state while retaining the same compile-time proper-
ties concerning scheduling and memory consumption. State
can be represented as an additional argument to the firing
rules and firing function, in other words it is modeled as a
self-loop. Contrary to the RVC-CAL version of “Clip”, the
state of the CSDF version does not contain the sflag vari-
able because it is not taken into account in firing rules, instead
it only consists of the value of the count variable that holds
the number of values processed so far.

Synchronous and cyclo-static dataflow allow signal pro-
cessing algorithms to be modeled as graphs with fixed pro-
duction/consumption rates. On the other hand, so-called
“quasi-static” graphs can be used to describe data-dependent
token production and consumption. Quasi-static dataflow dif-
fers from dynamic dataflow in that there are techniques that
statically schedule as many operations as possible so that only
data-dependent operations are scheduled at runtime [3, 4, 9].
We chose to use the PSDF [3] model as a target for our clas-
sification because it can be used to model static, cyclo-static
and quasi-static behavior as a dataflow graph.

RVC-CAL places no restrictions whatsoever about the fir-
ing rules nor firing function of an actor. An RVC-CAL actor
can thus have a behavior that is data-independent and state-
independent, cyclo-static state-dependent, quasi-static data-
dependent, or data-dependent and state-dependent (dynamic).
The RVC-CAL language extends the DPN MoC by adding a
notion of guard to firing rules. Formally the guards of a firing
rule are boolean predicates that may depend on the input pat-
terns, the actor state, or both, and must be true for a firing
rule to be satisfied.

3. AUTOMATIC CLASSIFICATION OF DYNAMIC
DATAFLOW ACTORS

This section presents the first contribution of this paper: A
method to automatically classify dynamic dataflow actors into
more restricted dataflow Models of Computations. Classifi-
cation is a prerequisite for the transformations presented in
section 4 and actor merging. We first present how the clas-
sification method can detect actors that it cannot classify and
discard them.

3.1. Detection of Unclassifiable Actors

DPN places no restrictions on the description of actors, and as
such it is possible to describe a time-dependent actor in that
its behavior depends on the time at which tokens are available.
This happens in RVC-CAL when a given action reads tokens
from input ports not read by a higher-priority action, and these
actions have guards that are not mutually exclusive.

The “Clip” actor presented section 2 has a time-dependent
behavior. If you read the description carefully, you will no-
tice that the limit action can fire as long as there tokens on
IN and not on SIGNED, therefore potentially clipping pixels
before clipping mode is set by read signed. In this particu-
lar case, this behavior is a flaw in the implementation of the
actor itself, although it may never cause any problems if the
actors connected to it always send a token on the SIGNED
port first. In other cases, time-dependent behavior can be use-
ful as a low-level optimization by allowing an actor to test
for the absence of data and still do something useful when
that is the case. Time-dependent behavior can be removed
in some cases simply by making guards mutually-exclusive,
which in our example translates to rewriting the limit action
as presented in Fig. 5.

Classifying a time-dependent actor may be intractable or
impossible depending on the kind of actor. This kind of ac-
tor cannot be classified as SDF by definition (because actions
of an SDF actor have the same token production/consump-
tion rate), but it could still be considered a valid cyclo-static
or quasi-static actor, in which case we would need to record
the sequences of tokens that lead to this cyclo-static or quasi-
static behavior. The intractability of classifying such an ac-
tor lies just there, since an automatic classification algorithm

limit: action I:[i] ==> O:[if i > 255 then 255
else if i < min then min else i end
end]

var
int min = if sflag then -255 else 0 end

guard count >= 0 // mutually exclusive with read_signed
do
count := count - 1;

end

Fig. 5. The limit action rewritten in a time-independent way.

would need to explore all the possible input patterns with no
criterion as to when to stop the enumeration of possible to-
kens.

Therefore our classification method must detect and dis-
card time-dependent actors to prevent enumerating the uni-
verse of possible token sequences. Detecting actions that read
input ports not read by higher-priority actions is trivial. How-
ever, such actions may not render the actor time-dependent if
their guards are exclusive, which must be mechanically ver-
ified. To this end we feed the guards to a constraint solving
system, which either gives the values of tokens and state vari-
ables that satisfy both guards (guards not mutually exclusive),
or else finds no solution (guards mutually exclusive).

Constraints are created from the guards of an action as
follows. The guards of an action are boolean expressions that
must be simultaneously true for the action to be fired, so we
translate each guard of any two actions to a constraint. Sup-
pose an action has a guard x > 0 and the other action has a
guard x 6= 1, then the constraint solver will find values of x
that satisfy the constraints, such as x = 2. If there is such a
solution, this means the guards are not mutually exclusive.

3.2. Abstract Interpretation of Actors

Classifying an actor within a MoC is based on checking that
a certain number of MoC-dependent rules hold true for any
execution of this actor. Some of these rules are verified solely
from the structural information of the actor, for instance the
rules for a static actor only depends on the input and output
patterns of actions. In more complicated cases, we need to be
able to obtain information from an actual execution. The actor
must be executed so that the information obtained is valid for
any execution of the actor, whatever its environment (the val-
ues of the tokens and the manner in which they are available).
As a consequence it is not possible to simply execute the actor
with a particular environment supplied by the programmer. To
circumvent this problem we use abstract interpretation [13].

Abstract interpretation consists in doing the computations
performed by a program in an abstract universe of objects
rather than on concrete objects. Our abstract interpretation
of an actor has the following properties:

• The set of values that can be assigned to a variable is

V alues = Z ∪ {true,false} ∪ {⊥}

The value ⊥ is used for variables whose value is un-
known, e.g. for uninitialized variables.

• The environment is defined as an association of vari-
ables and their values:

Env : Idents→ V alues

Env initially contains the state variables of the actor
associated with their initial value if they have one, oth-
erwise with ⊥.

• When the interpreter enters an action, the environment
is augmented with bindings between the name of the
tokens in the input pattern and ⊥. In other words, a
token read has an unknown value by default.

The abstract interpreter interprets an actor by firing it re-
peatedly until either one of the conditions is met:

1. The interpreter is told to stop because analysis is com-
plete as determined by the classification algorithm.

2. The interpreter cannot compute if an action may be
fired because this information depends on a variable
whose value is ⊥.

To fire the actor, the interpreter starts by selecting one fire-
able action, that is an action that meets the criteria defined
section 2.1. The abstract interpretation of an RVC-CAL ac-
tor is the same as its concrete interpretation with the follow-
ing exceptions. Any expression that references a variable v
where Env(v) = ⊥ has the value ⊥. Conditional statements
and loops that test an expression whose value is ⊥ are not
executed. However, guards evaluated as ⊥ cause the abstract
interpreter to stop as per condition 2.

3.3. Classification of a static actor

Classification tries to classify each actor within models that
are increasingly expressive and complex. The rationale be-
hind this is that the more powerful a model, the more difficult
it is to analyze. If an actor cannot be classified as a static actor,
the method will try to classify it as cyclo-static, and then as
quasi-static. An actor is classified as static iff it conforms to
the SDF MoC, which means that all its actions have the same
input and output patterns. A one-action actor is by definition
static.

3.4. Classification of a cyclo-static actor

The conditions an actor must meet to be a candidate for clas-
sification as cyclo-static are two-fold: (1) it must have a state,
hereinafter noted S, and (2) there must be a fixed number
of data-independent firings that depart from the initial state,
modify the state, and return the actor to its original state S0.
We consider two kinds of actor state:

1. S consists of a set of scalar state variables and their
runtime value. A state variable belongs to S iff it has an
initial value and is used in at least one guard expression.
S0 is the set of variables of S with their initial value.
Non-scalar variables (arrays) are not taken into account
because state is typically not implemented with them.
A full cycle is found when at least one action has been
executed, and S = S0 is true.

2. In the case where S = ∅ and the actor does not have
an FSM, it is considered to have no state and therefore
cannot be classified as cyclo-static. Otherwise the state
consists of the current FSM state, and S0 is the initial
state s0 of the FSM: S0 = s0. If there is no path that
returns S to S0, the actor cannot be classified as cyclo-
static.

Once the classification algorithm finds the actor to be a
valid cyclo-static candidate, we use the abstract interpreter
presented section 3.2 until we find that the actor has returned
to its original state, or the abstract interpreter stops because of
data-dependent behavior. When the actor has returned to its
original state, the algorithm stores the sequence of actions that
fired, as well as the production and consumption of tokens on
each port of the actor.

3.5. Classification of a quasi-static actor

A quasi-static actor is informally described as an actor that
may exhibit distinct static behaviors depending on a data-
dependent condition. Our classification method is restricted
to classify the subset of quasi-static actors considered by
Boutellier et al. [9] and defined as follows. A quasi-static
must have an FSM whose initial state s0 has transitions to n
branches (n ≥ 2), the ith branch starting with state si.

Each transition from s0 to si must be solely dependent
on a control token; s0 may have a cycle, which simply con-
sumes one control token and returns the actor to the initial
FSM state. Self-loops and cycles more generally are allowed
within a branch, and so are cross-branch transitions, as long
as all branches go back to the initial state.

The first step of the classification of an actor as quasi-
static is to assert it has an FSM that respects the aforemen-
tioned conditions. This is done simply by examining each
successor si of the initial state s0, and checking that there is
a path from si back to s0. This criterion alone does not qual-
ify the actor as quasi-static, it merely discards candidates that
cannot be quasi-static.

The second step of the classification consists in checking
that each branch fires a fixed number of data-independent fir-
ings and returns to the initial state:

1. for each branch i, find a value that satisfies the condi-
tion to take branch i but not any branch before it. We
use constraint solving to automatically find a satisfying
value.

2. use the abstract interpreter by taking branch i and fir-
ing the actor until it goes back to the initial state, or the
abstract interpreter stops because of data-dependent be-
havior.

Taking branch i is done by making the interpreter return
the concrete value computed in step 1 instead of ⊥ when the
control port is read. It is important that the abstract interpreter
only provide the concrete value once. Indeed, in some FSMs
there may be more than one conditional state, i.e. more than
one state being conditioned by the control port. We could
probably further narrow the subset of acceptable actors with
this criterion, but this is not necessary since the abstract in-
terpreter will identify the transitions departing from a condi-
tional state different from s0 as data-dependent.

4. TRANSFORMATION OF CLASSIFIED ACTORS

This section presents the second contribution of this paper: A
method to automatically transform actors that were classified
as static, cyclo-static, or quasi-static, to higher-level SDF and
PSDF graphs. This transformation improves execution speed
of the resulting actors, and makes merging actors of the same
kind easier.

4.1. Transformation to SDF and PSDF

The classification of actors gives information about the se-
quence of actions that were fired:

• in the case of static behavior, there may only be one
action by definition; actors that have several actions
with similar input/output patterns must be transformed
to single-action actors.

• in the case of cyclo-static behavior, the sequence is a
list of actions with fixed production/consumption rates
that start from an initial state and eventually return to
this initial state.

• in the case of quasi-static behavior, there are several
sequences of actions; each sequence is a concatenation
of a first conditional action and a sequence of actions
with fixed production/consumption rates.

To allow actors to be merged later, these sequences must
be transformed to respect appropriate MoCs. They can be
trivially transformed from cyclo-static to CSDF and from
quasi-static to PSDF, by transforming an action invocation
to a vertex and setting production and consumption to zero
on every edge (since the actions do not consume the data of
one another). However, this kind of graphs cannot be easily
manipulated or optimized. The graphs do not represent the
behavior of the actors; they are not suitable for merging, in
particular merging SDF graphs together when each graph is
composed of up to a few hundred vertices can quickly result

in huge graphs, especially if the repetitions of vertices are not
multiple of one another (see [1] for additional explanations);
the graphs cannot be efficiently mapped and scheduled be-
cause optimally scheduling a SDF graph is an NP-complete
problem [8].

A better representation is a graph where a sequence of ac-
tions is transformed to a single higher-level action that fires all
the actions in the sequence consecutively, this way edges can
carry the proper production/consumption rates and the graph
accurately represents the actor’s behavior. The contents of
higher-level actions can be factorized with loop rerolling.

Loop rerolling is the exact opposite of the well-known
loop unrolling transformation. It has been used by Stitt and
Vahid to recover loop structures from compiled code [14]. In
the context of this work, we used this transformation to find
loops of actions within an initially flat sequence of actions.
Loops are rerolled in two steps. First, we must recognize
common sequences within an input sequence. Then, loops
can be formed around consecutive repetitions of common se-
quences.

We used the Sequitur [15] algorithm to recognize com-
mon sequences of actions from the initially flat list of actions.
Sequitur works by deriving a hierarchical structure in the form
of a Context-Free Grammar from a sequence of symbols. For
instance the grammar G1 derived from the sequence of sym-
bols ababc is: S→ A A c, A→ a b.

To obtain loops from the hierarchical structure, we walk
through the hierarchical structure by counting the number of
rule invocations and developing the rules. For instance, sup-
pose we have a sequence1 composed of four repetitions of a
sub-sequence composed of five as followed by three bs, noted
4(5(a) 3(b)). The corresponding grammar is transformed so
that we group consecutive actions together, which gives us
5(a) 3(3(b) 5(a)) 3(b). Sequitur works in linear time, so the
hierarchical structure it derives is not optimal, which explains
why the result is not minimal in terms of number of loops.

4.2. Optimization of Action Scheduler

Before classification, all actors are considered dynamic. This
means that to fire an action an action scheduler must check
that there are enough tokens in the input FIFOs and enough
room in the output FIFOs, read tokens, compute data, and
write tokens. After classification we know that some actors
have a behavior that is static, cyclo-static, or quasi-static. As
a consequence, we have information about the number of to-
kens and the room needed for several actions to fire, not just
one.

A static actor is transformed to an actor with a single ac-
tion, so it is not possible to reduce the number of read and
write operations. Conversely, after loop rerolling cyclo-static
actors have one high-level action, and quasi-static actors have
n conditioned high-level actions. Those high-level actions act

1The developed sequence is “aaaaabbbaaaaabbbaaaaabbbaaaaabbb”.

as static action schedulers: They fire sequences of actions,
each action potentially reading and writing tokens. Since we
know the number of firings that will occur, those reads and
writes can be replaced by loads from/stores to arrays. For
instance the limit action of “Clip” would be transformed as
shown on Fig. 6. The A action is transformed as follows:

1. read data from each input port in a tokens port ar-
ray

2. initialize each index port variable to zero

3. fire actions

4. write data to each output port from tokens port

limit: action ==>
var

int(size=10) i := tokens_I[index_I],
int(size=9) o,
int min = if sflag then -255 else 0 end

do
index_I := index_I + 1;
count := count - 1;
o := if i > 255 then 255
else if i < min then min else i end
end;

tokens_O[index_O] := o;
index_O := index_O + 1;

end

Fig. 6. The limit action transformed.

5. RESULTS

We have implemented the classification method and the trans-
formation algorithm in the RVC-CAL compilation infrastruc-
ture supported by the Open RVC-CAL Compiler (Orcc)2.
Orcc has a front-end that compiles RVC-CAL actors to an
Intermediate Representation (IR) that retains structural infor-
mation but lowers the RVC-CAL language to a simpler lan-
guage in SSA form [16]. The IR of actors can then be loaded
and transformed to source code in any of the target languages
supported by back-ends, namely C, C++, Java, LLVM, and
VHDL.

We used the Cream [17] constraint programming library
to check mutually exclusive guards and to find values in the
quasi-static classification method. Cream is capable of solv-
ing constraints defined on integers using different branch-and-
bound strategies. We extended the library to handle bitwise
and constraints.

The classification method has been tested on 50 actors
used by two dataflow descriptions of an MPEG-4 part 2 de-
coder present in Orcc. Table 1 shows the classification results
with actors classified as static, cyclo-static, quasi-static, dy-
namic, time-dependent.

2Orcc is available at: http://orcc.sf.net

Number of actors Classification

6 static
14 cyclo-static
11 quasi-static
13 dynamic
6 time-dependent

Table 1. Classification results on 50 actors.

The action scheduler optimization has been implemented
for cyclo-static actors with mono-token reads and writes. This
subset allowed us to test only one of the two dataflow descrip-
tions, in which it resulted in a 20% increase of the number of
frames decoded per second. Measurements on a particular
actor responsible of the interpolation in motion compensation
indicate that the transformed version of the actor is 2.4 times
faster than the original version.

6. RELATED WORK

Zebelein et al. present a classification algorithm for dynamic
dataflow models in [18]. In their model, actors are defined
as SystemC modules that receive and send data via SystemC
FIFOs. Their classification method is based on the analysis
of read and write patterns and FSMs of the different modules.
Compared to ours, their approach is limited by the fact that
they ignore any C++ code that does not contain a read or a
write, and that they do not classify quasi-static actors.

In [9], Boutellier et al. show how to express quasi-static
RVC-CAL actors as PSDF graphs and how to derive a mul-
tiprocessor schedule from these graphs. However, they do
not address the issues of automated classification and trans-
formation: Quasi-static behavior is specified with parame-
ters defined manually, and they do not explain how low-
level Homogeneous SDF (HSDF) graphs created from quasi-
static branches can be automatically transformed to high-level
PSDF graphs. As a consequence, we believe that our work
can serve as a preprocessing step for their approach by auto-
matically classifying actors as quasi-static and transforming
them to high-level PSDF graphs.

Gu et al. present a technique to recognize a set of Stati-
cally Schedulable Regions (SSRs) within a dynamic dataflow
program [10]. SSRs are sets of ports that are statically cou-
pled, which essentially means that the production of an out-
put port matches the consumption of the input port(s) it is
connected to (additional criteria are developed in [10]). On
the one hand, SSR classification has potentially more knowl-
edge about static behavior because it looks at connected actors
rather than just inside actors. On the other hand, by consid-
ering an actor as a whole our classification can discover its
behavior (cyclo-static and quasi-static) and transform it into a
high-level SDF or PSDF graph that will make merging easier.
Using SSRs to obtain additional information as an input to

our classification algorithm is a possible direction for future
work.

7. CONCLUSION

This paper presented a method to automatically classify dy-
namic dataflow actors into more restricted dataflow MoCs,
along with a method to automatically transform classified
actors to static dataflow and parameterized static dataflow
graphs. The transformations presented allow more efficient
code to be generated for those actors and improve execution
speed by reducing the number of FIFO accesses. We used
these methods on 50 actors from two dynamic dataflow de-
scriptions of an MPEG-4 part 2 decoder, and studied how
the actors that could be transformed following classification
could improve execution speed by 20% on one of the descrip-
tions.

The work described in this paper paves the way for future
work concerning the merge of SDF and PSDF actors together.
Merging actors would further reduce the overhead induced by
FIFO accesses, and would also reduce the amount of dynamic
scheduling currently needed. Actor merging is a necessary
step towards efficient multi-processor mapping and schedul-
ing by increasing the computation to communication ratio.

8. REFERENCES

[1] E.A. Lee and D.G. Messerschmitt, “Synchronous data
flow,” Proceedings of the IEEE, vol. 75, no. 9, pp. 1235–
1245, 1987.

[2] G. Bilsen, M. Engels, R. Lauwereins, and J. Peper-
straete, “Cyclo-static dataflow,” IEEE Transactions on
signal processing, vol. 44, no. 2, pp. 397–408, 1996.

[3] Bishnupriya Bhattacharya and Shuvra S. Bhattacharyya,
“Parameterized Dataflow Modeling for DSP Systems,”
IEEE Transactions on Signal Processing, vol. 49, pp.
2408–2421, 2001.

[4] J.T. Buck and E.A. Lee, “Scheduling dynamic dataflow
graphs with bounded memory using the token flow
model,” Acoustics, Speech, and Signal Processing,
IEEE International Conference on, vol. 1, pp. 429–432,
1993.

[5] J.T. Buck, “Static scheduling and code generation from
dynamic dataflow graphs with integer-valued control
streams,” in Presented at 28th Asilomar Conference on
Signals. Citeseer, 1994.

[6] Edward A. Lee and Thomas M. Parks, “Dataflow Pro-
cess Networks,” Proceedings of the IEEE, vol. 83, no.
5, pp. 773–801, May 1995.

[7] M. Mattavelli, I. Amer, and M. Raulet, “The Recon-
figurable Video Coding Standard [Standards in a Nut-
shell],” Signal Processing Magazine, IEEE, vol. 27, no.
3, pp. 159 –167, may 2010.

[8] M. Pelcat, J. Piat, M. Wipliez, S. Aridhi, and J.F. Nezan,
“An open framework for rapid prototyping of signal pro-
cessing applications,” EURASIP Journal on Embedded
Systems, vol. 2009, pp. 3, 2009.

[9] J. Boutellier, C. Lucarz, S. Lafond, V.M. Gomez, and
M. Mattavelli, “Quasi-static scheduling of CAL actor
networks for reconfigurable video coding,” Journal of
Signal Processing Systems, pp. 1–12, 2009.

[10] R. Gu, J.W. Janneck, S.S. Bhattacharyya, M. Raulet,
M. Wipliez, and W. Plishker, “Exploring the concur-
rency of an MPEG RVC decoder based on dataflow pro-
gram analysis,” IEEE Transactions on Circuits and Sys-
tems for Video Technology, vol. 19, no. 11, 2009.

[11] G. Kahn, “The semantics of a simple language for par-
allel programming,” in Proceedings of IFIP’74, Aug.
1974, pp. 471–475.

[12] Thomas M. Parks, Bounded Scheduling of Process Net-
works, Ph.D. thesis, Berkeley, Berkeley, CA, USA,
1995.

[13] P. Cousot and R. Cousot, “Abstract interpretation: a
unified lattice model for static analysis of programs by
construction or approximation of fixpoints,” in Proceed-
ings of the 4th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages. ACM New York,
NY, USA, 1977, pp. 238–252.

[14] G. Stitt and F. Vahid, “New decompilation techniques
for binary-level co-processor generation,” in IEEE/ACM
International Conference on Computer-Aided Design,
2005. ICCAD-2005, 2005, pp. 547–554.

[15] C.G. Nevill-Manning and I.H. Witten, “Identifying hi-
erarchical structure in sequences: A linear-time algo-
rithm,” Journal of Artificial Intelligence Research, vol.
7, no. 1, pp. 67–82, 1997.

[16] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N.
Wegman, and F. Kenneth Zadeck, “Efficiently comput-
ing static single assignment form and the control depen-
dence graph,” ACM Trans. Program. Lang. Syst., vol.
13, no. 4, pp. 451–490, 1991.

[17] Naoyuki Tamura, “Cream: Class Library for Constraint
Programming in Java,” .

[18] C. Zebelein, J. Falk, C. Haubelt, and J. Teich, “Classifi-
cation of General Data Flow Actors into Known Models
of Computation,” Proc. MEMOCODE, Anaheim, CA,
USA, pp. 119–128, 2008.

