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ORIGINAL ARTICLE

French Guiana Amerindian demographic history
as revealed by autosomal and Y-chromosome STRs
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Abstract

Background: Previous investigations of French Guiana Amerindians performed by this group included
blood group and protein genetic markers, mitochondrial DNA and Y-chromosome investigations.
Molecular autosomal data and more extensive Y-chromosome determinations were lacking.
Subjects and methods: The genetic variability of 15 autosome (ASTRs) and 17 Y-chromosome (YSTRs)
microsatellite loci was studied in four French Guiana (Emerillon, Palikur, Wayampi, Kali’na) and one
Brazilian (Apalai) Amerindian populations. A sixth group, the Peruvian Matsiguenga of the Maipurean
linguistic family, was included in the data analysis since they could provide information about the past
migration of people from that linguistic stock into northeastern Amazonia.
Results: Marked ASTR and YSTR variability was found, with 96% of the YSTR haplotypes being found
in one population only. There was excellent agreement between the present and previous autosomal or
uniparental results. Multidimensional scaling based on FST genetic distances and population structure
analysis revealed heterogeneity in gene distribution, with a clear difference between the Matsiguenga
and Emerillon and the other groups. In the latter, Wilcoxon sign-rank test between observed and
expected heterozygosity and the mode of allele frequency distribution revealed clues of a significant
past genetic bottleneck. The Wayampi stand genetically closer to the Apalai, Palikur and Kali’na when
examined for the autosome but not the Y-chromosome panel of markers, suggesting preferential female
gene flow.
Conclusion: The new data provided additional important information about the biological history of
people from a remote South American region, indicating how gene diversity analyses can be used to
increase understanding of human microevolutionary processes.
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Introduction

French Guiana is located in South America approximately between latitudes 28 and 5850’

North and longitudes 51830’ and 54840’ West, on the eastern part of the vast Guiana Plateau

that straddles Venezuela, northern Brazil and the three Guianas, which consist of the former

Dutch and British colonies and the present French department. The French Guianan region

is made up of a Precambrian insular shelf mostly covered by Amazonian rainforest bordered

by littoral sandy savannah and mangrove swamps.

The coastal part of this apparently harsh environment was settled as early as 100 AD by

members of the Maipurean branch of the Arawak linguistic family, followed by

Karib-speaking populations circa 900 AD (Grenand and Grenand 1985; Rostain 1994).

The Maipure originated from northern Peru, the Karib from either Venezuela, the Guiana

Plateau or even the upper Xingu (Urban 1992; Campbell 1997). Later, between the 15th and

19th centuries, populations of the Tupi-Guarani linguistic family moved into the French

Guiana hinterland from the south, completing the radial diffusion of the Tupi linguistic

stock which may have started at the southern rim of the Amazon river (Campbell 1997;

Marrero et al. 2007).

Historical observations of the coastal groups by Europeans date from the turn of the 17th

century (1606), but it took a century for them to meet the hinterland populations (1720).

At the time of contact, no less than 20 Amerindian ‘nations’ were identified (Hurault 1965).

Currently, six Amerindian populations of three linguistic stocks live in French Guiana:

Palikur and Arawak-Lokono (Maipurean), Kali’na and Wayana (Karib), Emerillon and

Wayampi (Tupi-Guarani) (Nimuendajú 1926; Grenand and Grenand 1985; 1987). These

populations are geographically close to the Brazilian Apalai, another Karib-speaking

group that merged with a portion of the French Guianan Wayana during the 19th century

(Salzano et al. 1988). Today the Palikur and Arawak-Lokono represent the most eastern

Maipurean-speaking tribes of South America, deriving from people of the Arawak linguistic

phylum that may have spread into the northern part of South America from the Peruvian

Andean foothills ,3000 years ago (Campbell 1997).

Previous genetic studies of French Guiana and related Amerindian populations have shown

interesting features. The Karib tribes present lower inter-population genetic distances than

the Tupi-Guarani, probably due to the fact that their higher effective population sizes would

have prevented genetic drift (Callegari-Jacques and Salzano 1989). Among the Tupi-Guarani,

the Emerillon seem to have suffered genetic drift effects due to small population size

(Mazières et al. 2009). Additionally, data from previous genetic systems (i.e. red cell and

serum proteins, the first region of the hypervariable segment of mitochondrial DNA and eight

Y-chromosome SNPs) have suggested a two-stage peopling of French Guiana, starting in the

littoral and then moving into the hinterland (Mazières et al. 2007; 2008; 2009).

STR data have proved to be very informative for studies of Amazonian Native populations

(Dos Santos et al. 2009). On the other hand, little genetic information has been obtained for

the specific male fraction in the area of our interest, besides the knowledge that Amerindians

display few polymorphisms for the major Y-chromosome lineages (Ruiz-Linares et al. 1999;

Bortolini et al. 2003).

To scrutinize the patterns of Amerindian peopling in the northeastern corner of Amazonia

we investigated 15 autosomal and 17 Y-chromosome short tandem repeat polymorphisms

(ASTRs, YSTRs) in four French Guianan (Emerillon, Palikur, Wayampi and Kali’na) and

two related (Brazilian Apalai and Peruvian Maipurean-speaking Matsiguenga) Amerindian

populations. The results were compared with previously obtained uni- and biparental data

from the same populations, and the following questions were addressed: (a) Are the data
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consistent regardless of their mode of inheritance? (b) To what extent is the population

structure compatible with geographical, linguistic or historical data? and (c) Can we infer the

main patterns of Amerindian peopling in that Amazonian region?

Subjects and methods

Population sampling and pedigree recording

Q12

The present study includes samples of the Emerillon from the margins of the Camopi and

Tampock tributaries (median point: 38N, 53810W), the Wayampi from the margins of the

mid and lower Oyapock river (3810’N, 52820’W), the Palikur from a place near the Oyapock

estuary (48N, 51845’W) and the Kali’na who live in a region between the Mana and Maroni

mouths (5844’N, 53855W). Additional Brazilian (Apalai: 1810’N, 54850’W) and Peruvian

(Matsiguenga: 128S, 72830’W) populations complete our population data set. All samples

were collected during the 1964–1985 missions, led by three of us (G.L., E.B. and F.M.S),

under the auspices of the Centre National de la Recherche Scientifique (Centre

d’Hemotypologie, Toulouse, France), Institut National de la Santé et de la Recherche

Médicale, Universidade Federal do Rio Grande do Sul, and Fundação Nacional do Indio

(FUNAI) who gave permission to contact the Brazilian Apalai. All blood samples were

collected into vacutainers containing EDTA or ACD anti-coagulants and conserved in

isothermal boxes at 48C. Simultaneously with the sample collections, individuals were

questioned about their pedigree and clan membership. Genealogical trees were then

sketched so that relatives could be traced as far back as three generations on average.

Laboratory determinations

Using pedigree records, unrelated family founders were preferentially analysed because they

would provide a more representative sample of the population studied. Additionally the

researcher who performed most of the determinations (S.M.) was typed for the studied

genetic markers to detect possible sample contamination.

A total of 30 Emerillon, 30 Palikur, 29 Wayampi and 23 Kali’na from French Guiana, 26

Apalai from northern Brazil and 29 Matsiguenga from southern Peru were screened for the

15 (CSF1PO, D2S1338, D3S1358, D5S818, D7S820, D8S1179, D13S317, D16S539,

D18S51, D19S433, D21S11, TH01, FGA, TPOX and vWA) autosomal STR loci identified

by the commercial AmpF‘STRw Identifilerw PCR Amplification kit (Applied Biosystems,

Darmstadt, Germany). Population descriptions and geographic locations have been

presented in Mazières et al. (2007; 2008). All DNA amplifications and genotyping were

performed at the Departamento de Genética of the Universidade Federal do Rio Grande do

Sul (Porto Alegre, Brazil) following the kit user manual instructions. Length fragments were

amplified in single reactions for all 15 loci using fluorescently labelled primers in a

GeneAmp PCR System 9600 thermocycler (Applied Biosystems). Electrophoresis of the

amplified fragments, mixed with formamide and GS500 LIZ Size Standard was carried out

in an ABI PRISM 310 Genetic Analyser using the separation medium performance

optimized polymer (POP) 4 and 47 cm capillaries (Applied Biosystems). The 3.2.1 version

of GENESCANTM was used to track lanes and measure fragment sizes, while the

GENOTYPERTM version 2.5.2 software was used to automatically designate alleles in

comparison with locus-specific allelic ladders.

DNA from male subjects of the six studied populations (13 Emerillon, 28 Palikur, 30

Wayampi, 17 Kali’na, 28 Apalai and 13 Matsiguenga) were genotyped at the Laboratoire

AMIS (Toulouse, France) for 17 Y-chromosomal STR loci (DYS19, DYS389I, DYS389II,
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DYS390, DYS391, DYS392, DYS393, DYS385a, DYS385b, DYS437, DYS438, DYS439,

DYS448, DYS456, DYS458, DYS635 and GATA H4) using the AmpF‘STRw YFilerw

PCR Amplification kit (Applied Biosystems). Previous SNPs screening ensured that no

non-Amerindian admixture occurred in the selected samples (Mazières et al. 2008). DNA

amplification was carried out in a GeneAmp 2700 Thermal cycler (Applied Biosystems)

following the manufacturer’s instructions. The target length fragment, mixed with

formamide and GS600 LIZ Size Standard was then separated by electrophoresis in a ABI

PRISM 3100 Genetic Analyser using the separation medium performance optimized

polymer (POP) 6. Runs were performed at the Sequencing and Genotyping Service, IFR30,

UMR 5165 CNRS-UPS III, Purpan University Hospital, Toulouse, France. The version 3.2

GENEMAPPERw analysis software was used to assign allele sizes in comparison with locus

specific allelic ladders.

Statistical analyses

Allele frequencies were calculated using the GENEPOP web utility (Raymond and Rousset

1995). Mean number of alleles, estimates of gene diversity over YSTR loci and mean

expected heterozygosity H were obtained with the ARLEQUIN v3.1 package (Excoffier et al.

2005). Levels of gene diversity for the YSTR loci were estimated through the

POWERMARKER v3.25 package (Liu and Muse 2005). The FST-based distances

(Weir and Cockerham 1984) were calculated from the autosomal and Y-chromosomal STR

genotypes assuming the stepwise mutation model using ARLEQUIN v3.1. Genetic

relationships were finally displayed through a metric multidimensional scaling (MDS) plot

using XLSTAT-Pro 7.5.2q.

To evaluate total patterns of genetic diversity in the French Guiana area, ASTRs and

YSTRs genetic diversities were also compared to those previously obtained for the blood

group and protein systems, mtDNA haplogroup frequencies and HVS-I variation (Mazières

et al. 2007; 2008). Pairwise and general correlation between ranks of genetic diversities

calculated with different markers were measured with Spearman’s correlation coefficient and

Kendall’s coefficient of concordance (Siegel 1956), respectively. Friedman’s and Nemenyi’s

tests were used to compare the populations for the ranked diversities (Zar 1999), using the

SPSSw v.13 for Windowse program.

Estimation of a putative genetic bottleneck (i.e. reduction of the population effective size

Ne) from allele frequencies is possible using the BOTTLENECK package (Cornuet and

Luikart 1996). This program contrasts recently bottlenecked from non-bottlenecked

populations, whose Ne remained stationary for more than the past dozen generations, testing

two genetic peculiarities: the mode of distribution of allele frequencies and the difference

between observed and expected gene diversities. Briefly, it assumes that in stationary

populations alleles at low frequencies are expected to be more abundant than alleles at

intermediate frequencies, the allele frequencies distribution being L-shaped (Luikart et al.

1998a). During a reduction of the effective population size rare alleles tend to be lost rapidly,

shifting the allele frequency distribution toward the intermediate allele frequency class

(Luikart et al. 1998a). Also, in recently reduced populations, allele numbers decrease faster

than gene diversity (Allendorf 1986), conditioning the observed gene diversity to be

significantly higher than the expected one, since the latter is computed from the observed

number of alleles under the assumption of a constant-size population (Luikart et al. 1998b).

The ASTRs distribution was tested with the mode-shift indicator and the Wilcoxon sign-

rank test furnished by BOTTLENECK (Cornuet and Luikart 1996). One thousand

iterations per locus were performed and the loci were assumed to fit both the stepwise

TAHB 492793—4/6/2010—VENKATRAMAN—368846

4 S. Mazieres et al.

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370



(SMM) and the two-phased (TPM) mutation models, which are both likely to be realistic

mutation models for microsatellite loci in human populations (Valdes et al. 1993; Di Rienzo

et al. 1994). Three markers (D19S433, D21S11 and THO1) accounting for 20% of the 15

ASTR loci studied present intermediate allelic forms (e.g. D21S11*32.2) and thus could

evolve following a multistep mutation model (namely the Infinite Allele Model or IAM).

Therefore, 20% of multistep mutations were assumed together with lower proportions (10%

and 5%) for TPM, as recommended by the BOTTLENECK manual. A variance s 2 of 28

was used since s is roughly equal to the typical step size (Di Rienzo et al. 1994), which

amounts to 5.3 allele repeats in the total sample investigated.

Our sampled populations were investigated to verify if they constituted different genetic

entities, by clustering individuals as a function of their genotypes using STRUCTURE 2.2

(Pritchard et al. 2000; Falush et al. 2003). The autosomal set of markers was used, since the

method requires non-linked markers only. For each number of clusters (K ¼ 2–11), 10 runs

were performed with a burn-in period of 20 000 iterations followed by 10 000 Monte Carlo

Markov Chain replications. All runs were based on the admixture model, in which each

individual is assumed to have ancestry in multiple genetic clusters. The Greedy CLUMPP 1.1.1

algorithm (Jakobsson and Rosenberg 2007) was used to find the optimal cluster membership.

Finally, the allele frequencies for 11 ASTRs (CSF1PO, D3S1358, D5S818, D7S820,

D8S1179, D13S317, D16S539, D18S51, D21S11, TH01 and TPOX) were compared to

those from 21 other populations available in the literature (Hutz et al. 2002; Kohlrausch et al.

2005; Crossetti et al. 2008; González-Andrade et al. 2008; Dos-Santos et al. 2009). The Da

genetic distances were then computed using DISPANq (Ota 1993) and the genetic

relationships were estimated through a neighbour joining tree with 1000

bootstrap replications to test the reliability of the branches. Using the Mantel test furnished

by XLSTAT-Pro 7.5.2q, the Da matrix was then compared to the geographic distances

calculated with the Google Earth 5.0.1 ruler tool. Geographic coordinates of the populations

(Table S1) were gathered from the authors’ works or estimated according to the linguistic

maps available at www.ird.fr and www.ethnologue.com websites.

Results

Supplementary Material Table S2 provides the allele frequency distribution for the 15

ASTRs investigated in our six sampled populations from the French Guiana area and the

Peruvian Matsiguenga. After Bonferroni correction for multiple comparisons (Bonferroni

1936) no deviations from Hardy-Weinberg equilibrium were observed with the exception of

the D21S11 and FGA loci in the Palikur sample. Considering the five populations from

northern Amazonia as one group, 107 alleles were detected, 111 if the Peruvian Matsiguenga

are included, ranging from three (TH01) to 13 (D18S51). The most frequent allele shared

by the six groups is the same at only one locus: D3S1358 (*15). This allele was also found to

be the most frequent in 11 out of 14 populations from Paraguay, northern Argentina (Chaco)

and Brazil (Hutz et al. 2002; Kohlrausch et al. 2005; Crossetti et al. 2008).

YSTRs haplotypes detected in the male fraction of the studied populations are presented

in Supplementary Material Table S3. A total of 55 different arrangements were found in the

129 males. Only two haplotypes (3.6%) were detected in more than one population: H5 was

observed in one Wayampi and five Emerillon lineages while H9 is shared by two Apalai and

two Kali’na men. No variation was observed in 11 YSTRs, DYS389I, DYS393, DYS438,

DYS439, DYS448, DYS459 and GATAH4 in the Emerillon; DYS19 in Emerillon and

Wayampi; DYS391 in Emerillon and Palikur; DYS392 in Apalai, Emerillon and

Matsiguenga; and DYS437 in Apalai, Kali’na and Matsiguenga.
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Gene diversity estimates across loci are listed in Table I. Values vary from 0.63 (Emerillon)

to 0.72 (Apalai and Kali’na) for the ASTRs and from 0.22 (Emerillon) to 0.54 (Kali’na) for

the YSTRs. When comparing the same 15 ASTRs and five YSTRs (DYS19, DYS390,

DYS391, DYS392 and DYS393) in other South Amerindians, the six populations under

study fall within the observed range for the continent (Table I). The average number of

alleles per locus vary from 4.3 (Emerillon) to 6.1 (Apalai) for the ASTRs and from 1.5

(Emerillon) to 3.2 (Apalai) for the YSTRs.

The French Guianan populations plus the related Apalai and Matsiguenga were compared

using the FST-based genetic distance for the ASTRs genotypes and YSTRs haplotypes

(Tables S4 and S5). All pairwise comparisons were statistically significant ( p , 0.05) and the

genetic relationships are displayed in Figure 1. To ensure the reliability of the FST distances

calculated for the ASTRS, the Da genetic distance (Table S6; Nei et al. 1983), which was

found to perform comparatively well in estimation of population trees from autosomal

microsatellite allele frequency data (Takezaki and Nei 1996), has been estimated with

POWERMARKER (Liu and Muse 2005) and the matrices compared through a Mantel test.

A highly significant correlation (r Fst-Da ¼ 0.919, p ¼ 0.001) links the two distance methods,

highlighting the accuracy of all results with the FST distance estimator in our ASTRs data set.

In Figure 1, general agreement between bi- (Figure 1(a)) and uniparental (Figure 1(b))

genetic markers can be observed, with a central core clustering the coastal Palikur and Kali’na

together with the Apalai, while the Emerillon and Matsiguenga occupy peripheral positions.

The Wayampi stand differently depending on the genetic markers considered; they are placed

closer to the Apalai-Palikur-Kali’na cluster for the autosomal dataset, but not for the YSTRs.

The STRUCTURE analysis, based on the 167 ASTR genotyped individuals, indicated a

number of clusters equal to the number of populations tested as the best adjustment. Table II

presents the average membership scores. High mean scores were obtained in cluster 1 by the

Matsiguenga (0.89), in cluster 3 by the Emerillon (0.92) and in cluster 5 by the Wayampi

Table I. Gene diversity estimates and number of alleles for 15 ASTRs and 17 YSTRs in six South Amerindian

populations.

Level of gene diversitya Number of allelesa

ASTRs YSTRsb ASTRs YSTRs

Het. SE Gene diversity SE Average SE Average SE

Emerillon 0.63 0.14 0.22 (0.10) 0.13 (0.10) 4.3 1.6 1.5 0.6

Palikur 0.64 0.17 0.47 (0.38) 0.25 (0.25) 5.3 2.0 3.2 1.2

Wayampi 0.69 0.11 0.24 (0.25) 0.14 (0.18) 5.3 1.8 2.9 1.2

Kali’na 0.72 0.09 0.54 (0.49) 0.29 (0.31) 5.9 2.0 2.9 0.9

Apalai 0.72 0.11 0.47 (0.36) 0.25 (0.24) 6.1 1.9 3.2 1.2

Matsiguenga 0.66 0.14 0.31 (0.22) 0.18 (0.17) 5.0 1.7 2.4 0.8

South Americac lowest 0.58 0.00

Mean 0.68 0.33

highest 0.78 0.56

a Heterogeneity assessment with Friedman’s non-parametric test using exact the Monte Carlo method: (1) ASTR

average heterozygosity: x 2 ¼ 15.191; df ¼ 5; p , 0.01; Y STR average diversity: x 2 ¼ 26.906; df ¼ 5; p , 0.01.

(2) number of alleles: ASTRs: x 2¼26.671; df ¼ 5; p , 0.001; YSTRs: x 2 ¼ 32.682; df ¼ 5; p , 0.001.
b Values in parentheses were obtained for the commonly analysed DYS19, DYS390, DYS391, DYS392 and

DYS393 microsatellites.
c Data from 472 and 418 individuals examined for 15 ASTRs and five YSTRs, respectively (Bianchi et al. 1998;

Hutz et al. 2002; Bortolini et al. 2003; Kohlrausch et al. 2005; Crossetti et al. 2008; González-Andrade et al. 2008;

Tirado et al. 2009).
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(0.74). Clusters 2 and 6 show composite affiliations (2: Apalai 0.46/Kali’na 0.62; 6: Palikur

0.54/Apalai 0.41). Although no clear main affiliation can be distinguished for cluster 4, in

this inferred group the highest scores were observed for Palikur and Kali’na. These results

basically confirm those observed in the MDS plot: Apalai, Kali’na and Palikur have higher

genetic similarities while Matsiguenga, Emerillon and Wayampi each have a more particular

ASTR profile.

The five French Guianan and Northern Brazilian populations were sorted according to

level of genetic variability and the ranks compared with previously published data for bi- and

uniparental genetic systems (Table III). Kendall’s concordance coefficient among the four

markers (r ¼ 0.863; p , 0.01), as well as Spearman’s correlation coefficients between the

Figure 1. Metric multidimensional scaling plots of FST based distances between five northern Amazonian and one

related Peruvian Amerindian populations considering (a) 15 ASTRs (stress: 0.011) and (b) 17 YSTRs (stress:

0.003).
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two biparental or uniparental markers (r¼0.900, p , 0.05) suggest that the STR pattern of

gene diversity agrees with protein and mtDNA data in our set of populations. It is especially

important for uniparental markers (mtDNA and Y-chromosome) to match the biparental

protein and ASTR systems, since genetic diversity can be altered by their lower effective

size Ne.

When tribes were compared for the level of variability at the four sets of markers,

Q10

significant differences were found (Friedman’s test: 13.8, p , 0.001). The Emerillon showed

the lowest level followed by the Palikur and Wayampi, while the Apalai and Kali’na had the

highest values. Multiple comparisons using the Nemenyi method revealed that the Emerillon

significantly differed from both the Apalai and the Kali’na (Table III).

The diploid loci were then analysed to test whether their distribution suggested stationary

or recently bottlenecked populations (Table IV). Excess of observed heterozygosity with

significant p-values were found for the Emerillon ( p 80%SMM ¼ 0.002, p 90%SMM ¼ 0.013),

Wayampi ( p 80%SMM ¼ 0.001, p 90%SMM ¼ 0.006) and Matsiguenga ( p 80%SMM ¼ 0.001,

p 90%SMM ¼ 0.009) when the markers were assumed to fit the two-phase (TPM) allowing for

80% and 90% of the stepwise (SMM) models. Although the p-values increased along with

the SMM proportion, the Emerillon and the Wayampi still showed a significant excess of

observed heterozygosity ( p 95%SMM ¼ 0.028 and 0.047, respectively) at 95% of SMM. As far

as the allele frequency distributions are concerned, L-shaped modes, expected in

non-recently bottlenecked populations, were observed in all studied tribes with the

exception of the Emerillon.

Discussion

The autosomal and Y-chromosome STRs tested proved to be highly variable, as has been

observed in other populations, and the intervals of variation found were within the range

previously observed in Amerindians. However, there is clear inter-tribal heterogeneity, with

the Emerillon showing a more restricted variability and the Apalai (a hinterland) and Kali’na

(a coastal) Karib populations presenting the highest amount of variation.

The distinctiveness between the two Maipurean-speaking groups, Matsiguenga and

Palikur, had been previously found (Mazières et al. 2008), suggesting that people of this

language are genetically heterogeneous. This heterogeneity could have predated their

postulated southwest–northeastern movement (suggested on linguistic grounds; Urban

1992; Campbell 1997) or may have developed during this migration process. Analyses of a

more representative number of Maipurean tribes are necessary to clarify this issue.

The population clustering between the Palikur, Kali’na and Apalai in Figure 1 agree

first with an independent settlement of the littoral (Rostain 1994) and second with lower

Table II. Average membership scores in the six inferred clusters obtained by the STRUCTURE analysis of 167

individuals from four French Guiana and two related Amerindian populations.

Average membership in the inferred cluster

Population N8 of individuals 1 2 3 4 5 6

Emerillon 30 0.014 0.022 0.916 0.017 0.017 0.013

Palikur 30 0.050 0.058 0.011 0.319 0.020 0.524

Wayampi 29 0.042 0.091 0.059 0.010 0.744 0.053

Kali’na 23 0.076 0.617 0.048 0.159 0.043 0.056

Apalai 26 0.041 0.456 0.044 0.012 0.038 0.410

Matsiguenga 29 0.890 0.021 0.037 0.012 0.023 0.017
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inter-population variation among the northern Amazonian Karib populations (Callegari-

Jacques and Salzano 1989). To better examine this pattern in the French Guiana area, we

performed additional analyses of variance (AMOVA) considering groups based on

geographic location or linguistic affiliations. Geographic groups were ‘littoral’ (Palikur,

Kali’na) and ‘interior’ (Emerillon, Wayampi, Apalai), whereas language groups were ‘Karib’

(Kali’na, Apalai), ‘Maipure’ (Palikur, Matsiguenga) and ‘Tupi’ (Emerillon, Wayampi). An

interesting feature is the lower amount of inter-population variation in the littoral

(FASTRs
ST ¼ 0:044; FYSTRs

ST ¼ 0:097) than in the interior groups (FASTRs
ST ¼ 0:057;

FYSTRs
ST ¼ 0:448). When comparing groups according to linguistic stock, more homogeneity

is found within the Karib (FASTRs
ST ¼ 0:014; FYSTRs

ST ¼ 0:104) than in the other linguistic

clusters, namely ‘Maipure’ (FASTRs
ST ¼ 0:061; FYSTRs

ST ¼ 0:221) and ‘Tupi’ (FASTRs
ST ¼ 0:061;

FYSTRs
ST ¼ 0:651), all in agreement with the inferences cited above.

To accurately estimate the level of sex differences in gene flow, the YSTR AMOVA results

were compared with those from the mtDNA HVS-I nucleotide results (Mazières et al. 2008).

A slightly less pronounced population similarity was observed for the mtDNA in the littoral

and Karib populations (littoral: FmtDNA
ST ¼ 0:126; FYSTRs

ST ¼ 0:097; Karib: FmtDNA
ST ¼ 0:210;

FYSTRs
ST ¼ 0:104), whereas the opposite pattern could be observed in all the other geographic

or linguistic groups (interior: FmtDNA
ST ¼ 0:198; FYSTRs

ST ¼ 0:448; Maipure: FmtDNA
ST ¼ 0:200;

FYSTRs
ST ¼ 0:221; and Tupi: FmtDNA

ST ¼ 0:177; FYSTRs
ST ¼ 0:651). In this context, the

clustering of the Tupi-speaking and hinterland Wayampi with the Palikur, Kali’na and

Apalai when the ASTRs (Figure 1) or other systems were considered (Mazières et al. 2007;

2008), but not when the YSTRs were taken into consideration, suggests that directional sex-

biased gene flow occurred in this ethnic group. This is historically confirmed by reports of

capture of women as the Wayampi settled along the Oyapock river (Hurault 1965).

When the genetic distances observed for the ASTRs and YSTRs were compared to those

of protein systems and mtDNA (Mazières et al. 2007; 2008), positive correlations for all

pair-wise comparisons of genetic distances for markers with partially or fully maternal

inheritance (Mantel’s test: r ASTRs-protein ¼ 0.850, r mtDNA-protein ¼ 0.195, r ASTRs-

mtDNA ¼ 0.045) and a negative association between YSTRs and mtDNA genetic distances

(r ¼ 20.150) were found. These results, together with the high FST values among interior

and Tupi groups for the YSTRs, are in accordance with the historical event we have just

mentioned for the Wayampi.

Comparison of the allele frequencies for 11 ASTRs examined in the six populations under

study and 21 other South Amerindian groups through a neighbour joining tree did not yield a

clear separation either by geography or language, with very low bootstrap values and a

Multidimensional Scale (MDS) analysis did not improve the pattern (data not shown), in

accordance with Dos Santos et al. (2009) who, using the same 11 genetic markers, could not

Table IV. P-values of the Wilcoxon sign-rank test for excess of observed heterozygosity and mode distribution of the

allele frequencies assuming the stepwise (SMM) and two-phase (TPM) mutation models.

Populations TPM with 80% of SMM TPM with 90% of SMM TPM with 95% of SMM SMM Mode

Emerillon 0.002* 0.013* 0.028* 0.104 Shifted

Palikur 0.300 0.445 0.598 0.805 L-shaped

Wayampi 0.001* 0.006* 0.047* 0.360 L-shaped

Kali’na 0.054 0.227 0.360 0.700 L-shaped

Apalai 0.068 0.151 0.227 0.360 L-shaped

Matsiguenga 0.001* 0.009* 0.054 0.339 L-shaped

*Significant p-values.
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find clear geographic or linguistic patterns among Amazonian Amerindians. Indeed, no

correlation has been detected in our data between the Da and geographic distances (Table S7)

(Mantel test, r ¼ 20.012; p ¼ 0.48).

The result indicating a recent genetic bottleneck in the Emerillon agrees with our previous

findings (Mazières et al. 2007) and is undoubtedly related to the demographic decrease that

occurred among Amerindians during the last century (Hurault 1965; Mazières et al. 2009).

Genetic and demographic bottlenecks (i.e. reduction of the effective and census sizes of the

population, respectively) are not automatically linked (Luikart et al. 1998b). The former can

occur without reduction of the total population size if the next generation descends from a

few mating pairs or a few breeders of one sex (Low 1988; Kittles et al. 1999; Wilder et al.

2004; Hammer et al. 2008). Conversely, a demographic reduction does not always lead to a

severe loss of genetic diversity (Allendorf 1986). Central African Pygmies present an

enlightening illustration of these phenomena. These hunter-gatherers show more variability

for the HVS-I mtDNA (haplotype diversity above 0.80, Destro-Bisol et al. 2004), ASTRs

(mean heterozygosity ¼ 0.76, Destro-Bisol et al. 2000) and YSTRs (gene diversity ¼ 0.56,

Coia et al. 2004) than South Amerindians (mean values for HVS-I ¼ 0.77, Mazières et al.

2008; ASTRs ¼ 0.68; YSTRs ¼ 0.34, Table I), but no signs of population expansion

(Excoffier and Schneider 1999) or substantial population decrease (Patin et al. 2009).

Conclusions

Answers to the questions posed in the introduction are as follows: First, agreement of

patterns found across the genetic markers was observed, and our multiple comparison

analysis revealed a meaningful pattern of genetic diversity and relationships in the area.

Second, geography seems to be more important than language in shaping the relationships

found, and our data largely agree with historical records. Special note should be made of the

Emerillon results; their population decline was clearly reflected in the genetic parameters

considered. Lastly, the clustering of all groups besides the Matsiguenga and Emerillon on a

single nucleus prevents inferences about early colonization patterns. However, different

histories may have existed between Wayampi males and females.

Acknowledgements
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Urban G. 1992. A história da cultura brasileira segundo as lı́nguas nativas. In: Carneiro da Cunha M, editor.
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