
HAL Id: hal-00565269
https://hal.science/hal-00565269

Submitted on 11 Feb 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A DSP based SVC IP STB using open SVC decoder
Fernando Pescador, David Samper, Matias J. Garrido, Eduardo Juarez,

Médéric Blestel

To cite this version:
Fernando Pescador, David Samper, Matias J. Garrido, Eduardo Juarez, Médéric Blestel. A DSP based
SVC IP STB using open SVC decoder. Consumer Electronics (ISCE), 2010 IEEE 14th International
Symposium on, 2010, Germany. pp.1 -6, �10.1109/ISCE.2010.5523708�. �hal-00565269�

https://hal.science/hal-00565269
https://hal.archives-ouvertes.fr

A DSP based SVC IP STB using Open SVC Decoder

F. Pescador, D. Samper, M.J. Garrido and E. Juarez
Grupo de Diseño Electrónico y Microelectrónico (GDEM)

Universidad Politécnica de Madrid.
Madrid, Spain.

{pescador, dsamper, matias, ejuarez}@sec.upm.es

M. Blestel
IETR/Image Group Lab
UMR CNRS 6164/INSA

Rennes, France
mblestel@insa-rennes.fr

Abstract— In this paper, a implementation of a DSP-based IP
set-top box (IP-STB) to decode CIF sequences compliant with the
new Scalable Video Coding standard (14496-10 Amd 3) using
Open SVC Decoder (OSD) is presented. The OSD software,
designed for the PC environment, has been integrated into a
previously developed IP-STB prototype. About 15 CIF frames
per second can be decoded with the IP-STB.

Set-top box; Scalable Video Coding; Open SVC Decoder; DSP

I. INTRODUCTION
In the last years, an increase in the deployment of all kinds

of telecommunication networks (cable, satellite and terrestrial)
arose in many parts of the world. These networks support
multimedia services and applications such as digital TV,
videoconferencing, video surveillance and Internet access
among others. In this context, the consumer multimedia
terminals play a central role. In these terminals, video
management is the most demanding task in terms of
computational power. Nevertheless, different terminals can
have different computational power or display capabilities.

Scalable Video Coding (SVC) techniques [1] allow
multimedia terminals to accommodate the spatial and temporal
resolutions and the quality of a decoded video sequence to the
available hardware/software resources. SVC techniques have
been defined in most video coding standards [2][3][4], but their
use has not become widespread because of their jitter problems
and poor efficiency [1]. However, the SVC features recently
included in H.264 [5] surpasses those used in former standards
and facilitate new possibilities. Up to now, the available SVC
encoder/decoder implementations are restricted to the PC
domain [6][7][8]. One of the SVC decoder implementations is
Open SVC Decoder (OSD) [8]. This decoder is written in C
language and implements the baseline profile.

On the other hand, the new multimedia Digital Signal
Processors (DSPs) [9] [10] allow the implementation of
terminals supporting a variety of video coding standards at
relatively low cost. In our previous work [11] [12] [13],
MPEG-2, MPEG-4 and H.264 decoders have been ported and
optimized for different DSPs and a methodology to implement
real-time video decoders has been extracted from this previous
experience [13].

The methodology is based on porting a C code from PC to
the DSP environment, testing the standard conformance of the
DSP-based decoder, optimizing the C code to improve the
performance and integrating the optimized decoder in a video

decoding system like an IP-Set Top Box (IP-STB). This
methodology has been applied to port the OSD decoder to a
DSP-based system.

In this paper, the implementation of a DSP-based SVC
IP-STB using OSD is explained. The SVC and OSD software
are outlined in section II. In section III, the previously
developed IP-STB is introduced for reference. Section IV
summarizes the OSD porting process. The tests and
performance results are presented in section V. Finally, section
VI concludes the paper.

II. SCALABLE VIDEO CODING AND OPEN SVC DECODER

A. H.264/SVC standard
In October 2007, a new SVC algorithm was standardized as

ISO/IEC 14496-10 Amd 3 [5] [14]. As a part of the
standardization effort, the Joint Scalable Video Model (JSVM)
reference software [6] has been developed as well.

In this standard, the video compression is performed by
generating a unique hierarchical bit-stream structured in several
levels or layers of information, consisting of a base layer and
several enhancement layers. The base layer provides basic
quality. The enhancement layers provide improved quality at
increased computational cost. Three types of scalabilities:
spatial, temporal and quality are specified in the standard.

In a temporally scalable video sequence, several frame rates
(temporal layers) of a video sequence can be chosen when
decoding. Fig. 1 shows an example of a Group of Pictures
(GOP) where the user can select three plausible frame rates. If
the device decodes the four frames of the GOP (I1, B1, B2,
B3), a full-frame-rate sequence are obtained. If the decoder
discards B1 and B3 frames and only decodes I1 and B2, a half-
frame-rate sequence is achieved. The third case is a quarter-
frame-rate sequence, which is obtained when the decoder
discards B1, B2 and B3 frames and only decodes I1.

I1 B1 B2 B3 I2

Fig. 1. Example of a GOP in a temporally scalable bit-stream.

This work was supported by the Spanish Ministry of Science and Technology
under grants TEC2006-13599-C02-01 and TEC2009-14672-C02-01.

In a spatially scalable video sequence, several spatial
resolutions (spatial layers) of the video frames can be chosen
when decoding. Fig. 2 depicts an example of a spatial scalable
bit-stream containing three possible resolutions. As can be
seen, the information relating to each resolution of a frame is
contained in the field reserved for such frame in the bit-stream.

Fig. 2. Example of a spatially scalable bit-stream.

In a quality-scalable video sequence (or SNR sequence), it

is possible to select several quality levels (quality layers) when
decoding. Fig. 3 shows an example of a quality scalable bit-
stream with three types of quality. The information relating to
the three qualities of a frame is contained in the space reserved
for this frame in the bit-stream.

Video Header GOP GOP GOP

Frame 1 Frame 2 Frame 3 Frame 4

Fig. 3. Example of a quality-scalable (SNR) bit-stream.

Finally, the three types of scalability specified in

H.264/SVC can be combined into a single bit-stream.

B. Open SVC Decoder
IETR has developed the Open SVC Decoder [15], a C

language Scalable baseline profile decoder supporting all tools
to deal with spatial, temporal and quality scalabilities. It is
based on a fully compliant H.264 baseline decoder with most
of the tools of the main profile. In the Scalable baseline profile
the base layer has to be conformant with AVC baseline
profile. In this profile, contrary to quality and temporal
scalability which are supported without any restriction, the
spatial scalable coding is restricted to 1.5 and 2 resolutions
ratios between two successive spatial layers.

The Open SVC Decoder has been developed in the
framework of Scalim@ges [16] project. This project aimed to
promote SVC standard in order to reduce the number of
formats manipulated in production, distribution, and use of
video compatible with existing solutions. Currently, others
French and international projects like SVC4QoE [17] and
ScalNet [18] are using Open SVC Decoder. These projects try
to focus on the impacts and needed applications on network in
order to manage efficiently the SVC technology and to
improve the end user quality of experience.

The Open SVC Decoder, contrary to the JSVM which
decodes all layers in a bit-stream, can decode a specific layer
with a specific temporal scalability. This particularity provides
an adaptability of the decoder over different platforms by
selecting the right layer in order to have a real-time decoding.
The changing of layer can be also done during the decoding
process when a missing enhancement occurs due to
transmission errors. Fig. 4 shows the data flow graph of the
decoder when the top layer of a four layers stream is not
decoded. Variable Length Coding and Texture Decoding are
processes for the first three layers but not for the fourth.

Fig. 4. Open SVC Decoder data flow graph.

In Fig. 5, a simplified flow diagram of the decoding process
for a H.264 compliant stream is shown. The decoder reads the
H.264 stream from an input buffer and decodes the NAL units
in sequence. After decoding the NAL header, the NAL unit
content is identified as a slice header or another syntax
element (e.g. an SPS or a PPS). When the NAL unit contains
an interesting slice for the selected layer, the decoder extracts
all the syntactical elements from the stream and stores them in
an intermediate buffer. If the processed NAL must be
displayed, each macroblock (MB) is completely decoded,
however, if the NAL must not be displayed the MB is partially
decoded.

In the next step, if a frame has been completely decoded,
the deblocking filter is applied. Finally, the decoded pictures
are stored in images buffers and presented in the right order
using the PC Simple Direct Media Layer (SDL) library [19].

The Open SVC Decoder has been compared to the JSVM
9.16 to benchmark and to test the conformance of the decoder.
Table I shows the results of the speeding up between both
decoders on several conformance sequences. The performance
of the OSD is up to 50 times faster than the JVSM decoder [6],
making this decoder a good starting point in the development
of a new SVC decoder.

This work was supported by the Spanish Ministry of Science and Technology
under grants TEC2006-13599-C02-01 and TEC2009-14672-C02-01.

START

Initiations

Read fragment from bitstream

Choose and set layer

Determine Nal unit type

CAVLC / CABAC Decoding

VCL NAL?

Last MB?
NO

MB fully decoded

Display the right order image

Loop filter

Last MB?
NO

YES

Filter?
NO

NAL to
Display?

Process Non-VCL
NAL

End bitstream?

NO
END

YES

Interesting
NAL?

NON VLC NAL?

VLC NAL?

NO

YES

YES

YES

MB partially decoded

NO

Last MB?
NO

YES

Last MB?
NO

YES

YES

Present the frame using SDL

Fig. 5. Simplified Open SVC Decoder flow chart.

TABLE I JSVM AND OPEN SVC DECODER COMPARISON.
Decoding time (s) Sequence

JSVM OSD
Speed up

SVCBST-1 31.2 0.87 35 times faster

SVCBST-2 23.3 0.87 26 times faster

SVCBST-14 137 2.69 50 times faster

SVCBST-15 50 2.11 23 times faster

III. IP-STB ARCHITECTURE
The IP-STB [11] has been implemented in a commercial

prototyping board [20] based on the TMS320DM6437 DSP
[21].

A. TMS320DM6437 Architecture
This DSP is based on a third-generation high-performance

VLIW architecture. A simplified block diagram is shown in
Fig. 6. A fixed-point core with internal memory (L1D, L1P
and L2) and an internal DMA (IDMA) is used. A switched
central resource interconnects the core with a set of standard
peripherals and a video processing subsystem.

The peripheral set includes, among others: an Ethernet
MAC (EMAC), an I2C Bus interface, two multichannel
buffered serial ports (McBSPs), a multichannel audio serial
port (McASP), two 64-bit general-purpose timers, two
UARTs, a PCI interface, two external memory interfaces
(EMIF) and an EDMA controller (EDMA3) to handle the data
transfers.

The video processing subsystem includes a Video
Processing Front-End (VPFE) for video capture, and a Video
Processing Back-End (VPBE) for video display.

C64x+ DSP

32 KB
L1P

Cache

80 KB
L1D

 Cache

128 KB L2 RAM

Video
Processing
Subsystem

VPFE

VPBE

S
w

itc
he

d
C

en
tra

l R
es

ou
rc

e EDMA3

I2C

PCI

EMAC

McASPUART

DDR2

Timers

Async
EMIF

McBSP

IDMA

Fig. 6. Internal architecture of the new DSP.

B. Hardware Architecture
A commercial prototyping board (Fig. 7) based on the

TMS320DM6437 DSP has been used to implement the
IP-STB. The board has a DSP working at 600 MHz, 128 MB
of SDRAM external memory, 80 MB of Flash external
memory and several interfaces.

Fig. 7. The DSP-based development board.

C. Software Architecture
The IP-STB has been implemented over the board

referenced in the previous subsection using a multi-task
architecture (see Fig. 8). The transport task reads an MPEG-2
Transport Stream (MP2TS) containing the program through an
Ethernet port (EMAC) and extracts the audio and video
streams. The video dec task decodes the video stream and the

video play task sends the decoded pictures to a video port. The
audio stream is decoded and played in a similar way. The
application task is a very simple user interface. A real-time
kernel schedules the tasks execution and allows inter-tasks
communication.

EMAC

Tx

Transport ALG
A

Audio dec

PLAY
A

Audio play

PLAY
V

Video play

ALG
V

Video dec

video
Video
Port

Video
Port

audio
McASPMcASP

User
(IR interface)

Application

EMAC

Tx

Transport ALG
A

Audio dec

PLAY
A

Audio play

PLAY
V

Video play

ALG
V

Video dec

video
Video
Port

Video
Port

audio
McASPMcASP

User
(IR interface)

Application

Fig. 8. IP-STB software architecture.

IV. CODE PORTING AND OPTIMIZATION
The OSD has been integrated into the DSP based IP-STB

explained in section III. The integration process has been
carried out in two steps. First, the decoder has been ported to
the DSP. Second, the decoder has been integrated into the
IP-STB software architecture. Next subsections describe the
changes in the decoder during the porting process.

A. Porting of the Open SVC decoder to the DSP
The OSD has been ported to the DSP as follows:

• The decoder has been encapsulated into a DSP-BIOS
[22] task. The size of the stack associated to this task
has been adjusted to 1 MB and has been allocated in
external memory.

• Code and data have been allocated in external memory.
To limit the amount of memory of the DSP
implementation, the maximum size of the decoded
pictures has been reduced from HD (1920×1080) to SD
(720×576).

• Internal memory has been configured as follows: L1D
is divided in 32 KB for cache memory and 48 KB for
general purpose data; L1P is configured as a 32 KB
cache program memory and L2 is splitted between
level-2 cache memory and general purpose memory.
Currently, neither the code nor data are allocated in
internal memory but these memories have available
space for future optimizations.

• The decoder output interface has been modified. In the
original code, the decoded pictures are displayed on
screen using the SDL library as is shown in the Fig. 4.
In the DSP code, the decoded pictures are written in a
YUV file instead of being presented.

• Functions used to access the stream files have been
adapted to the functions available in the DSP real-time
support libraries.

• The way to select the layer to be decoded has been
modified. In the original code, the layer was selected
using the command line arguments while in the DSP

version these parameters are introduced through a
configuration file that is parsed at the begging of the
decoding process.

B. OSD integration in the IP-STB
The decoder has been embedded into the IP-STB video dec

task (see Fig. 8). To do so, several changes have been done in
the IP-STB tasks:

• The transport task has been updated to support the
NAL types used in SVC.

• The decoder initialization has been adapted so as the
decoder can be embedded in a multi-task architecture.

• The decoder reads the video stream from a memory
buffer, shared with the transport task, instead of a file.
Moreover, the output pictures are written to a buffer,
shared with the Video play task, instead of a file.

V. TESTS AND PERFORMANCE RESULTS
A set of tests has been carried out to verify the decoder and

to measure its performance. Three types of tests have been
carried out: tests of the decoder using the simulator, tests of the
decoder using the prototyping board and tests with the IP-STB
in an actual environment.

A. Tests of the decoder using the simulator
The decoder performance has been measured in simulation

with CCS [23] using the sequences described in Table I. These
sequences are the same that were used in [15] to test the
performance of the OSD in a PC implementation.

The testbench of the ported OSD to the DSP is shown in
Fig. 9. The decoding task reads a portion of the SVC stream
from a file and internally stores it in a stream buffer. The
decoding process reads its input data from this buffer and
stores the decoded data in a picture buffer. The process is
repeated until the SVC stream ends. A reconstructed YUV file
is written each time a full picture is decoded.

Sequence
file

Decoding Task
File

Processing
Decoding
Process

File
Processing

Stream buffer Picture buffer

Reconstructed
YUV file

Fig. 9. DSP-based Open SVC decoder testbench.

Table II contains the profiling results for the decoder in
simulation. The columns layer 0 and layer 1 show the average
number of clock cycles needed to decode a picture from a layer
of the SVC stream.

TABLE II OPENSVC DECODER BENCHMARK.
sequence Layer 0 Layer 1

SVCBST-1 6895906 (360x240) 49736106 (720x480)
SVCBST-2 6899799 (360x240) 49756945 (720x480)
SVCBST-14 23649626 (640x360) Not decoded (HD)
SVCBST-15 4457216 (320x180) 27099036 (640x360)

B. Tests of the decoder using the prototyping board
In these real-time tests several complex sequences have

been decoded to measure the decoder performance extracting
the different layers included in each stream. A commercial
SVC encoder [24] has been used to generate the streams.

The tests have been carried out with the testbench presented
in Fig. 9 but using a TMS320DM6437 based prototyping board
[20] instead of the DSP simulator.

The decoder performance has been measured in real-time
using a DSP internal timer. The timer is captured both at the
beginning and at the end of a Network Abstraction Layer
(NAL) decoding process. The difference between the two data
is the time spent by the decoder for this NAL unit.

Nine sequences have been generated to test the decoder in
real-time. The spatial resolutions used are CIF, ½ CIF
(272x224) and QCIF; the temporal resolutions layers have 20
fps, 10 fps and 5 fps; finally, the quality layers have been
generated using different bit rates, with the layers
corresponding to a 100%, 50% and 25% of the bit rate
associated to each sequence.

The encoded sequences were generated using the well-
known video sequence "mobile" with YUV 4:2:0 format and
200 frames. Some encoding parameters are the same for all of
the generated sequences:

o GOP size of 16 progressive frames.
o Constant output bit rate.
o Entropy encoding using CABAC.
o Deblocking filter activated.
o One B frame for each P-frame (except in the sequences

with a quarter of temporal resolution, which need 3
B-frames for each I- o P-frames)

o Intra- and inter-prediction with all possible partitions
for the macroblocks.

The sequences F#1, F#2 and F#3, with three layers each

(L0, L1 and L2), has been generated to test the quality and
spatial scalabilities simultaneously. The temporal resolution is
the same for the three sequences (20 fps). The main features of
these sequences are presented in Table III.

TABLE III STREAMS GENERATED FOR 20 FPS OF TEMPORAL RESOLUTION.

Base Layer (L0) Enh. Layer 1 (L1) Enh. Layer 2 (L2)

Size Bit-rate
(Kbps) Size Bit-rate

(Kbps) Size Bit-rate
(Kbps)

F#1 QCIF 64 QCIF 128 QCIF 256

F#2 ½ CIF 84 ½ CIF 175 ½ CIF 350

F#3 CIF 128 CIF 256 CIF 512

The sequences F#4, F#5 and F#6 with three layers each

(L0, L1 and L2) has been generated to test the temporal and
spatial scalabilities at the same time. The quality of the layers
is the maximum for the three sequences. The features of the
generated sequences are presented in Table IV.

TABLE IV STREAMS GENERATED BY FIXING THE QUALITY OF THE SEQUENCES.

Base Layer (L0) Enh. Layer 1 (L1) Enh. Layer 2 (L2)

Size fps Size fps Size fps

F#4 QCIF 5 QCIF 10 QCIF 20

F#5 ½ CIF 5 ½ CIF 10 ½ CIF 20

F#6 CIF 5 CIF 10 CIF 20

Finally, three sequences have been generated (F#7, F#8 and

F#9) with three layers each (L0, L1 and L2) to test the temporal
and quality scalabilities simultaneously. The characteristics of
the encoded sequences are presented in Table V.

TABLE V STREAMS GENERATED WITH SPATIAL RESOLUTION FIXED TO ½ CIF.

Base Layer (L0) Enh. Layer 1 (L1) Enh. Layer 2 (L2)
 Bitrate

(Kbps) fps Bitrate
(Kbps) fps Bitrate

(Kbps) fps

F#7 64 5 128 10 256 20

F#8 84 5 175 10 350 20

F#9 128 5 256 10 512 20

The computational load needed to decode each layer of the

example sequences has been measured. In Table VI the
percentage of CPU load spent by the decoder is given.

TABLE VI CPU COMPUTATIONAL LOAD FOR TEST SEQUENCES.

 Base Layer
(L0)

Enh. Layer 1
(L1)

Enh. Layer 2
(L2)

F#1 11 % 24 % 35 %

F#2 24 % 53 % 75 %

F#31 39 % 88 % 130 %

F#4 9 % 16 % 29 %

F#5 16 % 32 % 60 %

F#6 26 % 51 % 98 %

F#7 13 % 27 % 52 %

F#8 14 % 28 % 54 %

F#9 16 % 32 % 60 %

C. Tests with the IP-STB in an actual environment
Functional and performance tests have been carried out

with the testbench shown in Fig. 10. Actual movies are played
with a SD DVD, whose analogue output is connected to a PC
based video capture board [25]. The PC runs a commercial
SVC encoder [24], generating an MP2TS with the SVC stream
and an AC3 audio stream. The MP2TS is transmitted over an
Ethernet network using a multicast IP address.

The IP-STB receives the MP2TS stream, extracts audio and
video elementary streams, decode both and display the results
in a standard TV set. The IP-STB real-time tests have been
carried out using actual DVD contents.

1 The percentage of CPU associated with Enhancement Layer 2 of sequence
F#3 is greater than 100% so no real-time processing is achieved for this layer.

DVD Player

Capture board
& SVC encoder

DSP based IP-STB

Switch

TV set

Fig. 10. IP-STB testbench in an actual environment

In Table VII, the measured decoder performance using an

actual soccer match is shown. Four sequences with spatial and
quality scalability types have been encoded using a GOP of 10
frames. Two of them use CABAC with 3 P-frames and 6 B-
frames in each GOP and the other two sequences use CAVLC
without B-frames. All the sequences have 1500 frames. The
cycles column in layer 0 and layer 1 shows the average number
of clock cycles (×106) needed to decode a picture from a layer
of the SVC sequence.

TABLE VII DECODER REAL-TIME BENCHMARK.

Layer 0
(Base layer)

Layer 1
(Enhancement layer) Sequence

cycles size Kbps cycles size Kbps

Spatial CAVLC 3.8 QCIF 104 18.7 CIF 512

Quality CAVLC 10.7 CIF 256 25.5 CIF 512

Spatial CABAC 5.1 QCIF 109 23.9 CIF 512

Quality CABAC 15.2 CIF 256 30.7 CIF 512

Table VIII shows the average CPU clock cycles (×106) per
frame used by the IP-STB video dec task and the frames per
second (fps) that can be decoded with the DSP at 600 MHz.
The overhead of the other IP-STB tasks is less than 4×106 CPU
clock cycles per frame. The test sequences are the same as
those referenced in Table VI.

TABLE VIII TASKS PERFORMANCE.

Spatial CAV. Quality CAV. Spatial CAB. Quality CAB

Lay0 Lay1 Lay0 Lay1 Lay0 Lay1 Lay0 Lay1

Video
dec 4.5 22.3 11.9 30.4 7.7 28.7 18.9 36.5

fps 75.9 23.6 39.7 17.7 56.0 18.8 27.0 15.0

VI. CONCLUSIONS AND FUTURE WORK
The Open SVC Decoder has been ported to a latest

generation DSP and has been integrated into an IP-STB
prototype with a performance of 15 CIF fps. Now our previous
experience [13] [26] is currently been applied to the
optimization of this decoder. Extrapolating the results we have
obtained for other decoders, real-time operation for SD pictures
can be forecasted.

ACKNOWLEDGMENT
The authors would like to thank Ernesto Seisdedos from

Grupo de Diseño Electrónico y Microelectrónico (UPM) and
Mickaël Raulet from IETR/Image Group Lab for their
contributions to this work.

REFERENCES
[1] J-R Ohm, "Advances in Scalable Video Coding". Proceedings of the

IEEE, vol. 93, nº 1 pp. 42-56, Jan. 2005.
[2] ISO/IEC 13818-2 (ITU-T Rec. H.262). Generic coding of moving

pictures and associated audio information: Video. 1995.
[3] ISO/IEC 14496-2. Information technology. Coding of audio visual

objects. Part 2: Video. 1998.
[4] ISO/IEC 14496-10. Information technology. Coding of audio-visual

objects. Part 10: Advanced Video Coding. Dec. 2005.
[5] Joint ITU-T Rec. H.264 | ISO/IEC 14496-10 / Amd.3 Scalable Video

Coding, November 2007.
[6] Joint Scalable Video Model JSVM-9.9, Available in CVS repository at

Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen.
[7] IMEC. http://www2.imec.be/be_en/press/imec-news/archive-2008/imec-

speeds-up-scalable-video-decoder-svc-with-factor-20.html
[8] Open SVC Dec. http://sourceforge.net/projects/opensvcdecoder
[9] Texas Instruments. TMS320DM642 Video/Imaging Fixed-Point Digital

Signal Processor. http://focus.ti.com/docs/prod/folders/print/
tms320dm642.html

[10] ADSP-BF533 High Performance General Purpose Blackfin Processor.
http://www.analog.com/en/epProd/0,,ADSP-BF533,00.html

[11] F. Pescador, C. Sanz, M.J. Garrido, C. Santos y R. Antoniello. “A DSP
based IP set-top box for home entertainment”. IEEE Trans. on
Consumer Electronics Vol. 52, Issue 1, Feb. 2006 pp. 254-262.

[12] F. Pescador, M. J. Garrido, C. Sanz, E. Juárez, D. Samper and R.
Antoniello. “MPEG-4 SP/ASP decoder for a DSP-based Multi-Format
IP Set-Top Box”. Annual Conference of the IEEE Industrial Electronics
Society (IECON06). Paris (Francia).2006.

[13] F. Pescador, C. Sanz, M.J. Garrido, E. Juárez y D. Samper. “A DSP
Based H.264 Decoder for a Multi-Format IP Set-Top Box”. IEEE Trans.
on Consumer Electronics Vol. 54, Issue 1, Feb. 2008 pp. 145-153

[14] H. Schwarz, D.Marple and T.Wiegand. “Overview of the Scalable Video
Coding Extension of the H.264/AVC Standard”. IEEE Trans. on Circuits
and Systems for Video Tech. Vol 17, Nº9, pp 1003-1120. Sept 2007

[15] M. Pelcat, M. Blestel, M. Raulet. “From AVC decoder to SVC: Minor
impact on a data flow graph description” PCS2007. June 2007.

[16] Scalim@ges project: http://www.images-et-reseaux.com/en/les-
projets/fiche-projets-finances.php?id=125

[17] SVC4QoE: http://www.images-et-reseaux.com/en/les-projets/fiche-
projets-finances.php?id=203

[18] ScalNet: http://www.scalnet.info/system/web/default.aspx
[19] Simple Direct Media Layer (SDL). http://www.libsdl.org/
[20] DM6437 Digital Video Development Platform. http://www.

spectrumdigital.com/product_info.php?cPath=37&products_id=196.
[21] Texas Instruments. DaVinci DSPs. http://focus.ti.com/docs/prod/

folders/ print/tms320dm6437.html
[22] Texas Instruments. “TMS320 DSP-BIOS User's guide” (SPRU303B –

May. 2000). http://focus.ti.com/lit/ug/spru303b/spru303b.pdf.
[23] Code Composer Studio. http://focus.ti.com/dsp/docs/

dspsupportatn.tsp?sectionId=3&tabId=415&familyId=44&toolTypeId=3
[24] Mainconcept Scalable Video Coding. http://www.mainconcept.com/site/

developer-products-6/pc-based-sdks-20974/svc-tech-preview-
22033/information-22036.html.

[25] Decklink Studio. http://www.decklink.com/products/decklink/
[26] F. Pescador, G. Maturana, M.J. Garrido, E. Juárez y C. Sanz. “An H.264

video decoder based on a latest generation DSP”. IEEE Trans. on
Consumer Electronics Vol. 55, Issue 1, Feb. 2009 pp. 145-153.

