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Abstract

Finite sample distributions of studentized inequality measures di¤er sub-
stantially from their asymptotic normal distribution in terms of location and
skewness. We study these aspects formally by deriving the second order ex-
pansion of the �rst and third cumulant of the studentized inequality measure.
We state distribution-free expressions for the bias and skewness coe¢ cients.
In the second part we improve over �rst-order theory by deriving Edgeworth
expansions and normalizing transforms. These normalizing transforms are de-
signed to eliminate the second order term in the distributional expansion of the
studentized transform and converge to the Gaussian limit at rate O(n�1). This
leads to improved con�dence intervals and applying a subsequent bootstrap
leads to a further improvement to order O(n�3=2). We illustrate our procedure
with an application to regional inequality measurement in Côte d�Ivoire.
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1 Introduction

Most attention in the statistical literature on inequality measures has focused on
the asymptotic properties of their estimators (see e.g. Cowell, 1989, Thistle, 1990,
Davidson and Duclos, 1997). Their �nite sample properties have rarely been consid-
ered. Exceptions are, for instance, Mills and Zandvakili (1997), Biewen (2001) and
Davidson and Flachaire (2007) who investigate bootstrap inference, and Maasoumi
and Theil (1979) who develop small-sigma approximations. We consider �nite sample
properties of Generalized Entropy (GE) indices of inequality, which constitute a lead-
ing class of inequality indices since it is the only class that simultaneously satis�es the
key properties of anonymity and scale independence, and the principles of transfer,
decomposability, and population (see e.g. Maasoumi 1999 or Cowell 2000). Studies
of industrial concentration, or income studies after decomposition into population
subgroups, or cross country or regional comparisons, can easily yield samples of the
sizes considered here.
We show that even for relatively large samples standard �rst order theory provides

poor guidance for actual behavior. The distribution of the studentized inequality mea-
sure di¤ers substantially from the Gaussian limit in terms of location and skewness.
We study the bias (average deviation from zero) and skewness formally in the �rst
part of this paper by deriving the second order expansions of the �rst three cumu-
lants. We refer to the resulting coe¢ cients of n�1=2 as bias and skewness coe¢ cients.
This is the �rst key contribution of this paper. Moreover, the bias and skewness coef-
�cients can be estimated non-parametrically using sample moments without a¤ecting
the order of the approximation. In all applications considered below, it is shown that
the bias and skewness coe¢ cients times n�1=2 are substantial compared to the limit
values of zero.
The poor Gaussian approximation has important inferential consequences. The

actual coverage error rate of standard con�dence intervals di¤er substantially from
their nominal rates. In particular, two-sided symmetric con�dence intervals are far
too short, leading in some cases to failure rates several times their nominal values.
Moreover, actual coverage failures are very asymmetric so that one-sided con�dence
intervals perform even worse.
Having analyzed these departures from normality of the �nite sample distribution

of the studentized inequality index, we turn to potential corrections in the second
part of the paper. These corrections are based on considering the second order term
in the distributional expansion, which is a function of the bias and skewness coe¢ -
cient derived in the �rst part of the paper. We consider two approaches. Edgeworth
expansions directly adjust the asymptotic approximation by including the O

�
n�1=2

�
term, whereas normalizing transformations of the inequality measure are nonlinear
transformations designed to annihilate this term asymptotically. Edgeworth expan-
sions can su¤er from negativity of the density and oscillations in the tails and we
show that this is indeed a problem for standardized inequality measures.
The focus of the second part of the paper is therefore on normalizing transforms.

Our second key contribution is the derivation of normalizing transforms for GE in-
equality measures. First, we show that the skewness coe¢ cient of a standardized
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non-linear transform of the inequality measure is zero if the transform satis�es a cru-
cial di¤erential equation. We further derive the bias coe¢ cient of this transform, so
that we obtain a bias-corrected transform which yields the desired asymptotic re�ne-
ment. Second, we use this general result to compute the normalizing transform for
various income distributions and sensitivity parameters of the inequality index, and
study their �nite sample distributions. We show that these are indeed closer to the
Gaussian limit distribution. The associated con�dence intervals are much improved in
terms of coverage rates and symmetry. A further improvement is obtained asymptot-
ically and in practice by a subsequent application of the bootstrap to the transform.
The asymptotic rate of convergence is the same as in Beran�s (1987) double bootstrap.
We illustrate the implementation of our procedures in the context of measuring

regional income and expenditure inequalities. The motivation for such a study would
be the targeting of policy interventions based on inequality di¤erences. Using house-
hold data for Côte d�Ivoire, we show that improved con�dence intervals based on
our methods can be substantially wider and shifted relative to standard �rst order
methods used in the literature.
The organization of this paper is as follows. Section 2 states the class of inequality

measures, considers estimation, and states the �rst order (Normal) approximation.
The quality of this Normal approximation in �nite samples is studied via simula-
tions in Section 2.3. We consider quantiles of the actual density of the studentized
inequality index, and we illustrate the consequences of the departure from normality
for inference. In Section 3 we study the problems of bias and skewness formally by
deriving the bias and skewness coe¢ cients. These enable us to give the Edgeworth
expansion for the GE indices and to derive the normalizing transform. We study the
behavior of the transform in Section 4 and Section 5 includes an application of our
procedure to the problem of regional inequality in Côte d�Ivoire. Section 6 concludes
and the proofs are collected in the Appendix.

2 Generalized Entropy Indices of Inequality

We consider the popular and leading class of inequality indices, the GE indices. These
are of particular interest because it is the only class of inequality measures that
simultaneously satis�es the key properties of anonymity and scale independence, the
principles of transfer and decomposability, and the population principle. For an
extensive discussion of the properties of the GE index see Cowell (1977, 1980, 2000).
The class of indices is de�ned for any real � by

I(�;F )
=

8>>>>><>>>>>:

1
�2��

h
��(F )
�1(F )

� � 1
i

for � 6= f0; 1g

�
R
log( x

�1(F )
) dF (x) for � = 0R

x
�1(F )

log( x
�1(F )

) dF (x) for � = 1

(1)

where � is a sensitivity parameter, F is the income distribution, and ��(F ) =R
x�dF (x) is the moment functional, and we will assume incomes to be positive.
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The index is continuous in �. The larger the parameter �, the larger is the sensi-
tivity of the inequality index to the upper tail of the income distribution. It is not
monotonic in �, however.
GE indices constitute a large class which nests some popular inequality measures

popular as special cases. If � = 2 the index is known as the (Hirschman-)Her�ndahl
index and equals half the coe¢ cient of variation squared. Her�ndahl�s index plays
an important role as measure of concentration in industrial organization and merger
decisions (see e.g. Hart, 1971). In empirical work on income distributions this value
of � is considered large. Two other popular inequality measures are the so-called
Theil indices, which are the limiting cases � = 0 and � = 1 (Theil, 1967). Finally,
the Atkinson (1970) index is ordinally equivalent to the GE index.
Although the index is de�ned for any real value of �; in practice only values

between 0 and 2 are used and we con�ne our examination to this range. The limiting
cases 0 and 1 are treated implicitly below since all key quantities are continuous in
�.

2.1 GE Indices and Income Distributions

Our investigation centers around three parametric income distributions which are
regularly used to �t real real-world income data: the Gamma, the Lognormal, and
the Singh-Maddala distribution. We use the common shorthand notation G (r; �),
LN(�; v1=2), and SM (a; b; c) to refer to them. Generalized Entropy indices are scale
invariant, and thus independent of the scale parameters �, �; and a for theG; LN; and
SM distributions respectively. For notational convenience, we suppress the irrelevant
scale parameters.
McDonald (1984) has shown that these three distributions are special cases of the

Generalized Beta distribution of the second kind (GB2), whose density is given by

f (x; a; b; c; d) =
bxbd�1

abdB (c; d)
h
1 + (x=a)b

id+c ;
where B (�; �) denotes the Beta function. In particular, SM has density f (x; a; b; c; 1),
G has density limc!1 f

�
x; c��1; 1; c; r

�
, and LN is a special case involving c ! 1

and b ! 0. All three distributions are skewed to the right, but di¤er in other ways,
such as their tail behavior. Schluter and Trede (2002), for instance, show that the
right tail of the generalized beta distribution can be written as 1 � F (x; a; b; c; d) =
g1x

�bc �1 + g2x�b +O �x�2b�� for some constants g1 and g2 and x large. It follows
that SM has a heavy right tail which decays like a power function (with right tail
index equal to bc), whereas G and LN decay exponentially fast. The left tail of GB2
can be written as F (x; a; b; c; d) = g3x

bd
�
1 + g4x

b +O
�
x2b
��
for some constants g3

and g4 and x small. The moments of the distributions are stated in McDonald (1984).
The population inequality index specializes for the di¤erent income distributions
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to:

Gamma : I(�; r) = (�2 � �)�1 [r���(�+ r)=�(r)� 1] ;
Lognormal: I(�; v) = (�2 � �)�1

�
exp

�
1
2
v(�� 1)�

�
� 1
�
;

Singh-Maddala: I(�; b; c) = (�2 � �)�1 c
�(��1)B (1 + �=b; c� �=b)
B (1 + 1=b; c� 1=b)� � 1 ; bc > �:

We focus on these three income distributions not only because they are quite
di¤erent, but more importantly because they are regularly used to �t actual real-
world income data. For instance, Brachmann et al. (1996) estimate the distributional
parameters on German income data for the 1980s and early 1990s. For G they report
point estimates r 2 [3:4; 4], for LN v 2 [0:28; 0:31], and for SM b 2 [2:7; 2:9] and
c 2 [1:6; 2:1]. Singh and Maddala (1976) report point estimates of b 2 [1:9; 2:1],
c 2 [2:5; 3] for US income data from the 1960s. For US income data from the 1970s
McDonald (1984) reports r = 2:3, v 2 [0:48; 0:51], b 2 [2:9; 3:76] and c 2 [1:8; 2:9].
For the Lognormal Kloek and van Dijk (1978) �nd v 2 [0:21; 0:54] for di¤erent groups
of income earners using 1973 Dutch data. Across these studies, we have r 2 [2:3; 4],
v 2 [0:28; 0:54], b 2 [1:9; 3:76], and c 2 [1:6; 3]. Throughout this paper, we use
parameter values in these ranges. For further recent examples see Bandourian et
al. (2003) who �t these income distribution models for a large number of countries,
including the USA, Canada, Taiwan and most European countries for the period
1969-1997.

2.2 Estimation and Normal Approximations

In empirical work the inequality measure I needs to be estimated from a sample
of incomes denoted Xi, i = 1; : : : ; n. We follow standard practice and assume that
incomes are independently and identically distributed with distribution F and are
positive. The measure I is a functional, which maps income distributions into scalars.
The commonly used estimator simply uses the Empirical Distribution Function (EDF)bF (x) = n�1

P
i 1(�1;x] (Xi) ; where 1(�1;x] (:) denotes the indicator function on the

open interval smaller than or equal to x,bI = I( bF ):
Since I is a function of moments, the EDF-estimator is also referred to in the literature
as the method of moments estimator. It is standard practice to obtain the asymptotic
variance �2 = aV ar(n1=2(bI � I)) by the delta method, yielding for � 6= f0; 1g

�2 =
1

(�2 � �)2
1

�2�+21

�
�21�2� + �

2�2��2 � 2����1��+1 � (1� �)
2 �2��

2
1

�
;

and to estimate it by an EDF-based estimator, denoted b�2.
Inference about the population value I is then based on the studentized measure,

de�ned as

S = n1=2

 bI � Ib�
!
: (2)
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By standard central limit arguments, S has a distribution that converges asymptot-
ically to the Gaussian distribution (see, inter alia, Cowell, 1989, or Thistle, 1990).
Denoting the Gaussian distribution and density by � and � respectively, then using
order notation, we have

Pr (S � x) = � (x) +O
�
n�1=2

�
: (3)

Standard, �rst order, inference methods only use the �rst term � (x) in this approx-
imation.
Setting x = ��1 (p), yields the standard one-sided con�dence interval for I with

bound bI � b�n�1=2��1 (p), and the usual symmetric con�dence interval bI � b�n�1=2�
��1 ([1 + p] =2) � I � bI � b�n�1=2��1 ([1� p] =2). Note that the asymptotic coverage
rate for the two-sided con�dence interval, based on a standard symmetry argument,
equals p+O (n�1). For one-sided con�dence intervals we have p+O

�
n�1=2

�
.

2.3 Quality of the Normal Approximation

We proceed to investigate how well the Normal approximation performs in realis-
tic settings for samples of varying sizes and various income distributions. First we
consider coverage failure rates for con�dence intervals for I based on the Gaussian
quantiles �1:96, i.e. we consider one-sided con�dence intervals with a nominal error
rate of 2.5%, and two-sided con�dence intervals with nominal error rate of 5%. Table
1 shows the results for I (2). L refers to the proportion of S smaller than �1:96, R
to the proportion larger than 1:96; and T to the total and therefore the two-sided
con�dence interval.
Four striking facts emerge from the table. First, actual coverage failures for L

and T can be a multiple of their nominal sizes and for R can be close to 0. Second,
there is a huge asymmetry in the left and right rejection rates. Third, rejection
rates vary substantially over income distributions. Finally, even for a sample size
of 500, coverage rates can still be a multiple of the nominal sizes. Table 1 shows
that standard �rst order methods based on the Gaussian approximation are very
unreliable. Particularly bad is the overstated precision of the one-sided (L) and two-
sided (T) con�dence intervals.

n=50 n=100 n=250 n=500
L R T L R T L R T L R T

G(.,3) 12.1 0.6 12.6 9.2 0.7 9.9 6.6 0.9 7.5 5.2 1.2 6.4
LN(.,0.7) 29.9 0.7 30.6 24.1 0.4 24.5 17.9 0.3 18.2 14.2 0.3 14.5

SM(.,2.9,1.9) 21.0 0.4 21.3 17.6 0.3 17.8 14.0 0.3 14.3 11.9 0.3 12.2

Table 1: Actual coverage failures rates in % Notes: L and R refer to coverage errors
on the left and right, T is the total coverage error. Nominal error rates are 2.5 % for
L and R and 5% for T. Based on 106 replications.

Changing parameter values of the income distribution does change the absolute
and relative performance. Keeping � = 2 and n = 100; we found in simulations
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not reported in this paper for reasons of space that the performance improves in the
Lognormal case as � decreases (although for �1=2 = 0:5 coverage failure is still 15.7%
for the two-sided con�dence intervals), worsens in the Singh-Maddala case as b and
c decrease, (e.g. when they are decreased to b = 2:8 and c = 1:7, coverage failure
worsens to 22.6%), and does not change very much in the Gamma case as r varies
over the range 2.3 to 4, with coverage rates from 10.3% to 9.3% respectively. Finally,
changing the signi�cance level does not qualitatively change the results. See Garderen
and Schluter (2003) for further results and also Biewen (2001).
The coverage failure will change with the value of �: Figure 1 shows the total

coverage failure of two-sided con�dence intervals as a function of �. Failure rates
generally improve as � decreases, but still exhibit substantial excess over nominal
rates.

Figure 1: approximately here

Given the poor performance and asymmetry in the coverage errors of standard
con�dence intervals, we investigate the distribution of S through its quantiles. Table
2 reports the results for � = 2, whereas Figure 2 considers � varying.

n=100 n=250 n=500
p � (p) G LN SM G LN SM G LN SM

0.025 -1.96 -2.97 -5.26 -4.03 -2.60 -4.34 -3.53 -2.40 -3.81 -3.29
0.05 -1.64 -2.45 -4.34 -3.36 -2.15 -3.56 -2.95 -1.98 -3.12 -2.74
0.1 -1.28 -1.88 -3.36 -2.62 -1.66 -2.72 -2.31 -1.53 -2.37 -2.12
0.25 -0.67 -1.01 -1.90 -1.50 -0.87 -1.49 -1.29 -0.80 -1.27 -1.18
0.5 0.00 -0.19 -0.59 -0.44 -0.11 -0.37 -0.33 -0.07 -0.26 -0.26
0.75 0.67 0.51 0.36 0.40 0.57 0.45 0.44 0.59 0.50 0.48
0.9 1.28 1.05 0.95 0.94 1.11 0.97 0.95 1.14 0.99 0.97
0.95 1.64 1.34 1.21 1.19 1.40 1.21 1.20 1.45 1.23 1.22
0.975 1.96 1.59 1.44 1.40 1.66 1.42 1.40 1.71 1.44 1.43

Table 2: Quantiles of studentised I (2). Notes: As for Table 1.

Figure 2: approximately here

We observe the following. First, the discrepancy between actual and Gaussian
quantiles varies substantially across the distributions. It is the smallest for the
Gamma case, and the worst for the Lognormal case. Second, the performance wors-
ens as � increases across all income distributions. Third, across the �ve depicted
quantiles, the lower quantiles exhibit the largest deviation from the corresponding
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Gaussian quantiles. All empirical quantiles lie below the corresponding Gaussian
quantiles. This suggests that the actual distribution is biased, skewed to the left, and
that the skewness increases in �. Fourth, the deviations decrease naturally as sample
size increases, but the improvements are slow. Hence skewness is persistent even in
fairly large samples.

3 Cumulants, Edgeworth Expansions, and Normal-
izing Transforms

The simulation study in the previous section has shown that the Normal approxima-
tion su¤ers from substantial bias and skewness problems. In this section we study
bias and skewness formally by considering expansions to second order of the �rst and
third cumulant (assuming they exist) of the studentized inequality measures S. These
expansions are given by

KS;1 = n�1=2k1;2 +O
�
n�3=2

�
; (4)

KS;3 = n�1=2k3;1 +O
�
n�3=2

�
:

The expansion of the second cumulant is KS;2 = 1 + O(n�1).1 The terms k1;2, and
k3;1 and other quantities like �, depend on � and the income distribution which we
leave implicit for notational simplicity throughout. A key contribution of our paper
is the derivation of the bias and skewness coe¢ cients k1;2 and k3;1 for the examined
inequality indices. These coe¢ cients are the critical factors in the second order terms
in the expansion of the cumulant generating function of S,

� (y) =
1

2
y2 + n�1=2

�
y k1;2 +

1

6
y3k3;1

�
+O

�
n�1
�
; (5)

and the Edgeworth expansion

Pr(S � x) = �(x)� n�1=2
�
k1;2 +

1

6
k3;1(x

2 � 1)
�
�(x) +O(n�1): (6)

The implied second order expansion of the density follows immediately as

pdf (x) = (1 + n�1=2x[
1

6
k3;1

�
x2 � 3

�
+ k1;2])� (x) +O(n

�1): (7)

See e.g. Hall (1992) for an extensive discussion of Edgeworth expansions, who ob-
serves, for instance, that the right hand side of equation (6) does not necessarily
converge as an in�nite series. Regularity conditions for the validity of the expansion
are also stated in Hall (1992, Section 2.4). The GE index is a smooth function of the
moments with continuous third derivatives and �1 > 0 since we assume incomes to be

1By construction k1;1 = 0 and k2;1 = 1: Due to the studentization of S, KS;3=K
3=2
S;2 = n

�1=2k3;1+

O
�
n�1

�
, and k3;1 is therefore also the coe¢ cient of skewness.
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positive. This implies that Theorem 2.2 in Hall (1992) applies and hence we require
that the income distribution for X satis�es the moment conditions E (X3) <1 and
E (X3�) < 1 and that X has a proper density function (implying that Cramér�s
condition is satis�ed). Note that these moment conditions restrict the admissible
parameter values for the Singh-Maddala distribution (bc > max(3; 3�)).
Normal approximations only consider the �rst order term, i.e. 1

2
y2 in Equation (5)

or �(x) in Equation (6), so the higher order term indicates deviation from Normality.
Edgeworth expansions directly adjust the asymptotic approximation by including the
O
�
n�1=2

�
term. However, Edgeworth expansions can su¤er from negativity of the

density and oscillations in the tails and we show below that this is indeed a problem
for standardized inequality measures.

3.1 Normalizing Transforms

Rather than directly adjusting the asymptotic approximation for S by including the
O
�
n�1=2

�
term in the approximating density, normalizing transformations of the in-

equality measure are designed to annihilate this term asymptotically. The resulting
distribution of the studentized transformed and bias corrected inequality measure
then satis�es �(x)+O(n�1), so that, compared to (3) or (6), the order of the approx-
imation has improved.
In our derivations of the required re�nement we essentially follow an approach

proposed in Niki and Konishi (1986). See also Marsh (2004) for a multivariate exten-
sion and Goncalves and Meddahi (2008) who apply the idea to transforming realized
volatility . However, there are four important di¤erences. First, we standardize using
the empirical quantities, whereas Niki and Konishi use theoretical versions. Second,
we deal explicitly with the open issue highlighted by Niki and Konishi (1986, p.377)
that the cumulants depend on the true quantity I being estimated. Third, we deal
with the complication that income distributions and the inequality measure I often
depend on more than one parameter, as in the case of the Singh-Maddala distribu-
tion. This implies that I is not an invertible mapping of the parameters and as a
consequence a whole family of solutions exist. One can choose any member of this
family and we show below what di¤erence this choice makes.

Let t denote a transformation of the inequality measure I with continuous �rst
and second derivatives t0 and t00, satisfying t0(bI) 6= 0: The standardized transform
de�ned by

T = n1=2
t(bI)� t(I)b�t0(bI) ; (8)

will also be asymptotically Normal, but its cumulants will have changed and depend
on the nonlinear transformation t: We want to relate the cumulants of T to the
cumulants of S and determine T such that the third cumulant vanishes. In order to
do so, we �rst state the basic relation between S and T in the following lemma.

Lemma 1.
T = S � 1

2

t00 (I)

t0 (I)
n�1=2�S2 +Op

�
n�1
�

(9)
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Assuming that the distribution of T also admits a valid Edgeworth expansion, it
will be of the form

Pr(T � x) = �(x)� n�1=2
�
�1;2 +

1

6
�3;1(x

2 � 1)
�
�(x) +O(n�1); (10)

where �1;2 and �3;1 are the coe¢ cients for n�1=2 of the �rst and third cumulant of T
respectively. The cumulants of T are naturally related to the cumulants of S since t
is a smooth function of I. The next lemma states this relationship.

Lemma 2.

�1;2 = k1;2 �
1

2
�
t00 (I)

t0 (I)
; (11)

�3;1 = �3�t
00 (I)� k3;1t0 (I)

t0 (I)
: (12)

Our results di¤er from those stated in Niki and Konishi (1986) because our de-
�nition of the standardized transform (8) has b�t0(bI) in the denominator instead of
�t0(I) used by Niki and Konishi. The consequence of this is that in expression (9)
the second term on the right has a coe¢ cient of -1. Finally, the di¤erences between
�1;2 and �3;1 of Lemma 2, and the results of Niki and Konishi are the negative signs
of the second right hand terms. This again is a result of �t0(I) being estimated.
The normalizing transform we seek is a function t that reduces the skewness of T

to zero up to second order. It follows from equation (12) that the skewness term �3;1
is reduced to zero if the transform t satis�es the di¤erential equation

3�t00 (I)� k3;1t0 (I) = 0; (13)

or, assuming t0 (I) 6= 0;
t00 (I)

t0 (I)
=
1

3

k3;1
�
:

The formal solution to the di¤erential equation is

t (I) =

Z
exp

�Z
1

3

k3;1
�
dI

�
dI:

The asymptotic re�nement we seek is found by solving the di¤erential equation
(13), and making a subsequent direct bias correction based on (11). Note that the
di¤erential equation is invariant to a¢ ne transformations and the constants of inte-
gration are immaterial.

Proposition 3. If the transform t satis�es the di¤erential equation (13), then

Pr
�
T � n�1=2�1;2 � x

�
= �(x) +O(n�1): (14)

The bias correction can be applied using the
p
n-consistent estimator b�1;2 based

on the EDF, giving rise to the following result.

10
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Corollary 4. Pr
�
T � n�1=2b�1;2 � x� = �(x) +O(n�1).

The implication of this corollary is that with the estimated bias correction we
obtain second order correct one-sided con�dence intervals.
Another consequence of this proposition is that a further order of magnitude in the

accuracy can be gained by bootstrapping the transformed statistic as in the following
corollary:

Corollary 5. Let z�1�p denote the quantile of the bootstrap distribution of the bias-

corrected studentized transform Tbc = n1=2
t(bI)�t(I)b�t0(bI) �n�1=2b�1;2; and let bIp = t�1(t�bI��

n�1=2b� �z�1�p + n�1=2b�1;2� t0 �bI�) denote the p upper con�dence limit. Then
Pr
n
I � bIpo = 1� Pr�Tbc � z�1�p	 = p+O �n�3=2� :

The one-sided bootstrap con�dence interval thus achieves the same asymptotic
rate as Beran�s (1987) pre-pivoted, or double bootstrap.

4 Expansion and Transforms for Studentized In-
equality Measures

Central to the theory in the previous section is knowledge of the bias and skewness
coe¢ cients k1;2 and k3;1 for the studentized inequality measures. We will now state
the �rst key result of the paper, namely:

Proposition 6. Assuming the expectations E (X3) and E (X3�) exist, then the bias
and skewness coe¢ cients for the studentized inequality measures are given by

k1;2 =

�
B�1=2M2 �

1

2
B�3=2M5

�
�
�
1� 2 � 1(0;1) (�)

�
;

k3;1 = B�3=2 (M4 + 6M1M3 � 3M5) �
�
1� 2 � 1(0;1) (�)

�
;

where 1(0;1) is the indicator function on the interval (0; 1) and

B = �21�2� + �
2�2��2 � 2����1��+1 � (1� �)

2 �2��
2
1;

M1 = �1��+1 � �21�� � ����2 + ����21;

M2 = ��+1 � �1�� �
1

2
� (�+ 1)

��
�1

�
�2 � �21

�
;

M3 = �1
�
�2� � �2�

�
� 1
2
� (�+ 1)��

�
��+1 � �1��

�
� ���M2;

11
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M4 = �31
�
�3a � 3�2��� + 2�3�

�
�3����21

�
�2�+1 � �2��1 � 2��+1�� + 2�2��1

�
+3 (���)

2 �1
�
��+2 � 2��+1�1 + 2���21 � ���2

�
� (���)

3 ��3 � 3�2�1 + 2�31� ;
M5 = 2

�
�21�2� +

�
�2 � �

�
�1����+1 � �3�2�2� + (�� 1) (1� �)

2 �21�
2
�

� �
��+1 � �1��

�
+�2�1�

2
�

�
��+2 � �2��

�
+2�1

�
�2���2 � ��1��+1 � (1� �)

2 �21��
� �
�2� � �2�

�
+2�2�1�

2
�

�
��+2 � �1��+1

�
� 2��21��

�
�2�+1 � �a+1��

�
���21��

�
�2�+1 � �1�2�

�
+ �31 (�3� � ���2�)

�2���
�
�1�2� � �����+1 � (1� �)

2 �1�
2
�

� �
�2 � �21

�
��3�3� (�3 � �1�2) ;

and �� is the �-th moment of the income distribution F .
2

All moments �� exist under the regularity assumptions we made for the existence
of the Edgeworth expansion above. Appendix B presents simulation support for the
expressions in Proposition 6. The term B directly relates to the variance and is
therefore bounded away from zero. This leads to the following:

Corollary 7. The coe¢ cients k1;2 and k3;1 can be estimated
p
n-consistently using

corresponding sample moment for the theoretical moments in Proposition 6.

The second order Edgeworth expansion for the studentized inequality index is
given by (6) with k1;2 and k3;1 given in Proposition 6.
We proceed by analysing the behavior of the cumulants, Edgeworth densities,

and normalizing transforms in turn. Each case will be introduced by considering the
Gamma distribution and I (2), since this is an attractive example that allows simple
explicit analytical solutions. This will be our leading example.

4.1 Bias and Skewness Coe¢ cients

We examine the behavior of the bias and skewness coe¢ cients for the income distri-
butions studied earlier, namely the Gamma, Lognormal, and Singh-Maddala distrib-
utions. These parametric distributions give the population moments used in Propo-
sition 6 for the calculation of the coe¢ cients. The aim is to gain insight into the
poor performance of the Normal approximation by examining the magnitude of the
coe¢ cients. This will help to predict when �rst order methods can be expected to
be poor. By varying � we also highlight the statistical implications of a particular
choice of � that is usually made by researchers on the basis of economic, rather than
statistical considerations.

2The R and Mathematica computer code for these expressions are available from the authors
upon request.
The interpretation of the individual contributions is made plain in the derivation contained in

Appendix A.1.
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4.1.1 The Gamma Distribution

We �rst consider our leading example. Substituting the theoretical moments of the
Gamma distribution in Proposition 6, we obtain after some simpli�cation:

k1;2 = �
3p
2

r + 3p
r (r + 1)

and k3;1 = �
8p
2

r + 4p
r (r + 1)

: (15)

Both cumulants decrease in magnitude as r increases. In terms of the parametrization
of Table 1, we have with r = 3, k1;2 = �3:67, and k3;1 = �11:43, so that for samples
of size 100 bias and skewness are of moderate size.

4.1.2 Other Values of the Sensitivity Parameter � and Income Distribu-
tions

Figure 3 depicts the contour plots of k1;2 and k3;1 as we vary the sensitivity parameter
� of the inequality index and the relevant parameters of the income distribution.
The coe¢ cients share important features across all three income distributions. (i)

All bias and skewness coe¢ cients are negative (ii) except for small values of �, bias and
skewness increase in magnitude as � increases (iii) bias and skewness decrease with
r in the Gamma case3 and with b in the Singh-Maddala case (holding c constant and
chosen so that all relevant moments exist), and they increase with sd in the Lognormal
case. (iv) the numeric values of the coe¢ cients are of quantitative importance, as
dividing them by the square root of the sample sizes considered in Section 2.3 yields
values which are large relative to the Gaussian limit values of zero. This explains the
poor behavior of the normal approximation observed in Section 2.3.
Finally we note on the basis of Figure 3 that problems increase as � increases.

Hence, we recommend choosing � as low as possible within the set of economically
acceptable ��s.

3The Gamma case given by (15) corresponds to the top-most horizontal section of the �rst panel
of Figure 3. Further analytical solutions are for instance:
a. In the Gamma case, �xing r = 3 and varying � instead, we obtain

k3;1 = � 2p
3

�
�
�
�2 + 3

�
�2 (3 + �) + 6� (3 + 2�)

��3=2 � (16)

(�3 (3 + �)
�
18�2 + �3 + 3�4 + 18

�
+ 36� (3 + 3�)

�18� (3 + 2�) � (3 + �)
�
2�2 + 3

�
)�

�
1� 2 � 1(0;1) (�)

�
:

Skewness increases in magnitude for � > 0:5. Obviously, this expression and (15) coincide for � = 2
and r = 3.
b. In the Lognormal case with sd = v1=2 and � = 2 �xed we obtain

k3;1 =
�
4ev � 4e2v + e4v � 1

��3=2 ��
�2e12v + 12e8v + 12e6v � 48e5v � 36e4v + 136e3v � 96e2v + 24ev � 2

�
:

Skewness increases in magnitude with sd.

13
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Figure 3: about here

4.2 Edgeworth Densities

We use our leading example of the Gamma distribution with I (2) to highlight the
main issues involved in the Edgeworth approximation. Other income distributions
lead to similar qualitative conclusions and are not reported.
Using (15) and (7), we obtain the second order approximation

pdf(x) = � (x)

"
1� n�1=2x

p
2

6
p
r (r + 1)

�
4x2 (4 + r)� 3r � 21

�#
+O

�
n�1
�
:

Figure 4 depicts the actual density of the studentized inequality index obtained by
simulation, and two versions of the Edgeworth density for the case r = 3 and n = 100.
The �rst Edgeworth density uses the theoretical coe¢ cients, and the second uses the
empirical version based on sample moments and Corollary (7). This empirical version
can be thought of as the mean Edgeworth expansions when averaged over simulation
iterations. By the linearity of the density functions in terms of the k1;2 and k3;1; this
simply equals the Edgeworth density evaluated at the averaged estimates of k1;2 and
k3;1.

Figure 4: about here

Both approximations are an improvement over the Normal approximation in that
they capture the skewness of the distribution. Several features are noteworthy, how-
ever. First, the Edgeworth density is not guaranteed to be positive and we see that
the right hand tail actually becomes negative, although less so for the empirical than
for the theoretical Edgeworth approximation. Second, the right tail of the theoretical
Edgeworth density decays too quickly.
The third problematic feature is oscillations in the tails of the approximation. A

graph for r = 0:6; shows this more clearly, but is not included for reasons of space.
The problem of oscillation, which is also present for the other income distributions
studied here, is well known (see e.g. Niki and Konishi, 1986), and motivates the
search for a normalizing transform.

4.3 Transforms for Inequality Measures

We turn to deriving the normalizing transforms for the three distributional cases
discussed above. The relative simplicity of the Gamma case with I (2) yields an
explicit analytical solution. Typically, however, the transform is computed using
numerical techniques which we develop and implement below. We then provide a

14
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systematic discussion of the properties of the transforms across income distributions
and sensitivity parameters.

4.3.1 The Gamma Case Revisited

Using the formulas for k1;2 and k3;1 in (15), and using the fact that I (2) = (2r)
�1,

the di¤erential equation (13) becomes

t00 (I)

t0 (I)
= �4

3

1

I

1 + 8I

1 + 2I
:

Integration yields the exact solution (using constants of integration 0 and 1)

t (I) = �3I�1=3 + 140
81
21=3 ln

�
I1=3 + 2�1=3

�
(17)

�70
81
21=3 ln

�
I2=3 � I1=32�1=3 + 2�2=3

�
� 140
81
31=221=3 arctan 3�1=2

�
24=3I1=3 � 1

�
�118
27

I2=3

1 + 2I
� 16
9

I2=3

(1 + 2I)2
� 2
3

I2=3

(1 + 2I)3
:

The transformation for this particular case is depicted in the second panel of Figure
5. As this �gure also collects the transformations for other values of the sensitivity
parameter �, and other income distributions, we postpone its discussion.

4.3.2 Numerical Solutions

The Gamma example with � = 2 is special for two reasons. First, because the simple
form of the di¤erential equation. Second, there is a simple invertible relation between
the inequality index and the parameters of the distribution. This relation is no longer
trivial when � 6= 2; and in general there is no analytically tractable relation for other
distributions. It is possible however to obtain a numerical inverse and to solve the
di¤erential equation (13) numerically. This involves three steps:

1. Using the general formulas for the cumulants k1;2, k3;1, and �2 we can use
the theoretical moments from a speci�c income distributions to express the
cumulants k1;2, k3;1, and �2 in terms of parameters from the income distribution.

2. We express the cumulants k1;2 and k3;1 in terms of I: This requires the inverse
of I which we calculate numerically: The inverse can be determined if I depends
on one parameter only. This obviously holds for one parameter families, but
also for the Log-Normal and Gamma distributions, because I is scale invariant.
This invariance property is inherited by the cumulants, so that k1;2 and k3;1
depend only on the shape parameter and we can express them as functions of
I:
For other distributions we can choose a one dimensional path for the parameters
such that I becomes an invertible function. This can be achieved by imposing
the right number of restrictions (d�1; if I depends on d income parameters), or
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by making the d income distribution parameters a function of only one parame-
ter. In our Singh-Maddala distribution we show what di¤erence the restriction
makes by �rst holding b �xed, such that I is an invertible function of c only,
and then holding c �xed.

3. We solve the di¤erential equation (13) numerically.4

The solutions depend, in general, on the sensitivity parameter �; which is a �xed
known constant, the true underlying distribution, and the restriction chosen in step
2.5

Since no analytical solutions are available in general, we display the transforms
graphically in Figures 5 and 6. Figure 5 shows the transforms for di¤erent values
of the sensitivity parameter � and, in each panel, we consider a di¤erent income
distribution. In Figure 6 we compare the transforms across income distributions
when � is �xed at 2. For the Singh-Maddala income distribution, we display the
solutions for the two restrictions, keeping b �xed and c �xed, separately.
The �gures have been generated by setting the initial conditions of the di¤erential

equation such that the solutions cross the horizontal axis at the same point at an angle
of 45 degrees. Recall that the transforms are invariant to a¢ ne transformations and
hence choosing the constants of integration in this way is inconsequential. In order
to relate the curvature of the transforms to the untransformed case, we have also
depicted the 45-degree lines, which represent the identity transforms. Consequently,
if no transformation was required, the solution would coincide with this 45 degree
line.

Figure 5 : about here

Consider Figure 5 �rst. We see that for all the distributions the transforms change
substantially as we vary �. The transform for � = 2 is the one most curved in all four
cases. This implies that � = 2 requires, informally speaking, the biggest amount of
transformation to obtain a standard Normal distribution. Recall from the previous
simulations that � = 2 is the most troublesome case. For � = 0, the least amount of
adaptation is required in the Lognormal and Singh-Maddala cases, whereas for the
Gamma case, � = 0:5 is slightly �atter than � = 0. The behavior of the transform
is therefore not monotonic in �. For the Singh-Maddala distribution we see quite a
di¤erence between the case where we hold b constant and where we hold c �xed. This
is related to the fact that I; and the gradient of I with respect to b change much faster

4The Mathematica and R code is available from the authors upon request.
5A complimentary approach is to consider Box-Cox transforms as in Goncalves and Meddahi

(2008) in the context of realized volatility modelling. Solving di¤erential equation (13) above provides
a solution for the optimal Box-Cox parameter in the sense that, within this class of transformations
and without accounting for the fact that k3;1 and � depend on I; the optimal Box-Cox parameter
�� = 1 + I 13

k3;1
� yields �3;1 = 0: �

� could be estimated using our Proposition 6. We are grateful to
a referee for alerting us to this.
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than with respect to c. This has a further consequence that the domain of de�nition
of the numerical transform is much broader for c �xed than for b �xed. This can be
seen from the graph e.g. for � = 2 the numerical transform is only calculated for I
between approximately 0.055 and 0.095 for b �xed and between 0.03 and 0.28 for c
�xed.

Figure 6 : about here

Next, we compare the transforms in Figure 6 across income distributions when
� = 2. The �gure shows that the transforms vary substantially between income
distributions. The transform for the Singh-Maddala case with b-�xed is the most
extreme, whereas the Gamma case is more moderate. The Gamma transform is
therefore conservative and will not be optimal for speci�c parametric alternatives,
but will correct for certain amount of skewness and will be superior to �rst order
asymptotics. In the next section we show that the improvement is substantial.

4.3.3 Densities of the Normalized Transform and Con�dence Intervals

We examine the extent to which the transformed statistics are distributed closer
to a standard Normal distribution in samples of size n = 100; and the inferential
improvements that this entails. We simulate the densities of the studentized inequality
measure S, and the studentized bias corrected transform T based on Corollary 4. The
top panel in Figure 7 considers the Gamma case for which we derived an exact solution
for the transform in Equation (17). The actual �nite sample density of S departs
substantially from the limiting density (the same S has been considered in Figure 4).
In particular, the density is skewed to the left and is biased. The transform succeeds
in substantially reducing the skewness, and the bias correction shifts the density to
the right. The resulting density for T is much closer to the Gaussian density.

Figure 7 : about here

The two lower panels in Figure 7 also show the resulting distributions for the
Lognormal and Singh-Maddala cases. The graph shows that the distributions of T
are again closer to the Gaussian distribution than that of S; with the exception of the
transform based on the Singh-Maddala distribution holding b �xed. This was the most
extreme transform in Figure 6. The transforms actually seem to overcompensate the
skewness as the distribution of T is now skewed to the right. The actual quantiles of
the distributions are shown in Table 3. For the Singh-Maddala case we use the case
holding c �xed.6 The table also shows the results of using the Gamma transform,
T
bc, when in fact the distribution is Lognormal or Singh-Maddala. The Gamma

6The choice of restriction used to establish an invertible relation between the index and parameters
is not innocuous, however, since holding b �xed instead of c leads to a coverage that is far worse
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transform was chosen for two reasons: it is a conservative choice which will correct
without being excessive (such as the Singh-Maddala case with b �xed, last panel
Figure 7). Second, it has an explicit analytic solution with domain of de�nition the
whole positive real line.

G(.,3) LN(.,
p
0:1) SM(.,3.5,3.0)

p � (p) S Tbc S Tbc T
bc S Tbc T
bc
0.025 -1.96 -2.98 -2.04 -3.17 -2.05 -2.29 -2.91 -1.90 -2.09
0.05 -1.64 -2.45 -1.75 -2.59 -1.77 -1.93 -2.39 -1.64 -1.79
0.10 -1.28 -1.89 -1.42 -1.97 -1.44 -1.53 -1.83 -1.34 -1.43
0.25 -0.67 -1.02 -0.83 -1.06 -0.86 -0.86 -0.99 -0.82 -0.82
0.50 0.00 -0.18 -0.13 -0.19 -0.17 -0.10 -0.19 -0.20 -0.11
0.75 0.67 0.51 0.60 0.51 0.58 0.64 0.51 0.53 0.62
0.90 1.28 1.04 1.33 1.03 1.36 1.30 1.03 1.36 1.30
0.95 1.64 1.33 1.83 1.32 1.91 1.72 1.31 2.00 1.73
0.975 1.96 1.59 2.28 1.56 2.45 2.10 1.56 2.75 2.11

Table 3: Quantiles for I (2) and n = 100. Notes: based on 106 replications.
.

The table reiterates the improvements shown in Figure 7, and in addition shows
that the Gamma transform gives reasonable improvements even if the true distribu-
tion is not Gamma. As regards to the left tail in the Lognormal and Singh-Maddala
case, the Gamma transform is not su¢ ciently curved, but for the right tail the lesser
curvature of the Gamma transform actually gives an improvement over the corre-
sponding transforms. We quantify the net e¤ect by considering the con�dence inter-
vals next.
Table 4 reports the coverage errors of one- and two-sided con�dence intervals

with nominal 2.5% coverage failures in the tails, using the Gaussian critical values
of �1:96. Across all distributions the transforms improve the overall failure rates,
bringing the actual much closer to their nominal values. Moreover the transforms
result in far more symmetric failure rates than standard �rst order methods. Applying
the Gamma transform in the Lognormal case leads to performance almost the same
as using the Lognormal transform. For the Singh-Maddala case it actually leads to a
more symmetric coverage errors and a net improvement.

with 19% coverage failure (of which 2% points are caused by the fact that Î falls outside the domain
of de�nition of the numerical transform). This implies that care needs to be taken with this choice.
One option would be to use a path in the parameter space for which the change in the index I is
maximized. This requires a further solution to a di¤erential equation, which is not di¢ cult, but
would complicate the exposition. The path holding c �xed is closer to this direction than holding b
�xed. The optimal direction is (0.97,0.23) when b = 3:5 and c = 3:0 and (0.99,0.16) when b = 3:5
and c = 3:5, hence close to holding c �xed and little gain is therefore expected from determining the
optimal restriction.
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G(.,3) LN(.,
p
0:1) SM(.,3.5,3.0)

S Tbc S Tbc T
bc S Tbc T
bc
L 9.2 3.0 10.1 3.2 4.8 8.5 2.1 3.4
R 0.7 4.1 0.6 4.7 3.2 0.6 5.2 3.3
T 9.9 7.1 10.8 7.9 8.0 9.1 7.3 6.7

Table 4: Actual coverage failures rates of con�dence intervals for I (2) and n = 100.
Notes: based on 106 replications.

.

4.3.4 Bootstrap

Applying the transform is theoretically attractive and computationally cheap and
results in substantial improvements as shown in the previous section. Further im-
provements can be obtained by applying an additional bootstrap to the studentized
transform as in Marsh (2004).7 The idea is that the transform is more symmetrically
distributed and bootstrapping converges faster for symmetric distributions. Corollary
5 has made this gain explicit.
Table 5 reports the coverage errors of one and two-sided bootstrap con�dence

intervals with nominal 2.5% coverage failures in the tails, and hence directly compares
to Table 4. We see that in all cases bootstrapping improves coverage rates. In the
Lognormal case, for instance, the overall coverage rate is reduced from 7.9 % to
5.8%. For comparisons we have also applied a bootstrap to the studentized inequality
index S. The bootstrap of the transform gives better results than those for S: The
extend of the improvements mirrors those reported in Marsh (2004, p. 981) in a
di¤erent setting.8 See also Biewen (2001) and Davidson and Flachaire (2007) who
also investigate bootstrap methods.

G(.,3) LN(.,
p
0:1) SM(.,3.5,3.0)

S T S T T
 S T T

L 1.8 2.0 1.6 1.6 1.9 1.8 0.5 1.9
R 4.6 4.2 5.0 4.2 4.9 3.9 2.6 3.7
T 6.4 6.2 6.6 5.8 6.8 5.7 3.1 5.6

Table 5: Actual coverage failures rates of con�dence intervals based on the bootstrap
for I (2) and n = 100. Notes: based on 106 replications; in each iteration R = 999
bootstrap samples were drawn.

7Thanks to a referee for pointing this out.
8We have also investigated the studentized double bootstrap, following the implementations in

Hinkley and Shi (1989) and Davison and Hinkley (1997, section 5.6). In view of the computational
cost we have repeated the experiment 10,000 times, drawing in each iteration R=999 bootstrap
samples, and M=249 bootstrap subsamples. The results are similar to the single studentized boot-
strap (and the results for the single bootstrap are virtually same as those reported in Table 5). In
particular, we obtain total coverage failures of 6.8%, 7.3%, and 6.3% for the G, LN and SM case
respectively.
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5 An Application to Regional Inequality Compar-
isons in Côte d�Ivoire

This section illustrates the application of our procedures in the context of regional
comparisons of income and expenditure inequality. Inequality measures are often used
in determining the targeting of policy interventions, and targeting might be based on
observed di¤erences in measured inequality across regions. Such policy interventions
by governments or the World Bank often involve large sums of money. The accuracy
of the inequality estimates should be taken into account in the targeting decision,
and we have shown above that, for sample sizes and distributions considered in this
paper, con�dence intervals based on the Normal approximation tend to be too short
and mislocated.
In this example we use household income and expenditure data from the Côte

d�Ivoire Living Standards Survey (CILSS) which forms part of the World Bank�s Liv-
ing Standard and Measurement Study (LSMS).9 The data have been used extensively
in applied work, see e.g. Deaton (1998) and references therein.
The �ve regions are Abidjan (1), Other Cities (2), East Forest (3), West Forest

(4), and Savanna (5). Given concerns about gross measurement error and outliers, we
follow standard practice and drop the 2.5% most extreme income observations. This
results in sample sizes by region of 288, 314, 353, 232, 295 households respectively.
The actual income and expenditure densities are captured reasonably well by

the parametric densities studied in this paper. Figure 8, depicting the estimated
densities for region 4, is a representative example. The �gure juxtaposes the non-
parametric kernel density estimate with the �tted Singh-Maddala, Lognormal, and
Gamma densities. All parametric densities capture the features of the actual data, and
the Singh-Maddala density is in closest agreement with the non-parametric estimate.

Figure 8 : about here

For inequality measure I(2) Table 6 reports the results by region. The point es-
timates are reported in column 2 and exhibit substantial variation across the �ve
regions. The con�dence limits (CL) of the standard 95% equi-tailed con�dence inter-
val based on the normal approximation are reported next in columns 3 and 4. These
con�dence intervals vary, of course, in terms of location, but also in length. For in-
stance, the con�dence interval for region 5 is nearly three times as long as the one for
region 1. Also, most con�dence intervals overlap in case of income: the con�dence
interval for region 1 overlaps with all others except for region 3. We turn to our proce-
dure. We transform the inequality measure using the Gamma transform and apply a
subsequent studentized bootstrap. We have argued above that the Gamma transform
is a conservative choice. Columns 6 to 8 report the results, and show substantially

9The income and expenditure data are for the year 1985, generated by the World
Bank, and given in Central African Francs (CAFs). Extensive documentation is posted at
http://www.worldbank.org/LSMS/country/ci/ci85docs.html.
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di¤erent con�dence limits. In particular, the con�dence limits shift to the right in all
cases, and in all but one case the con�dence intervals widen. The widening is most
substantial for region 5. Since the con�dence intervals widen we do not expect and
do not observe a reversal of the regional inequality ranking.

normal approximation transform + bootstrap
Region bI(2) lower CL upper CL length lower CL upper CL length

income
1 0.259 0.222 0.296 0.074 0.226 0.301 0.075
2 0.339 0.291 0.387 0.095 0.297 0.390 0.092
3 0.440 0.363 0.517 0.154 0.370 0.534 0.164
4 0.311 0.250 0.372 0.123 0.257 0.395 0.138
5 0.348 0.250 0.446 0.196 0.264 0.569 0.306

expenditure
1 0.147 0.127 0.166 0.039 0.128 0.167 0.039
2 0.200 0.172 0.229 0.057 0.175 0.232 0.057
3 0.281 0.227 0.334 0.107 0.231 0.351 0.120
4 0.201 0.153 0.250 0.097 0.159 0.260 0.101
5 0.194 0.147 0.241 0.094 0.152 0.263 0.111

Table 6: Con�dence intervals for income and expenditure inequality in Côte d�Ivoire
by region.

6 Conclusions

The �nite sample distribution of the studentized inequality measure is not located
at zero and is substantially skewed. In the �rst part of the paper we have derived
general nonparametric bias and skewness coe¢ cients based on cumulant expansions.
We have shown that these coe¢ cients are of interest in their own right, and they are
also the key quantities for the Edgeworth expansions and the normalizing transforms
considered in the second part of the paper. Edgeworth expansions directly adjust
the asymptotic approximation by including the O

�
n�1=2

�
term, a function of the bias

and skewness coe¢ cients. In contrast, normalizing transformations of the inequality
measure are designed to annihilate this term asymptotically. The observed problems
for the Edgeworth expansion of negativity of the density and tail oscillation have
led us to derive and construct the normalizing transforms in the second part of this
paper. We have shown that the �nite sample distributions of these transforms are
much closer to the Gaussian distribution. This results in improved inference, for
example in the coverage rates of con�dence intervals. We have shown that applying
a subsequent bootstrap yields a further improvement for inference, both in theory
and in practice. Asymptotically we obtained approximation error of order n�3=2 for
con�dence intervals, which is the same rate as Beran�s (1987) pre-pivoted bootstrap.
In practice we found actual coverage errors of the new con�dence intervals close to
the nominal rate.
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We have illustrated our procedure with an application to regional inequality mea-
sures in Côte d�Ivoire. We showed that the resulting con�dence intervals can be sub-
stantially di¤erent from those based on the Normal approximation commonly used in
the applied literature.
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A Proofs

Proof of Lemma 1.
Expand T (bI) about I to second order and use the de�nition of S to obtain

n1=2b� t(bI)� t (I)
t0
�bI� = S � 1

2

t00 (I)

t0 (I)
n�1=2�̂S2 +O

�


Î � I


2� ;
Now using the fact that �̂ and Î are

p
n consistent estimators the result follows.

Proof of Lemma 2.
Taking expectations of (9) using E (S) = n�1=2k1;2+O

�
n�3=2

�
, and E (S2) = 1+

O (n�1) leads to

�1;2 = k1;2 �
1

2

t00 (I)

t0 (I)
�:

Also E (T 2) = 1 +O (n�1). We have

T 3 = S3 � 3
2

t00 (I)

t0 (I)
n�1=2�S4 +Op

�
n�1
�
:

Taking expectations, noting that E (S4) = 3 +Op
�
n�1=2

�
, yields

E
�
T 3
�
= E

�
S3
�
� 9
2

t00 (I)

t0 (I)
n�1=2� +O

�
n�1
�
;

with E (S3) = n�1=2 [k3;1 + 3k1;2]. Therefore E(T 3) � 3E(T 2)E(T ) + 2 (E(T ))3 =
n�1=2�3;1 +O (n

�1) with

�3;1 = k3;1 � 3
t00 (I)

t0 (I)
�:

Proof of Proposition 3.
Note that �3;1 = 0 by construction. Considering the Edgeworth expansion Equa-

tion (10) for T at x+n�1=2�1;2, expanding it about x and collecting terms of the same
order yields the stated result.
Proof of Proposition 5.
Let Tbc = T � n�1=2b�1;2. By Corollary 4

K (x) � Pr fTbc � xg = �(x) +O(n�1):

It follows that the three-term Edgeworth expansion and Cornish-Fisher expansion are

K (x) = � (x) + n�1q (x)� (x) +O
�
n�3=2

�
and K�1 (1� �) = z1�� � n�1q (z1��) + Op

�
n�3=2

�
where z1�� denotes the (1� �)

quantile of �. Let bK denote the bootstrap distribution. Then bK�1 (1� �) =
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K�1 (1� �) +Op
�
n�3=2

�
since bq (x) = q (x) +Op �n�1=2�. We have

Pr
n
I � bI�o = 1� Pr

�
Tbc � z�1��

	
= 1�

�
�
�
z�1��

�
+ n�1q

�
z�1��

�
�
�
z�1��

��
+O

�
n�3=2

�
= 1�

�
�
�
z1�� � n�1q (z1��)

�
+

n�1q
�
z1�� � n�1q (z1��)

�
�
�
z1�� � n�1q (z1��)

��
+O

�
n�3=2

�
= 1�

�
� (z1��)� n�1q (z1��)� (z1��) + n�1q (z1��)� (z1��)

�
+O

�
n�3=2

�
= �+O

�
n�3=2

�
:

See also Hall (1992) p. 122 ¤.

A.1 Proof of Proposition 6

Proposition 6 is derived in several steps. First, we derive an asymptotic expansions of
the studentized inequality measure S. As a compact notation, we use Sq to denote a
term of an expansion of S which is of order in probability n�q. The desired stochastic
expansion of S is of the form

S = S0 + S1=2 +Op
�
n�1
�
: (18)

We determine the terms S0 and S1=2. We then derive the bias and skewness coe¢ cients
k1;2 and k3;1 by considering expectations of powers of S. We only consider the case
j�j > 1 explicitly. For j�j < 1, the coe¢ cients of the expansions need to be multiplied
by �1 since � (�� 1) < 0 but (�2 (�� 1)2)1=2 > 0.

A.1.1 The Stochastic Expansion of S

Recall our notation for population and sample moments, ��(F ) =
R
y�dF (y) and

m� = ��( bF ). The basic technique in the derivation is to center and expand sam-
ple moments. For instance, we have m��

1 = (�1 + n
�1P (Xi � �1))

��
= ���1 �

�����11 (n�1
P
(Xi � �1)) + Op (n�1). For this technique it is convenient to de�ne

the following stochastic quantities:

Y1 = (X � �1) ; (19)

Y2 = �1 (X
� � ��)� ��� (X � �1) ;

Y3 = (X
� � ��)� � (�+ 1)����11 (X � �1) =2;

Y4 = 2
�
�1�2� � �����+1 � (1� �)

2 �1�
2
�

�
(X � �1)

+ �2�2�
�
X2 � �2

�
+ 2

�
�2���2 � ��1��+1 � (1� �)

2 �21��
�
(X� � ��)

� 2��1��
�
X�+1 � ��+1

�
+ �21

�
X2� � �2�

�
:

with speci�c elements for observation i written like Y1;i = (Xi � �1), etc.
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We derive the stochastic expansion of S = n1=2
�bI � I� =b� in four steps.

First, write out the numerator

n1=2(bI � I) = n1=2 ��2 � ���1 ���1 m��
1 [��1m� � ��m�

1 ] :

Second, consider the asymptotic variance by applying the delta-method

�2 = aV ar(n1=2(bI � I)) = 1

(�2 � �)2
1

�2�+21

B0;

with
B0 =

�
�2�2��2 � 2��1����+1 + �21�2� � (1� �)

2 �21�
2
�

�
: (20)

The variance is estimated by using the corresponding sample moments. Denote the
estimate of B0 by bB0. Then combining the results from steps 1 and 2 yields

S = n1=2 bB�1=20

�
m�m1 � ���1 ��m�+1

1

�
:

Third, consider the expansion bB0 = B0 +B1=2 +Op (n�1). We have
bB�1=2 =

�
B0 +B1=2 +Op

�
n�1
���1=2

;

= B
�1=2
0 � 1

2
B
�3=2
0 B1=2 +Op

�
n�1
�
:

The term B1=2 is derived by centering and collecting terms of the same order. It then
follows that B1=2 = [n�1

P
i Y4;i]

Fourth, consider the term
�
m�m1 � ���1 ��m�+1

1

�
by expanding the functions of

the sample moments. Putting everything together and collecting terms of the same
order, it follows that S = S0 + S1=2 +Op (n�1) with

S0 = n1=2B
�1=2
0

h
n�1

X
Y2;i

i
; (21)

S1=2 = n1=2B
�1=2
0

"
n�1

X
i

Y1;i

#"
n�1

X
j

Y3;j

#

�n1=21
2
B
�3=2
0

"
n�1

X
i

Y2;i

#"
n�1

X
k

Y4;k

#
:

A.1.2 The Asymptotic Bias Term k1;2

Taking expectations of the individual terms of (18) immediately yields, because of
centering, E(S0) = 0, and E(S1=2) = n�1=2(B�1=2E(Y1Y3)� 0:5B�3=2E (Y2Y4)). Since
E (S) = n�1=2k1;2 +O (n

�1) it follows immediately that

k1;2 = B
�1=2
0 E(Y1Y3)�

1

2
B
�3=2
0 E (Y2Y4) ; (22)

with E(Y1Y3) =M2 and E (Y2Y4) =M5 stated explicitly in Proposition 1.
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A.1.3 The Asymptotic Skewness Term k3;1

In order to derive the asymptotic skewness term, we �rst need to obtain an expansion
of the third moment of S. We take expectations of

S3 =
�
S0 + S1=2 +Op

�
n�1
��3

= S30 + 3S
2
0S1=2 +Op

�
n�1
�
:

by considering the constituent parts separately.

1. E
�
S20S1=2

�
= n3=2B

�3=2
0 E

�
n�4

P
i

P
j

P
k

P
l Y2;iY2;jY1;kY3;l

�
+

�0:5n3=2B�5=20 � E
�
n�4

P
i

P
j

P
k

P
l Y2;iY2;jY2;kY4;l

�
.

Since we are only interested in the O
�
n�1=2

�
term, we conclude that

E
�
S20S1=2

�
= n�1=2B

�3=2
0 ��

E
�
Y 22
�
E (Y1Y3) + 2E (Y1Y2)E (Y2Y3)�

3

2
E (Y2Y4)

�
+O

�
n�1
�
;

after noting that E (Y 22 ) = B0.

2. Consider S30 = n3=2B
�3=2
0 n�3 (

P
Y2;i)

3. Hence E(S30) = n�1=2B
�3=2
0 E(Y 32 ) +

O (n�1) :

In summary

E(S3) = n�1=2B�3=2 � (23)�
E(Y 32 ) + 3

�
E (Y2Y2)E (Y1Y3) + 2E (Y1Y2)E (Y2Y3)�

3

2
E (Y2Y4)

��
+O

�
n�1
�
:

Finally, since K = n�1=2k31 + O
�
n�3=2

�
, and K3 = E (S3) � 3E (S2)E (S) +

2 (E (S))3, using E (S2) = 1 +O (n�1), (22) and (23) we conclude that

k3;1 = B
�3=2
0

�
E(Y 32 ) + 6E (Y1Y2)E (Y2Y3)� 3E (Y2Y4)

�
; (24)

where E(Y 32 ) = M4, E (Y1Y2) = M1, and E (Y2Y3) = M3 are stated explicitly in
Proposition 1.

B Simulation Evidence for k1;2 and k3;1
This section provides a comparison of the population bias and skewness coe¢ cients
k1;2 and k3;1 as de�ned in Proposition 6 and simulated k-statistics. The experiments
are designed as follows. We draw R independent samples of size n from income
distribution F and index the iteration by subscript r with r = 1; 2; :::; R. The resulting
studentized inequality measure is denoted Sr.
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The scaled k-statistics are de�ned as follows. Consider the �rst cumulant of S for
which we have K1 = n

�1=2k1;2 +O
�
n�3=2

�
or

k1;2 = n
1=2K1 +O

�
n�1
�
:

The cumulant K1 is simulated using the k-statistic bK1 = R�1
P

r Sr with bK1 =
K1 +Op

�
R�1=2

�
. Therefore

ksim1;2 � n1=2 bK1;

= k1;2 +O
�
n�1
�
+Op

�
n1=2R�1=2

�
:

Similarly

ksim3;1 � n1=2 bK3;

= k3;1 +O
�
n�1
�
+Op

�
n1=2R�1=2

�
;

where bK3 = rR
�1P

r (Sr �R�1
P

r Sr)
3 with correction factor

r = R2=[(R� 1) (R� 2)]! 1 which ensures unbiasedness of this k-statistic.
Figure 9 depicts both k1;2 and ksim1;2 , and k3;1 and k

sim
3;1 as functions of the sensitivity

parameter � of the inequality measure for the Singh-Maddala SM(.,3.5, 3.5) income
distribution. The simulated values are based on n=103 and R=106 replications. The
simulated values are in good agreement with the theoretical values. We have repeated
these experiment for various income distributions and arrive at similar conclusions.

Figure 9: about here
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Figure 1: Actual coverage error rates of two sided symmetric Gaussian confidence intervals for I(α) for nominal 
rate of 5%, for varying  and different sample sizes. Notes: Income distributions as for Table 1. The solid line 
refers to samples of size 100, the dashed lined to sizes 250, and the dotted line to sizes 500. All simulations are 
based on 106 replications. 
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Figure 2:  Quantiles of the studentised inequality measure I( ) for varying  and samples of different sizes. Notes: 
As for Figure 1. 
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Figure 3: Bias and skewness coefficients k1,2 and k3,1 as functions of relevant parameters of the income 
distributions, and of the sensitivity parameter  of the inequality index. 
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Figure 4: Density estimates. Notes: The income distribution is G(3,.), the sensitivity parameter of the inequality 
index is α = 2, and the sample size is n = 100. The solid line depicts the simulated density of S, the first dashed 
line (– · · –) depicts the Edgeworth density based on the theoretical k1,2 and k3,1, and the second dashed line (– · 
–) is the Edgeworth density based on the estimated k1,2 and k3,1. Kernel density estimates based on 105 
replications. 
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Figure 5:  Transforms for different distributions and α’s. Notes: On the horizontal axis is I (itself a function of 
parameters), and on the vertical axis is t( I ). The Singh-Maddala case at the bottom requires a restriction and b 
= 3.5 is chosen in the left hand panel and c = 3.5 in the right hand panel. 
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Figure 6:  Normalizing Transforms for different distributions and fixed α = 2. Notes: On the horizontal axis is I 
(itself a function of parameters), and on the vertical axis is t( I ). For the two Singh-Maddala cases b = 3 and c = 
3 fixed are chosen. 
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Figure 7:  Simulated densities of S and T for various income distributions. Notes: Sample size is n = 100. 
Parameter values: Gamma: r = 3, Lognormal: ν² = 0.1, Singh-Maddala: b = 3.5, c = 3. Kernel density estimates 
based on 105 replications. 



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT 

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

income

de
ns

ity

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

expenditure
de

ns
ity

 
Figure 8:  Income and expenditure densities for households in region 4. Notes: Incomes and expenditures are in 
Central African Francs divided by 106. Non-parametric kernel estimate (solid line), fitted SM density (· · · ), 
fitted LN density ( –  –), and fitted G density ( – · – ). The maximum likelihood point estimates for the income 
distributions are SM(1.4×106,1.86,1.92), LM(13.7,0.78), G(1.6,1.3×10-6), and for expenditure are 
SM(1.7×106,2.49,1.96), LM(13.99,0.58), G(2.47,1.8×10-6). 
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Figure 9:  Theoretical bias and skewness coefficients and simulated k-statistics for the SM(.,3.5,3.5) income 
distribution. Notes: The solid lines depict the population coefficients k1,2 and k3,1 as a function of α. The dashed 
lines are the simulated k-statistics with n = 1000 and R = 106 repetitions. 


