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Exact simulation of One-dimensional Stochastic Differential

Equations involving the local time at zero of the unknown process

Pierre Étoré∗ Miguel Martinez †

February 11, 2011

Abstract:

In this article we extend the exact simulation methods of Beskos et al.
in [3] to the solutions of one-dimensional stochastic differential equations
involving the local time of the unknown process at point zero. In order
to perform the method we compute the law of the skew Brownian motion
with drift. The method presented in this article covers the case where
the solution of the SDE with local time corresponds to a divergence form
operator with a discontinuous coefficient at zero. Numerical examples are
shown to illustrate the method and the performances are compared with
more traditional discretization schemes.

Keywords:

Exact simulation methods ; Skew Brownian motion ; One-dimensional
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1 Introduction

1.1 Presentation

The implementation of exact simulation methods for one-dimensional SDEs has been a subject
of much interest in the last years : see for example [6], [3], [4], [19], [21]. Unlike the classical
simulation methods which all involve some kind of discretization error (we mention [2] for the
Euler Scheme), the exact simulation methods are constructed in such a way that they do not
present any discretization error (when the diffusion coefficient is constant and equal to one). In
the last years, the original method presented in the fundamental article [3] has been extended to
overcome various limitations of the initial algorithm ; it has been generalized to include the cases of
unbounded drifts ([4], [5]), the computation of Greeks in a financial setting [19], and several steps
have been made to deal with multidimensional diffusions.

On another hand, the numerical simulation of SDEs corresponding to divergence form operators
involving a discontinuous coefficient has been also the subject of various studies in the last years
since these SDEs arise in the modelisation of various physical phenomenons. In the one-dimensional
context, various Random Walks and an Euler Scheme have been studied for the simulation of the
solution of such SDEs : for Random Walks we mention [9], [8], [10], [13] ; for the Euler Scheme see
[15], [16] in the case where the discontinuity of the coefficient in the divergence operator appears at
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point 0. Of course, for such SDEs, the order of discretization error of these discretization schemes
is usually greater than those obtained in a more classical context.

An important problem comes from the fact that SDEs corresponding to divergence form op-
erators involving a discontinuous coefficient do not enter the classical scope of SDEs covered by
the exact simulation methods. The main difficulty is that these SDEs include an additional term,
which involves in dimension one the local time of the unknown process (in dimension greater than
one, it involves the local time of a one-dimensional auxiliary process; see [7]). In fact, the laws of
the solution of such one-dimensional SDEs are no longer absolutely continuous with respect to the
Wiener measure.

In this paper we present a first attempt for the adaptation of the exact simulation methods of
[3] to one-dimensional SDEs with an additional term that involves the local time of the unknown
process at point 0. Namely, our object of study is (Xt)t≥0 solution of

dXt = σ(Xt)dWt + b(Xt)dt+ βdL0
t (X), (1)

where 0 6= |β| < 1 and L0
t (X) is the symmetric local time of X in zero at time t. Under mild

assumptions concerning b and standard ellipticity conditions on σ, it is known that there exists a
unique strong solution (Xt)t≥0 to (1) (see [12] for details).

Note that when σ is identically equal to 1 and b is identically equal to 0, the solution (Xt) of
(1) is a standard Skew Brownian Motion (SBM in short).

Let us emphasize that this work includes the situation where b may be discontinuous at 0. So
that the results of this paper are also suited for the situation stated in [16], where the solution
of (1) corresponds to a divergence form operator whose coefficient is discontinuous at 0 (and is
sufficiently smooth elsewhere). We show a numerical example to illustrate this interesting case.

Let us now briefly explain our main idea. When σ ≡ 1, we show that the law of (Xt)t≥0 (solution
of (1)) is absolutely continuous with respect to the law of some Skew Brownian Motion (SBM) with
a drift component. The reason why the SBM with drift appears naturally in our computations is
explained in Section 3 (see Remark 3.1).

So, contrary to the already mentioned discretization schemes where the standard SBM is used in
force, we do not longer deal with a simple SBM but with a SBM that possesses a drift component.
As a consequence, in order to adapt the method of [3] in this setting, we have to be able to draw
bridges of the SBM with drift. An important part of this paper is devoted to this matter.

In the last section of the paper, we discuss the limitations of the initial algorithm. The main
issue is to relax the boundedness assumptions made on the drift function b, as is done in [4] for
“classical” SDEs. In [4], the authors use some kind of factorisations for the sample state space
of the standard Brownian Bridge, which are consequences of William’s decomposition theorem for
Brownian Motion. Proving similar factorisations for the Skew Brownian Bridge with drift seems
difficult to us. Nevertheless, we have been able to apply a result stated in Pitman-Yor [18] in the
case of the standard Skew Brownian Bridge, which gives a first partial result. Unfortunately, we
have not been able to relax the boundedness assumption on the drift function b and we think that
much remains to do in this direction.

1.2 Organisation of the paper

The paper is organised as follows :

• Section 2 presents the problem and states our assumptions.

• Section 3 is dedicated to a detailed presentation of the algorithm studied in this paper (under
the assumptions of Section 2). We present the method for the simulation of an exact skeleton
of (Xt)t∈[0,T ] solution of (1) when σ ≡ 1.
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• The title of section 4 is Simulation of bridges of a Skew Brownian motion with drift. It is
devoted to the computation of the explicit laws needed in order to perform the algorithm
presented in section 3. We first compute the transition function of the SBM with drift and
then draw the consequences for the computation of the density of the bridges of the SBM
with drift. These laws are of critical importance when one wants to implement the methods
presented in this article. At the end of the section, we give rejection bounds that are needed
for the acceptance/rejection procedure that lies underneath the whole algorithm.

• Section 5 presents numerical results obtained with different examples. The results compare
the performance of this method with those coming from other articles. In this section we
treat a numerical example involving a diffusion corresponding to a divergence form operator.

• In section 6 we briefly discuss what we shall call “the degenerate case” : the function b is
discontinuous at point 0 but we now allow β = 0. In this case, the solution of the equation
is shown to be absolutely continuous w.r.t. a Brownian Motion with Two-Valued Drift. As a
consequence, the method extends naturally to this particular case.

• In the first part of Section 7 we discuss the assumptions made in Section 2 regarding the
boundedness of function b and explain the difficulties we found in trying to remove them ; in
the literature concerning exact simulation algorithms for (classical) diffusions, this problem
is strongly related to the decomposition of the trajectories of the Brownian Bridge. Following
Pitman-Yor [18], we give insights to such decomposition for the Skew Brownian Bridge. We
manage to compute almost explicitly the joint law of the maximum of a Skew Brownian
Bridge and the time where this maximum is reached (almost explicitly in this context means
up to a Laplace transform inversion). Unfortunately, we have not been able to go further and
this problem seems difficult to us. We conclude the paper in the second part of this section
and sketch lines for further studies on the subject.

2 Exposition of the problem and statement of our assumptions

2.1 Exposition of the problem

Denote C = C([0, T ],R) the set of continuous mappings from [0, T ] to R and C the Borel σ-field on
C induced by the supremum norm.

Let P be a probability measure on (C, C) and W a Brownian motion under P together with its
completed natural filtration (Ft)t≥0.

We seek for an exact simulation algorithm of the paths of the solution of the one-dimensional
Stochastic Differential Equation

dXt = dWt + b(Xt)dt+ βdL0
t (X), (2)

where |β| < 1, L0
t (X) is the symmetric local time of X in zero at time t.

2.2 Notations and assumptions

Throughout the whole paper, we make the following assumptions

• The function b : R → R is bounded and differentiable on R∗,+ and R∗,− with a possi-
ble discontinuity at point {0}. We suppose that both limits limz→0+ b(z) := b(0+) and
limz→0− b(z) := b(0−) exist and are finite. The value b(0) of the function b at 0 is of no im-
portance and can be fixed arbitrarily to some constant (possibly different from either b(0+)
or b(0−)).
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• If β 6= 0, we set µ := 1+β
2β b(0+)− 1−β

2β b(0−) and define b̄(z) := b(z)− µ. We suppose that the
function

z 7→ φ̄(z) :=
b̄2(z) + b̄′(z) + 2µb̄(z)

2
1R∗,+∪R∗,−(z)

is bounded.

We set φ̃(z) := φ̄(z) −m with m = infz∈R φ̄(z); the constant K denotes an upper bound of
the function φ̃.

• The function u 7→ exp[B̄(u)− (u− x)2/2T ], where B̄(u) :=

∫ u

0
b̄(y)dy is integrable.

Except in Section 6 (corresponding to what we decide to call “the degenerate case” when β = 0
and b is still discontinuous at 0), throughout the paper we make the strong additional assumption

• β 6= 0.

From [12], we know that strong existence and uniqueness holds for the solution of equation (2)
under the above assumptions.

Our goal is to sample exactly with respect to the law of X under P following the ideas of [3].

3 Presentation of the algorithm

3.1 Application of Girsanov’s theorem

Recall that b̄(z) := b(z) − µ where µ is the constant defined by

µ :=
1 + β

2β
b(0+)− 1− β

2β
b(0−). (3)

Note that since β 6= 0 by assumption, this constant is well-defined. In the case where b is continuous
at point {0}, note that µ reduces to b(0).

We have
dXt = dWt + b̄(Xt)dt+ µdt+ βdL0

t (X).

In particular, we perform Girsanov’s theorem and we write

dXt = dW SD
t + µdt+ βdL0

t (X), (4)

where W SD
t := Wt+

∫ t

0
b̄(Xs)ds is a Brownian motion under the new probability WSD defined by

dP

dWSD
= exp

{∫ T

0
b̄(Xt)dW

SD
t − 1

2

∫ T

0
b̄2(Xt)dt

}

. (5)

From our assumptions on b, we are in position to apply the symmetric Itô-Tanaka formula to the

function B̄(u) :=

∫ u

0
b̄(y)dy and (Xt)t≥0.

Applying the occupation’s time formula, we obtain

B̄(XT )− B̄(x) =

∫ T

0

b̄(Xt+) + b̄(Xt−)

2
dXt +

1

2

∫ T

0
b̄′(Xt)1Xt 6=0dt+

b̄(0+)− b̄(0−)

2
L0
t (X)

=

∫ T

0
b̄(Xt)1Xt 6=0dW

SD
t + µ

∫ T

0
b̄(Xt)1Xt 6=0dt

+
1

2

∫ T

0
b̄′(Xt)1Xt 6=0dt+

(
b̄(0+) + b̄(0−)

2
β +

b(0+)− b(0−)

2

)

︸ ︷︷ ︸

=0

L0
t (X)

(6)
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where the last line comes from the definition of b̄ and µ. From the fact that ℓ{t ∈ [0, T ] : Xt = 0} = 0
(where ℓ stands for the Lebesgue measure), we see that

B̄(XT )− B̄(x) =

∫ T

0
b̄(Xt)dW

SD
t + µ

∫ T

0
b̄(Xt)dt+

1

2

∫ T

0
b̄′(Xt)dt. (7)

Thus, (5) implies that

EP[F (X)] = EWSD

[
F (X) exp

{
B̄(XT )− B̄(x)−

∫ T

0
φ̄(Xt)dt

}]
,

where φ̄(z) =
b̄2(z) + b̄′(z) + 2µb̄(z)

2
.

Remark 3.1 Note that, because of the definition of b̄, there is no local time appearing in equality
(7) after the application of the Itô-Tanaka formula. This ensures that there is no local time involved
in the exponential martingale of Girsanov’s theorem, which makes it tractable from a numerical
perspective.

Restrospectively, this explains why in the sequel we have to deal with a Skew Brownian Motion
with drift instead of a simple standard SBM as it is usually done for the discretization schemes in
this context.

3.2 Exact simulation algorithm for skew diffusions

Let Bβ,µ be the SBM of parameter β and drift µ. That is to say Bβ,µ is the strong solution of

dBβ,µ
t = dWt + µdt+ βdL0

t (B
β,µ). (8)

Notation : in the sequel, we denote pβ,µ(t, x, y) the transition probability density of Bβ,µ.
Considering (4) and (5) it is clear that the law of X under WSD is given by pβ,µ(t, x, y)dy.

Following the lines of Beskos et al. in [3], and considering the computations performed in
the above section, we give an algorithm that returns an exact drawing of a skeleton of (Xt)t∈[0,T ]

solution of (2) starting from x0 :

Step 1 - Simulate a random variable Z according to the density

h(y) = C exp
(
B̄(y)− B̄(x0)

)
pβ,µ(T, x0, y).

Keep in memory the value z of Z.
Step 2 - Simulate a Poisson Point Process with unit density on [0, T ] × [0,K]. The result is a

random number n of points of coordinates (t1, z1), . . . , (tn, zn).

Step 3 - Simulate (Bβ,µ
t1 , . . . , Bβ,µ

tn ) conditioned on Bβ,µ
0 = x0 and Bβ,µ

T = z.

Step 4 - If ∀i ∈ {1, . . . , n} φ̃(Bβ,µ
ti

) ≤ zi accept the trajectory. Else return to step 1.

This algorithm returns a drawing of (Xt1 , . . . ,Xtn ,XT ) (in particular we get an exact drawing
of XT , it is the value z of Z used for an accepted trajectory).

Note that in order to apply the methodology of [3] we have to be able to draw bridges of a
drifted Skew Brownian Motion Bβ,µ. Indeed, this is crucial in order to perform the Step 3. The
next section is entirely devoted to this matter.
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4 Simulation of bridges of a Skew Brownian motion with drift

4.1 Notations

Throughout this section we will use the following notations :

• recall that pβ,µ(t, x, y)dy is the transition probability density of Bβ,µ

•
(

Bβ
t

)

t≥0
is the solution of Bβ

t = x +Wt + βL0
t (B

β), that is to say Bβ is a (standard) Skew

Brownian motion with parameter β starting from x.

• α := (β + 1)/2 is the probability of partial reflection above 0 (for Bβ).

• τ0 := inf{t ≥ 0 : Bβ
t = 0} and T0 := inf{t ≥ 0 : Wt = 0}.

• N c(z) :=
1√
2π

∫ ∞

z
e−

z2

2 dz is the complementary normal cumulative function.

Let us notice that τ0 and T0 have common distribution and let us denote h(x, .) their probability

density knowing Bβ
0 = x (or W0 = x). That is to say, if W is a Brownian motion under P then

Px(T0 ∈ ds) = h(x, s)ds.

4.2 Computation of the density pβ,µ(t, x, y)

Remark 4.1 The results of Proposition 4.1 and Proposition 4.2 below differ from the ones given
by T. Appuhamillage et al. in the recent article [1]. In Theorem 1.4 of [1] the authors state a
slightly different formula for pβ,µ(t, 0, y) from ours : the product βµ appears with an absolute value
which is not the case for the formula we give in Proposition 4.1.

The result of our Proposition 4.2 has to be compared with Corollary 3.3 in [1]. Since we think
there is a computational error in [1], we explain in this section how we derive the explicit formula

for the joint density of (Bβ
t , L

0
t (B

β)). Note that we use a different method of proof than in [1].

We have the following proposition.

Proposition 4.1 We have that,

pβ,µ(t, x, y) =







1√
2πt

exp{µ(y − x)− 1
2µ

2t}
(
exp{− (y−x)2

2t } − exp{− (y+x)2

2t }
)

+ 2α√
2πt

exp
{
− (x+y)2

2t + µ(y − x)− 1
2µ

2t
}

×
[
1− βµ

√
2πt exp

{ (x+y+tβµ)2

2t

}
N c(βµt+x+y√

t
)
]
,

if x ≥ 0, y ≥ 0,

2(1−α)√
2πt

exp
{
− (x−y)2

2t + µ(y − x)− 1
2µ

2t
}

×
[
1− βµ

√
2πt exp

{ (x−y+tβµ)2

2t

}
N c(βµt+x−y√

t
)
]
,

if x ≥ 0, y < 0.

1√
2πt

exp{µ(y − x)− 1
2µ

2t}
(
exp{− (y−x)2

2t } − exp{− (y+x)2

2t }
)

+ 2(1−α)√
2πt

exp
{
− (x+y)2

2t + µ(y − x)− 1
2µ

2t
}

×
[
1− βµ

√
2πt exp

{ (−x−y+tβµ)2

2t

}
N c(βµt−y−x√

t
)
]
,

if x < 0, y < 0,

2α√
2πt

exp
{
− (x−y)2

2t + µ(y − x)− 1
2µ

2t
}

×
[
1− βµ

√
2πt exp

{ (y−x+tβµ)2

2t

}
N c(βµt+y−x√

t
)
]
,

if x < 0, y ≥ 0.
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Remark 4.2 It can be shown that the quantity 1 − βµ
√
2πt exp

{ (|x|+|y|+tβµ)2

2t

}
N c(βµt+|x|+|y|√

t
)

involved in pβ,µ(t, x, y) remains strictly positive, whatever the sign of βµ.

To prove Proposition 4.1 we will use a Cameron-Martin formula and the probability density of
(Bβ

t , L
0
t (B

β)), given in the following proposition.

Proposition 4.2 Let W be a Brownian motion defined on (C, C,P) and Bβ the strong solution of
(8) with µ = 0.

We have for all t > 0,

Px
[
Bβ

t ∈ dy;L0
t (B

β) ∈ dl
]
=







2α(l+y+x)√
2πt3

exp
{
− (l+y+x)2

2t

}
dydl

+ 1√
2πt

(
exp{− (y−x)2

2t } − exp{− (y+x)2

2t }
)
dyδ0(dl)

if x ≥ 0, y ≥ 0, l ≥ 0,

2(1−α)(l−y+x)√
2πt3

exp
{
− (l−y+x)2

2t

}
dydl

x ≥ 0, y < 0, l ≥ 0.

To prove Proposition 4.2 we will use the following lemmas.

Lemma 4.1 Let W be a Brownian motion defined on (C, C,P) and Bβ the strong solution of (8)
with µ = 0.

We have for all t, l > 0, and y ≥ 0,

P0
[
|Bβ

t | ∈ dy;L0
t (B

β) ∈ dl
]
= P0

[
|Wt| ∈ dy;L0

t (W ) ∈ dl
]
. (9)

For x 6= 0 we have for all t, l > 0 and y ≥ 0,

Px
[
|Bβ

t | ∈ dy;L0
t (B

β) ∈ dl; t ≥ τ0
]
= Px

[
|Wt| ∈ dy;L0

t (W ) ∈ dl; t ≥ T0

]
. (10)

Remark 4.3 We even have that the process (|Bβ
t |, L0

t (B
β))t≥0 is distributed as (|Wt|, L0

t (W ))t≥0

under P0. Indeed their common distribution is the one of (MW
t − Wt,M

W
t )t≥0 under P0, where

MW
t = max0≤s≤tWs.
This is related to the Lévy theorem, as stated for instance in Theorem 3.6.17 in [11], where it

is proved by using the Skorokhod method. We use the same technique to prove Lemma 4.1.

Proof of Lemma 4.1. Let be x 6= 0, and assume W0 = x a.s so that Bβ
0 = x a.s. Using the

symmetric Tanaka formula we have

|Bβ
t | = |x|+

∫ t
0 sgn(B

β
s )dB

β
s + L0

t (B
β)

= |x|+
∫ t
0 sgn(B

β
s )dWs + β

∫ t
0 sgn(B

β
s )dL0

s(B
β) + L0

t (B
β)

= |x|+
∫ t
0 sgn(B

β
s )dWs + L0

t (B
β),

where sgn(x) = 1x>0 − 1x<0 is the symmetric sign function (note that sgn(0) = 0).

As we have |Bβ
t | ≥ 0 and dL0

t (B
β) = 1

Bβ
t =0

dL0
t (B

β), it follows from Lemma 3.6.14 in [11], that,

L0
t (B

β) = max
[
0, max

0≤s≤t
{−(|x|+

∫ s

0
sgn(Bβ

r )dWr)}
]
.

We note Wβ,(−|x|)
t = −|x| −

∫ t
0 sgn(B

β
s )dWs and notice that this is a Brownian motion starting

from −|x|. Along the event {t ≥ τ0} we have max0≤s≤tWβ,(−|x|)
s ≥ 0, and thus

(

|Bβ
t |

L0
t (B

β)

)

=

(

max0≤s≤tWβ,(−|x|)
s −Wβ,(−|x|)

t

max0≤s≤tWβ,(−|x|)
s

)

. (11)
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But the Tanaka formula applied to W gives

|Wt| = |x|+
∫ t

0
sgn(Ws)dWs + L0

t (W ).

Thus setting W(−|x|)
t = −|x| −

∫ t
0 sgn(Ws)dWs, and applying the same method as above, we get

that on the event {t ≥ T0},
(

|Wt|
L0
t (W )

)

=

(

max0≤s≤tW(−|x|)
s −W(−|x|)

t

max0≤s≤tW(−|x|)
s

)

. (12)

As Wβ,(−|x|) and W(−|x|) are both Brownian motion starting from −|x| and τ0 and T0 have the
same distribution, we can infer, comparing (11) and (12), that (10) holds. We proceed in a similar
manner for x = 0, and noticing that P0[t ≥ τ0] = P0[t ≥ T0] = 1 we get (9).

Lemma 4.2 Let W be a Brownian motion on (C, C,P). We have for all x ∈ R, all t, l > 0 and
y ≥ 0,

Px[ |Wt| ∈ dy;L0
t (W ) ∈ dl ] =

2(l + y + |x|)√
2πt3

exp
{
− (l + y + |x|)2

2t

}
dydl.

Proof. First, by adapting the proof of Proposition 2.8.1 in [11], we get, for all x0 ∈ R, a ≤ b and
b ≥ x0,

Px0 [Wt ∈ da; max
0≤s≤t

Ws ∈ db ] =
2(2b − a− x0)√

2πt3
exp

{
− (2b− a− x0)

2

2t

}
dadb.

Let Φ(a, b) := (b − a, b). As we have seen in the proof of Lemma 4.1 we have (|Wt|, L0
t (W )) =

Φ(W(−|x|)
t ,max0≤s≤tW(−|x|)

s ) on the event {t ≥ T0}, where W(−|x|) is a Brownian motion starting
from −|x| (under Px). But for l > 0 we have {L0

t (W ) ∈ dl} ⊂ {t ≥ T0}. A change of variable
formula gives the desired result.

Lemma 4.3 We have for all t > 0 and y, l ≥ 0,

P0
[
Bβ

t ∈ dy;L0
t (B

β) ∈ dl
]
= αP0

[
|Bβ

t | ∈ dy;L0
t (B

β) ∈ dl
]
.

For all t > 0 and y < 0,

P0
[
Bβ

t ∈ dy;L0
t (B

β) ∈ dl
]
= (1− α)P0

[
|Bβ

t | ∈ (−dy);L0
t (B

β) ∈ dl
]
.

Proof. Our starting point is the construction of the Skew Brownian motion from a reflecting
Brownian Motion with a change of sign of each excursion with probability 1−α as explained in [20]
page 487 exercise 2.16 (we use the same notations as [20] in the explanations below). More precisely,
let (Yn)n≥0 be a sequence of independent r.v.’s taking the values 1 and −1 with probabilities α
and 1 − α and independent of some Brownian Motion B. We note H := σ(Yn : n ≥ 0) the
corresponding σ-algebra generated by the whole sequence (Yn)n≥0. We denote E := σ(es : s ≥ 0)
the σ-algebra generated by all the excursions of B. For each ω in the set on which B is defined,
the set of excursions es(ω) is countable and may be ordered. Define a process Bβ

t by putting

Bβ
t (ω) = Yns(e)(ω)|es(t − τs−(ω), ω)| if τs− ≤ t ≤ τs and where es is the ns(e)-th excursion in

the above ordering (ns(e) is a random variable measurable w.r.t. E , which depends on the whole
excursion process e = (eu)u>0 and the time variable s in the local time scale). It may be proved
that the process thus obtained is a Markov process and that it is a Skew Brownian motion of
parameter α.
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By construction H := σ(Yn : n ≥ 0) and E := σ(es : s ≥ 0) are independent ; in particular, if
we denote by R(e) the end point of excursion e, then we have τt(ω) =

∑

s≤t
R(es(ω)) and thus τt is

measurable w.r.t. E . Because Lt(B
β) is recovered as the r.c.l inverse of τt, it is measurable w.r.t.

E and independent of H.
Let S be the space of real sequences (ak)k∈N and denote Φ : S ×N → R the coordinate function

defined by Φ((ak)k∈N, n) = an. From the independence of H and E , the properties of the conditional
expectation, and since y ≥ 0,

P0
[
Bβ

t ∈ dy;L0
t (B

β) ∈ dl
]
= E0

[

P0
[
Bβ

t ∈ dy;L0
t (B

β) ∈ dl | E
]]

= E0
[

P0
[
Yns(e) > 0; |es(t− τs−(ω), ω)| ∈ dy;L0

t (B
β) ∈ dl | E

]]

= E0
[

P0
[
Φ((Yk)k∈N(ω), ns(e(ω))) > 0 | E

]
; |es(t− τs−(ω), ω)| ∈ dy; L0

t (B
β) ∈ dl

]

= E0
[

P0
[
Yn > 0

]
|n=ns(e(ω)); |es(t− τs−(ω), ω)| ∈ dy;L0

t (B
β) ∈ dl

]

= αP0
[
|Bβ

t | ∈ dy;L0
t (B

β) ∈ dl
]
.

Proof of Proposition 4.2. Step 1. Using Lemmas 4.1 and 4.3 we have for y ≥ 0

P0
[
Bβ

t ∈ dy;L0
t (B

β) ∈ dl
]

= αP0
[
|Bβ

t | ∈ dy;L0
t (B

β) ∈ dl
]

= αP0
[
|Wt| ∈ dy;L0

t (W ) ∈ dl
]
.

Note that, therefore, using Lemma 4.2 we have the result for x = 0 (we use similar arguments
for y < 0).

Step 2. Let x, l > 0, y ≥ 0. As P[Bβ
t ∈ dy;L0

t (B
β) ∈ dl; t < τ0] = 0, we have, using the strong

Markov property,

Px[Bβ
t ∈ dy;L0

t (B
β) ∈ dl ] = Px[ |Bβ

t | ∈ dy;L0
t (B

β) ∈ dl;Bβ
t > 0; t ≥ τ0 ]

= Ex[1{t≥τ0}P
x[ |Bβ

t | ∈ dy;L0
t (B

β) ∈ dl;Bβ
t > 0 |Fτ0 ]]

=
∫ t
0 P

0[|Bβ
t−s| ∈ dy;L0

t−s(B
β) ∈ dl;Bβ

t−s > 0]h(x, s)ds,

(13)

as h(x, .) is the density of τ0 under Px. But h(x, .) is also the density of T0. And using the first
step of the proof we have

P0[|Bβ
t−s| ∈ dy;L0

t−s(B
β) ∈ dl;Bβ

t−s > 0] = αP0[ |Wt−s| ∈ dy;L0
t−s(W ) ∈ dl ]. (14)

Using again the strong Markov property we get

Px[Bβ
t ∈ dy;L0

t (B
β) ∈ dl ] = Ex[1{t≥T0}αP

x[ |Wt| ∈ dy;L0
t (W ) ∈ dl |FT0 ]]

= αPx[ |Wt| ∈ dy;L0
t (W ) ∈ dl; t ≥ T0 ]

= αPx[ |Wt| ∈ dy;L0
t (W ) ∈ dl ]

(15)

Step 3. It is a consequence of the reflexion principle that

Px[Bβ
t ∈ dy;L0

t (B
β) = 0 ] = Px[Bβ

t ∈ dy; t < τ0 ]

= 1√
2πt

(
exp{− (y−x)2

2t } − exp{− (y+x)2

2t }
)
.
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Using Step 1 to 3 we have the result for x ≥ 0 and y ≥ 0. For y < 0 we use Step 1 and 2 with α
replaced by 1−α (for l > 0), and the fact that Px[Bβ

t ∈ dy;L0
t (B

β) = 0 ] = Px[Bβ
t ∈ dy; t < τ0 ] = 0.

Proof of Proposition 4.1. We have

dBβ,µ
t = dW µ

t + βdL0
t (B

β,µ),

with W µ
t = Wt + µt a Brownian motion under Qµ defined by

dQµ

dP
= exp{−µWt −

1

2
µ2t}. Note

that under Qµ the process Bβ,µ starting from 0 is distributed as Bβ starting from 0 under P.
For any bounded continuous function f and any t ≥ 0, we have

Ex
P[f(B

β,µ
t )] = E0

P[f(B
β,µ
t + x)]

= E0
Qµ [f(B

β,µ
t + x) exp{µW µ

t − 1
2µ

2t}]

=
∫ ∫

R2 f(y + x) exp{µw − 1
2µ

2t}P0[Bβ
t ∈ dy; Wt ∈ dw]

=
∫ ∫

R2 f(y) exp{µw − 1
2µ

2t}Px,0[Bβ
t ∈ dy; Wt ∈ dw]

(16)

Suppose β > 0.
We set Φx(z, l) = (z, z − x − βl) which defines a bijection Φx : R × R+ → Dx where Dx =

{(y,w) ∈ R2 : y − x ≥ w}. Note that (Bβ
t ,Wt) = Φx(B

β
t , L

0
t (B

β)). Besides, almost surely,
(Bβ, L0(Bβ)) ∈ R× R+ and (Bβ,W ) ∈ Dx.

For x > 0, Proposition 4.2 ensures that the measure Px[Bβ
t ∈ dy;L0

t (B
β) ∈ dl ] has a density

with respect to dy dl on R×R∗
+, and gives mass to the segments of R+ × {0} with the density

Px[Bβ
t ∈ dy;L0

t (B
β) = 0 ] =

1√
2πt

(
exp{−(y − x)2

2t
} − exp{−(y + x)2

2t
}
)
dy. (17)

Let us denote ∆x = {(y,w) ∈ R+ × R : y = w + x}. The measure Px,0[Bβ
t ∈ dy; Wt ∈ dw]

has a density gx,0
Bβ ,W

(y,w) with respect to dy dw on Dx \ ∆x = Φx(R × R∗
+). But it gives mass

to the segments of the line ∆x. Let us denote Φ−1
x (y,w) = (Φ−1

1 (y,w),Φ−1
2 (y,w)) and notice

that Φ−1
1 (y,w) = y. Let A1 ⊂ R+ and A = {(y,w) ∈ R2 : y ∈ A1, y = w + x} ⊂ ∆x. As

Φ−1
x (A) ⊂ R× {0} we have

Px,0[(Bβ
t ,Wt) ∈ A] = Px[(Bβ

t , L
0
t (B

β)) ∈ Φ−1
x (A)]

= Px[Bβ
t ∈ Φ−1

1 (A);L0
t (B

β) = 0 ]

= Px[Bβ
t ∈ A1;L

0
t (B

β) = 0 ].

Using this and (17) in (16) we get

Ex
P[f(B

β,µ
t )] =

∫ ∫

Dx\∆x
f(y) exp{µw − 1

2µ
2t}Px,0[Bβ

t ∈ dy; Wt ∈ dw]

+
∫ ∫

∆x
f(y) exp{µw − 1

2µ
2t}Px,0[Bβ

t ∈ dy; Wt ∈ dw]

=
∫

R
f(y)

∫ y−x
−∞ exp{µw − 1

2µ
2t}gx,0

Bβ ,W
(y,w)dw dy

+
∫

R+
f(y) 1√

2πt
exp{µ(y − x)− 1

2µ
2t}
(
exp{− (y−x)2

2t } − exp{− (y+x)2

2t }
)
dy.

We now compute
∫ y−x
−∞ exp{µw− 1

2µ
2t}gx,0

Bβ ,W
(y,w)dw with a change of variable and an integration

by parts. We have for y ≥ 0,

∫ y−x

−∞
exp{µw − 1

2
µ2t}gx,0

Bβ ,W
(y,w)dw =

e−
1
2
µ2t

β

∫ y−x

−∞
eµw

2α(y−w−x
β + x+ y)
√
2πt3

e−
(
y−w−x

β
+x+y)2

2t dw.
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And,

∫ y−x
−∞ eµw(y−w−x

β + x+ y)e−
(
y−w−x

β
+x+y)2

2t dw = βeµ(y−x)
∫∞
0 e−βµw′

(w′ + x+ y)e−
(w′+x+y)2

2t dw′

= βeµ(y−x)

(

te−
(x+y)2

2t − βµt
∫∞
0 e−βµw′− (w′+x+y)2

2t dw′
)

= βeµ(y−x)

(

te−
(x+y)2

2t −
√
2πβµt3/2e

β2

2
µ2teβµ(x+y)N c(x+y+tβµ√

t
)

)

= β t eµ(y−x)e−
(x+y)2

2t

(

1−
√
2πtβµe

(x+y+βµt)2

2t N c(x+y+tβµ√
t

)

)

which yields the desired result. The cases y < 0 and β < 0 are treated in a similar way.
For the case x < 0, we perform the change of variable x → −x, y → −y, α → 1 − α (which

implies the change of variable β → −β) and µ → −µ.

4.3 Simulation of bridges of Bβ,µ

For 0 < t < T let us denote qβ,µ(t, T, a, b, y) the density of Bβ,µ
t knowing that Bβ,µ

0 = a and

Bβ,µ
T = b. That is to say

P[Bβ,µ
t ∈ dy |Bβ,µ

0 = a , Bβ,µ
T = b] = qβ,µ(t, T, a, b, y)dy.

Remark 4.4 Remember that for all µ ∈ R,

∀0 < t < T, ∀a, b, y ∈ R, q0,µ(t, T, a, b, y) = q0,0(t, T, a, b, y).

One may use the two following lemmas in order to sample along the law given by qβ,µ(t, T, a, b, y)
using a standard acceptance/rejection algorithm of Brownian bridges random values.

Lemma 4.4 Let a, b ∈ R, 0 < t < T .
For (β, µ) ∈ (−1, 1) × R, we have

∀y ∈ R, qβ,µ(t, T, a, b, y) =
pβ,µ(t, a, y)pβ,µ(T − t, y, b)

pβ,µ(T, a, b)
. (18)

Lemma 4.5 Let a, b ∈ R, 0 < t < T .

• For (β, µ) ∈ (−1, 1) × R with βµ ≥ 0, we have

∀y ∈ R, qβ,µ(t, T, a, b, y) ≤ KT,a,b q
0,0(t, T, a, b, y), (19)

where

KT,a,b := 4α2 p
0,µ(T, a, b)

pβ,µ(T, a, b)
,

and α := max(α, 1 − α).

• For (β, µ) ∈ (−1, 1) × R with βµ < 0, set

γ(t, z) := 1− βµ
√
2πt exp(

(z + tβµ)2

2t
)N c(

βµt+ z√
t

).

Then,
pβ,µ(t, x, y) ≤ 2αγ(t, |x|)p0,µ(t, x, y) (20)
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and
pβ,µ(t, x, y) ≤ 2αγ(t, |y|)p0,µ(t, x, y). (21)

In particular,
∀y ∈ R, qβ,µ(t, T, a, b, y) ≤ KT,a,b q

0,0(t, T, a, b, y), (22)

where

KT,a,b := 4α2γ(t, |a|)γ(T − t, |b|) p
0,µ(T, a, b)

pβ,µ(T, a, b)
.

Proof. • Case βµ ≥ 0. Let t > 0 and x ≥ 0. Looking at Proposition 4.1 it is clear that for y < 0,

pβ,µ(t, x, y) ≤ 2(1 − α)p0,µ(t, x, y).

For y ≥ 0 we have

pβ,µ(t, x, y) ≤ p0,µ(t, x, y) + (2α − 1) exp
{
− (x+y)2

2t + µ(y − x)− 1
2µ

2t
}

≤ 2α p0,µ(t, x, y),

where we have used (y − x)2 ≤ (y + x)2 (because x, y > 0). We can proceed in a similar way for
x < 0 and finally, we get that

∀t > 0, ∀x, y ∈ R, pβ,µ(t, x, y) ≤ 2α p0,µ(t, x, y). (23)

Thus, using the previous inequality gives

qβ,µ(t, T, a, b, y) =
pβ,µ(t, a, y)pβ,µ(T − t, y, b)

pβ,µ(T, a, b)

≤ 4α2 p
0,µ(T, a, b)

pβ,µ(T, a, b)

p0,µ(t, a, y)p0,µ(T − t, y, b)

p0,µ(T, a, b)

≤ 4α2 p
0,µ(T, a, b)

pβ,µ(T, a, b)
q0,0(t, T, a, b, y).

(24)

• Case βµ < 0. Let us note Γ(t, x, y) := 1 − βµ
√
2πt exp

{ (|x|+|y|+tβµ)2

2t

}
N c(βµt+|x|+|y|√

t
). For

fixed x ∈ R, y 7→ Γ(t, x, y) is an even function. As we have

∀z > 0, z e
z2

2

∫ ∞

z
e−

u2

2 du < 1, (25)

the function z 7→
√
2π exp(z

2

2 )N
c(z) has negative first derivative on R+. Therefore y 7→ Γ(t, x, y)

is decreasing on R+ and we have maxy∈R Γ(t, x, y) = γ(t, |x|). Using this and the same kind of
computations than in the previous case we get (20). As the roles of x and y are symmetric in
Γ(t, x, y), we get (21). We then obtain (22), using the same computations than for (24).

Remark 4.5 Note that (25) also allows to prove that pβ,µ(t, x, y) remains strictly positive (see
Remark 4.2).
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Exact Euler Random Walk
(∆t = 10−n, n = 2, 4) (h = 1

10 ,
1

200 )

239s 17s 3.52s
1680s 1411s

Table 1: CPU times for 106 drawings of XT .

5 Numerical results and comparison with other methods

Example 1. We first deal with a toy example. We consider the following SDE

dXt = dWt −
π

2
cos(

π

5
Xt)dt+ βdL0

t (X), X0 = x0, (26)

with β = 0.6, and x0 = 0.2. Note that, here, the drift b(x) = −π
2 cos(

π
5x) is bounded and of class

C∞ on the whole real line. The constant drift involved in Section 3, equals µ = b(0) = −π
2 . So we

will have to sample bridges of SBM with non zero drift µ, using the results of Section 4.
Our goal is to sample values of XT with T = 1 and (Xt)0≤t≤T following (26), and to draw a

histogram of them. To this end we have first to sample XT from

h(y) = C exp
(
B̄(y)− B̄(x0)

)
pβ,µ(T, x0, y)

= C exp
(
5
2

(
sin(π5x0)− sin(π5 y)

)
− µ(y − x0)

)
pβ,µ(T, x0, y)

(Step 1 of the Algorithm). This can be done by rejecting standard normal random variables with
mean x0. Indeed, using (20), we have here

h(y)

C
≤ 2αγ(T, |x0|) exp(5−

µ2T

2
) p0,0(T, x0, y).

Then we accept or reject the proposed value XT , using Steps 2 to 4 of the algorithm, with bridges
of Bβ,µ,

φ̃(x) =
π2

8
cos2(

π

5
x) +

π2

20
sin(

π

5
x) +

π2

20
,

and K = 9π2

20 .
We plot on Figure 1 the histogram obtained with 106 drawings of XT , sampled with our exact

procedure. On the same figure we plot the histogram obtained with 106 drawings of the Euler
Scheme used in [15] and [16], for decreasing time steps. We can observe the convergence of Euler
type simulations to exact ones. Note that to have the Euler scheme fitting the exact procedure
we have to take a fine time step (namely ∆t = 10−4). This is because, as shown in [15], the rate
of weak convergence of the Euler scheme in this situation is of order (∆t)1/2−ǫ, for smooth initial
condition.

On Figure 2 we plot again the histogram of our 106 exact drawings of XT , but this time together
with 106 drawings of the random walk based approximation of XT studied in [10], for decreasing
space steps. Again we can observe the convergence of the process with discretization error.

In Table 1 we report the CPU times needed to get the 106 drawings, with the three different
methods (and with the different discretization steps we have used). Programs were written in
C-language and executed on a personal computer equipped with an Intel Core 2 duo processor,
running at 2.23 Ghz. On this example exact simulations is competitive, compared to schemes with
very fine grids.
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Figure 1: Histogram of the positions at time T = 1.0 of 106 paths of the solution of (26) starting
from x0 = 0.2: exact versus Euler with time step ∆t = 10−n, for n = 2, 4.

−5 −4 −3 −2 −1 0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
exact
RW h=0.1
RW h=0.005

Figure 2: Histogram of the positions at time T = 1.0 of 106 paths of the solution of (26) starting
from x0 = 0.2: exact versus random walk with space steps h = 1

10 ,
1

200 .

14



Example 2. We want now to sample along the law of the continuous Markov process X
generated by

L =
1

2

d

dx

(
a
d

dx
·
)

(27)

with

a(x) =







x2+x+1
(2x+1)2

if x ≥ 0

3x2−x+2
(6x−1)2

if x < 0.

Note that a(0+) = 1 6= 2 = a(0−). The coefficient a(x) is of class C1 on R∗,− and R∗,+, and
uniformly strictly positive and bounded, which ensures the existence of X; in addition X solves

dXt =
√

a(Xt)dWt +
a′(Xt)

2
dt+

a(0+)− a(0−)

a(0+) + a(0−)
dL0

t (X), (28)

(see [13], [9]). We define the Lamperti transformation Φ(x) =
∫ x
0 dz/

√

a(z) and set Yt := Φ(Xt).
Then

dYt = dWt +
1

2
(
√
a)′ ◦ Φ−1(Yt)dt+

√

a(0+)−
√

a(0−)
√

a(0+) +
√

a(0−)
dL0

t (Y ), (29)

(this follows from Proposition 3.1 in [9]; see also [13] and [17]). Firstly, note that
∣
∣
∣

√
a(0+)−

√
a(0−)√

a(0+)+
√

a(0−)

∣
∣
∣ <

1. Secondly, we have

(
√
a)′(x) =







1
2
√
x2+x+1

− 2
√
x2+x+1
(2x+1)2

if x ≥ 0

− 1
2
√
3x2−x+1

+ 6
√
3x2−x+2
(6x−1)2

if x < 0,

Φ(x) =







2
√
x2 + x+ 1− 2 if x ≥ 0

−2
√
3x2 − x+ 1 + 2

√
2 if x < 0,

and Φ−1(y) =







−1+
√

(y+2)2−3

2 if y ≥ 0

1−
√

1−12[2−(
√
2−y/2)2]

6 if y < 0.

As (
√
a)′(x) is bounded with bounded first derivative on R∗,− and R∗,+, the explicitly known

coefficients β =

√
a(0+)−

√
a(0−)√

a(0+)+
√

a(0−)
and b(y) = 1

2 (
√
a)′ ◦ Φ−1(y) satisfy the assumptions of section 2.

Thus we can perform exact sampling from (29), and, applying the exact inverse transformation
Φ−1, get samples from (28) with absolutely no discretization error.

Here we have,

µ =
1

4

a′(0+)− a′(0−)
√

a(0+)−
√

a(0−)
= − 26

4(1−
√
2)

.

As we have

B̄(y) =







−µy + 1
2 log(

√
a ◦ Φ−1(y)) if y ≥ 0

−µy + 1
2 [log(

√
a ◦ Φ−1(y))− log(

√
2)] if y < 0,

we can show (using again (20)), that for all y0, y ∈ R and T > 0,

exp
(
B̄(y)− B̄(y0)

)
pβ,µ(T, y0, y) ≤

√√
2

√√
24 2ᾱγ(T, |y0|) e−

1
2
µ2T p0,0(T, y0, y).

This allows to sample YT from h(y) = C exp
(
B̄(y)− B̄(y0)

)
pβ,µ(T, y0, y), by rejecting normal

variables with mean y0 and variance T .
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Figure 3: Histogram of the positions at time T = 1 of 107 paths of the solution of (28) starting from
x0 = 0.0: exact versus random walk with space step h = 3.10−3 and Euler scheme with ∆t = 10−4.

We then accept or reject the proposed value YT by using bridges of Bβ,µ and

φ̃(y) =
((1/2)(

√
a)′ ◦ Φ−1(y))2 + (1/2)((

√
a)′′

√
a) ◦Φ−1(y)

2
,

with

(
√
a)′′(x)







− 2x+1
4(x2+x+1)3/2

− 1
(2x+1)

√
x2+x+1

+ 8
√
x2+x+1
(2x+1)3 if x ≥ 0

6x−1
4(3x2−x+2)3/2

− 3
(2x+1)

√
3x2−x+2

+ 72
√
3x2−x+2
(6x−1)3

if x < 0.

We take K = (6
√
2−1/2)2/4+(141−1/8)/2

2 as an upper bound for φ̃. We plot on Figure 3 the
histogram of 107 drawings of XT for x0 = 0.0 and T = 1, obtained from the exact procedure.
We plot on the same figure the histograms obtained with the Euler scheme and the random walk
approximation mentioned in Example 1.

Remark 5.1 Note that, at least graphically and contrary to what we can see on Figures 1 and 2,
the transition density plotted on Figure 3 seems to be continuous at 0 : this matches the well-known
theoretical result, which asserts that the transition density of diffusion semigroups corresponding
to elliptic divergence form operator of the form (27) is always continuous. We refer to Stroock [22]
for a proof based on the self-adjoint properties of these semi-groups and Nash’s inequality.

6 The degenerate case β = 0

6.1 Application of Girsanov’s theorem

In this section, we briefly treat the case where β = 0. More precisely, in this section we study the
solution (Xt) of the SDE

dXt = dWt + b(Xt)dt (30)
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where the function b : R → R is bounded and differentiable on R∗,+ and R∗,− with a possible
discontinuity at point {0}. In this particular case, the method of the previous section cannot be
applied directly because the constant µ ceases to be well-defined. Nevertheless, this case remains
tractable with the help of the results of [11] pp.440-441 concerning the transition probabilities of
Brownian Motion with Two-Valued Drift.

It is not difficult to prove that ℓ{t ∈ [0, T ] : Xt = 0} = 0, so that, we may transform equation
(30) as follows :

dXt = dWt + (b(Xt)1Xt≥0 + b(Xt)1Xt<0) dt

= dWt + (b(Xt)− b(0+))1Xt>0dt+ (b(Xt)− b(0−))1Xt<0dt+ (b(0+)1Xt≥0 + b(0−)1Xt<0) dt

= dWt + b̄(Xt)dt+ (b(0+)1Xt>0 + b(0−)1Xt<0) dt

where we have set
b̄(z) := (b(z)− b(0+))1z>0 + (b(z) − b(0−)) 1z<0.

Note that with this definition b̄ is continuous at 0 and b̄(0) = 0.
Following the lines of the previous sections, we suppose

• the function

z 7→ φ̄(z) :=
b̄2(z) + b̄′(z)

2
1R∗,+∪R∗,−(z)

is bounded.

We set φ̃(z) := φ̄(z) −m with m = infz∈R φ̄(z); the constant K denotes an upper bound of
function φ̃.

• the function u 7→ exp[B̄(u)− (u− x)2/2T ], where B̄(u) :=

∫ u

0
b̄(y)dy is integrable.

Since b̄ is continuous at 0 and b̄(0) = 0 applying the Itô-Tanaka formula, we have

∫ T

0
b̄(Xs)dWs −

1

2

∫ t

0
b̄2(Xs)ds = B̄(Xt)− B̄(x)−

∫ t

0
φ̄(Xs)ds,

and no local time of X is involved in this equality.
Performing Girsanov’s theorem, we see that

dXt = dW TV D
t + (b(0+)1Xt>0 + b(0−)1Xt<0) dt, (31)

where W TV D
t := Wt +

∫ t

0
b̄(Xs)ds is a Brownian motion under the new probability WTV D defined

by
dP

dWTV D
= exp

{∫ T

0
b̄(Xt)dW

TV D
t − 1

2

∫ T

0
b̄2(Xt)dt

}

. (32)

Thus,

EP[F (X)] = EWTV D

[
F (X) exp

{
B̄(XT )− B̄(x)−

∫ T

0
φ̄(Xt)dt

}]
,

where (Xt) under the measure WTV D is solution of equation (31) : under WTV D, (Xt) a Brownian
Motion with Two-Valued Drift (See [11] pp.440-441 for details concerning these particular Brownian
Motions).

Let us now briefly sketch the algorithm that may be derived from these facts for the simulation
of an exact skeleton of (Xt) (under the initial probability P).
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6.2 Algorithm

Notation : Set θ = (θ0, θ1) := (b(0+), b(0−)) ; in the sequel and following [11] we drop any
reference to θ and we denote p̃(t, x, y) the transition probability density of (Xt) under WTV D.
Considering (31) and (32), this density can be explicitly computed : the formulas are given for
example in [11] pp.440-441.

Following the lines of Beskos and al [3], the computation performed in the above section leads
naturally to the following algorithm :

Step 1 - Simulate a random variable Z according to the density

h(y) = C exp
(
B̄(y)− B̄(x0)

)
p̃(T, x0, y).

Keep in memory the value z of Z.
Step 2 - Simulate a Poisson Point Process with unit density on [0, T ] × [0,K]. The result is a

random number n of points (t1, z1), . . . (tn, zn)
Step 3 - Simulate the values of a Brownian Motion with Two-Valued Drift Btvd

t1 , . . . Btvd
tn con-

ditionally on Btvd
0 = x0 and Btvd

T = z.
Step 4 - If ∀i ∈ {1, . . . , n} φ̃(Btvd

ti ) ≤ zi accept the trajectory. Else return to step 1.

This algorithm returns a drawing of (Xt1 , . . . ,Xtn ,XT ).

7 Discussion and concluding remarks

7.1 An open problem : the path decomposition of a skew Brownian bridge

An important issue for the extension of the initial exact simulation method is to overcome the
restraining assumptions made on the drift function b (see section 2.2) : namely, the assumption of
boundedness for b.

For example, it is frustrating that these assumptions do not allow us to simulate exactly what
one may call the “Skewed Ornstein-Uhlenbeck” diffusion process. This difficulty appears even in
the classical case (solutions of non skewed SDEs) and the fundamental reason is that we do not
know how to simulate exactly a Poisson Process with σ-finite intensity on the whole space R.

In the classical case, where b is everywhere differentiable and no local time is involved (non
skewed SDEs), this problem is solved by decomposing the trajectory of the standard Brownian
bridge on [0, T ] w.r.t. the space-time point where it attains its maximum or both its maximum
and is minimum : we refer to [4] for a detailed presentation of this problem in the classical setting.

Consequently, if one wants to overcome the restraining assumptions of section 2.2 concerning
the drift function b, one has to search for such kind of decompositions for (at least) the Skew
Brownian Motion (not to mention the drifted Skew Brownian Motion). Unfortunately, we did
not manage to obtain this decomposition. Up to our knowledge, no results can be found in the
literature concerning this decomposition and this open problem seems difficult to us. However, we
give below some insight concerning this problem thanks to an application of a theoretical result
stated in [18].

Set α := β+1
2 . Let τβ,µz := inf(s ≥ 0 : Bβ,µ

s = z). Set uλ(x; z) := Ex

(

e−λτβ,µ
z

)

which gives the

Laplace transform of τβ,µz at λ > 0 (with Bβ,µ
0 = x).

Proposition 7.1 (case µ = 0)
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In the simple case where µ = 0, the function uλ is given by

uλ(x; z) =







sinh
(√

2λ(z − x)
)

sinh(
√
2λz)

α

cosh(
√
2λz)− (1− α)e−

√
2λz

+
sinh(

√
2λx)

sinh(
√
2λz)

if z ≥ x > 0,

e−
√
2λ(x−z) if x ≥ z ≥ 0,

e
√
2λx α

cosh(
√
2λz)− (1− α)e−

√
2λz

if x < 0 < z,

e
√
2λ(x−z) if 0 ≥ z ≥ x,

e−
√
2λx 1− α

cosh(
√
2λz)− αe

√
2λz

if z < 0 < x,

sinh
(√

2λ(z − x)
)

sinh(
√
2λz)

1− α

cosh(
√
2λz)− αe

√
2λz

+
sinh(

√
2λx)

sinh(
√
2λz)

if 0 > x ≥ z.

(33)

Remark 7.1 Note that if α = 1/2, we retrieve after easy computations the well known result that
gives the Laplace Transform of the law of the hitting time of z by a standard Brownian Motion
starting from x.

Proof. We only sketch the proof. The different cases may be easily conjectured from the description

of the excursion measure for the SBM
(

Bβ,0
s

)

s≥0
and the known facts concerning the standard

Brownian Motion (decomposition of the different cases when a skew Brownian Motion reaches
z starting from x). In order to check rigorously the validity of the result, one may verify that

the formulas (33) yield a solution of Dynkin’s problem associated to the generator of
(

Bβ,0
s

)

s≥0
namely : 





1

2

d2

dx2
uλ(.; z) = λuλ(.; z)

uλ(z; z) = 1,
(34)

with
uλ(.; z) ∈ {g ∈ C0(R) ∩C2 ((−∞, 0) ∪ (0,∞)) : αg′(0+) = (1− α)g′(0−)}.

A scale function s and the corresponding integrated speed measure m of a Skew Brownian
Motion are given by

s(x) =

{
2

β+1x if x ≥ 0
2

1−βx if x < 0
; m(x) =

{
(β + 1)x if x ≥ 0
(1− β)x if x < 0.

(see [14]). In particular, the density ℓβ,0(t, x, y)dy of the SBM w.r.t. the speed measure m(dy) is
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given by

ℓβ,0(t, x, y) =







1

2α
√
2πt

(
exp{−(y − x)2

2t
} − exp{−(y + x)2

2t
}
)

+
1√
2πt

exp
{
− (x+ y)2

2t

}
, if x > 0, y > 0;

1√
2πt

exp
{
− (x− y)2

2t

}
, if x > 0, y < 0 or if x < 0, y > 0;

1

2(1 − α)
√
2πt

(
exp{−(y − x)2

2t
} − exp{−(y + x)2

2t
}
)

+
1√
2πt

exp
{
− (x+ y)2

2t

}
, if x < 0, y < 0.

(of course ℓβ,0(t, x, y) = ℓβ,0(t, y, x)).
Let

Mβ,0
T := sup

0≤s≤t
Bβ,0

s ; ρβ,0T := inf{s ≥ 0 : Bβ,0
s = Mβ,0

s }.

Then, applying the results of Theorem 2 in Pitman-Yor [18], we have the following proposition :

Proposition 7.2

1. For any a, b ≤ z < ∞, λ > 0, we have that

E

(

e−λρβ,0
T 1

Mβ,0
T ∈dz | Bβ,0

0 = a,Bβ,0
T = b

)

=
uλ(a; z)uλ(z; b)

ℓβ,0(T, a, b)
s(dz). (35)

2. Moreover, under P

(

. | Bβ,0
0 = a,Bβ,0

T = b,Mβ,0
T = z, ρβ,0T = u

)

, the path fragments

(

Bβ,0
s : 0 ≤ s ≤ u

) (

Bβ,0
T−s : 0 ≤ s ≤ T − u

)

are independent, distributed respectively like

(

Bβ,0
s : 0 ≤ s ≤ τβ,0z

)

under P

(

. | Bβ,0
0 = a

)

given τβ,0z = u

and (

Bβ,0
s : 0 ≤ s ≤ τβ,0z

)

under P

(

. | Bβ,0
0 = b

)

given τβ,0z = T − u.

An open problem is to find a description of these laws and to give a procedure in order to simulate
these laws exactly.

7.2 Conclusion

In this paper we presented an extension of the exact simulation method of [3] that permits to
produce an exact sample skeleton of a one dimensional diffusion process skewed at 0. This method
may be applied to diffusions related to strongly elliptic divergence form operators that possess a
discontinuous coefficient at 0.

In our opinion, this first work should be extended in several directions :

• How can we overcome the restraining boundedness assumption on the drift function b ?

• What about one dimensional diffusion process skewed at a finite number of points ?

• How do we extend the method to the multidimensional case ?

20



References

[1] T. Appuhamillage, V. Bokil, E. Thomann, E. Waymire, and B. Wood, Occupation and local
times for skew brownian motion with applications to dispersion across an interface, Ann. Appl.
Probab. To appear (2011).

[2] V. Bally and D. Talay, The law of the Euler scheme for stochastic differential equations: I.
Convergence rate of the distribution function, Probab. Theory Related Fields 104 (1996), no. 1,
43–60.

[3] A. Beskos, O. Papaspiliopoulos, and G.O Roberts, Retrospective exact simulation of diffu-
sion sample paths with applications, Bernoulli 12 (2006), no. 6, 1077–1098. MR 2274855
(2008c:65011)

[4] A. Beskos, O. Papaspiliopoulos, and G.O. Roberts, A factorisation of diffusion measure and
finite sample path constructions, Methodol. Comput. Appl. Probab. 10 (2008), no. 1, 85–104.
MR 2394037 (2008m:60156)

[5] A. Beskos, G. Roberts, A. Stuart, and J. Voss, MCMC methods for diffusion bridges, Stoch.
Dyn. 8 (2008), no. 3, 319–350. MR 2444507 (2009k:60155)

[6] A. Beskos and G.O. Roberts, Exact simulation of diffusions, Ann. Appl. Probab. 15 (2005),
no. 4, 2422–2444. MR 2187299 (2006e:60111)

[7] M. Bossy, N. Champagnat, S. Maire, and D. Talay, Probabilistic interpretation and random
walk on spheres algorithms for the Poisson–Boltzmann equation in molecular dynamics, Math.
Model. Numer. Anal. 44 (2010), no. 5, 997–1048.
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i Primenen. 35 (1990), no. 1, 173–179. MR 1050069 (91e:60242)

[18] J. Pitman and M. Yor, Decomposition at the maximum for excursions and bridges of one-
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