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Rigorous derivation of the thin film

approximation with roughness-induced correctors∗

Laurent Chupin† Sébastien Martin‡

February 10, 2011

Abstract

We derive the thin film approximation including roughness-induced
correctors. This corresponds to the description of a confined Stokes flow
whose thickness is of order ε (designed to be small) ; but we also take
into account the roughness patterns of the boundary that are described
at order ε

2, leading to a perturbation of the classical Reynolds approxi-
mation. The asymptotic expansion leading to the description of the scale
effects is rigorously derived, through a sequence of Reynolds-type prob-
lems and Stokes-type (boundary layer) problems. Well-posedness of the
related problems and estimates in suitable functional spaces are proved, at
any order of the expansion. In particular, we show that the micro-/macro-
scale coupling effects may be analysed as the consequence of two features:
the interaction between the macroscopic scale (order 1) of the flow and
the microscopic scale (order ε of the thin film) is perturbed by the interac-
tion with a microscopic scale of order ε

2 related to the roughness patterns
(as expected through the classical Reynolds approximation) ; moreover,
the converging-diverging profile of the confined flow, which is typical in
lubrication theory (note that the case of a constant cross-section channel
has no interest) provides additional micro-macro-scales coupling effects.
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1 Introduction

1.1 General framework

Lubricated flows are very present in today’s world: from the journal bearings
to the computer disk drives through the microfluid or in biofluid mechanics.
The first relevant model for such thin flows was proposed by O. Reynolds in
1886, see [22]. From a mathematical point of view, the rigorous justification
of the Reynolds equation from the Stokes equation is due to G. Bayada and
M. Chambat [4]. Other studies have further refined this result, especially those
of S. Nazarov [21] and more recently J. Wilkening [24].

From another point of view, many studies investigate the effect of wall rough-
ness on Newtonian flows. In 1827, Navier [20] was one of the first scientists to
note that the roughness could drag a fluid. Since then, numerous studies at-
tempted to prove mathematical results in this direction, see for instance the
works of W. Jäger and A. Mikelic [17], Y. Amirat et al. [1, 2] and more recently
the works of D. Bresch and V. Milisic [10, 10]. Note that all these works formu-
late the roughness using a periodic function (whose amplitude and period are
supposed to be small). In a context of more general “roughness” patterns, there
exists similar recent results, see [3, 14].

Numerous works focus on the combination of the two phenomena: lubrica-
tion and roughness. This is for example the case in [5, 7] in which the size of
the roughness is assumed to be at least of the same order as the thickness of
the fluid considered. In [9], the author consider the case where the roughness is
assumed small compared to the thickness of the flow (which is the case of the
present paper) but they show a convergence in a rescaled domain, that focuses
on the roughness effect. Recently, in [11], J. Casado-Dı́az and co-authors pro-
posed a relatively general study (in terms of orders of magnitude of roughness
and thickness of the domain). However, their article is entirely focused on the
wall laws which is not our point of view in this paper.

In this paper, we focus on flow in a thin domain (with thickness ε ≪ 1),
lubricated and rough. The size of the roughness was assumed to be of size ε2

which is physically realistic, see for example [18]. By separating the effects due
to lubrication and those due to the roughness, we present and rigorously justify
an asymptotic expansion according to ε. The development is done at any order,
so that we are guaranteed to be optimal with respect to the truncation error.
We also highlight the particular effects of roughness (with respect to the smooth
case), and the multiscale coupling effects of the curvature of the macroscopic
domain (which cannot be neglected in lubricated devices).

Several relevant questions are not addressed in this article. First, concerning
the choice of orders of magnitude for the thickness of the fluid and the roughness
(ε and ε2 in this article). It seems fairly sensible to believe that the proposed
method can be adapted to cases where the thickness of the fluid is of order ε,
while the roughness is of the order εα, with α > 1. Nevertheless, the ansatz
will be different, depending on α. Second, recent works on random roughness,
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DERIVATION OF THE THIN FILM APPROXIMATION 4

see [3, 14], could make us think that our results can be extended to more general
cases of roughness. In fact, the construction of our development strongly de-
pends on the behavior of solutions of the Stokes equation on a half-space, whose
lower boundary is periodic. The behavior of such solutions must be sufficiently
decreasing at infinity to justify our development. Unfortunately, it seems that
this decrease is only logarithmic in the case of a random boundary (while it is
exponential in our periodic case). Besides, another task related to the regularity
of the roughness patterns is not addressed in this paper: what is the behavior
of the solution when the patterns are not Lipschitz continuous? In particular,
what is the influence of crenel patterns over the flow?

1.2 Mathematical formulation

We consider the flow of a viscous incompressible fluid in a domain Ω of R
d+1, d ∈

N
∗. The domain is assumed to be periodic in the x-direction and upper/lower-

bounded by two rough boundaries Γ+
ε and Γ−

ε . In the lubrication context or in
microfludic studies, flows are confined between two very close surfaces. More-
over, it seems natural that, on this scale, the effects of roughnesses cannot be
neglected. Mathematically, we take into account this containment by introduc-
ing a small parameter ε > 0 and defining

Ωε(t) =
{

(x, y) ∈ T
d × R , −ε2h−

(
x − st

ε2

)
< y < εh+(x)

}

where h+ ∈ C∞(Td) and h− ∈ C∞
per(]0, 1[d) are two positive functions, s ∈ R

d

denotes the shear velocity of the device (velocity of the lower rigid surface).
A typical situation describing the scaling orders (including the thin film as-
sumption and the rough boundary) is illustrated on Fig. 1. Without loss of
generality, we have assumed that there is no oscillation at the upper boundary,
as the main feature in lubrication theory only deals with the relative distance
between the two close surfaces in relative motion.

Stokes equations express, in particular, the momentuum conservation con-
necting the velocity field U = (u, v) to the pressure p. These equations must be
supplemented by boundary conditions. A well-accepted hypothesis in the fluid
dynamics is that if the boundary of the physical domain is impervious, then the
viscous fluid completely adheres to it. Thus, no-slip conditions are imposed to
the walls, the upper wall being fixed whereas the lower wall is animated with a
horizontal shear velocity (s, 0):





−∆U + ∇p = 0, in Ωε(t),
div U = 0, in Ωε(t),

U = 0, on Γ+
ε (t),

U = (s, 0), on Γ−
ε (t).

In the sequel, for the sake of simplicity, we may omit the variable t although
the domain depends on time as a parameter.
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O(ε2)

O(ε2)
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Figure 1: Geometry of the Stokes flow: thin film assumption and roughness
patterns.

It is well-known (see [4] or more recently [24]) that the solutions of the
Stokes system in a thin confined domain with a flat bottom are approached by
those of the Reynolds equation. More precisely, under the thin film assumption,
assuming that the bottom is flat, i. e. h− = 0, the flow is governed by:

u+(x, y) = u0

(
x,

y

ε

)
+ O(ε2),

v+(x, y) = εv0

(
x,

y

ε

)
+ O(ε3),

p+(x, y) =
p0(x)

ε2
+ O(1),

where u0, v0 and p0 correspond to the rescaled velocity field and pressure at
main order. It can be shown that p0 (which only depends on the variable x)
is the unique solution (defined up to an additive constant) of the Reynolds
equation ; besides, the velocity field can be deduced from the pressure gradient
by means of a straightforward integration.

In this context, we aim at describing the corresponding correction due to
the the rough boundary at main order. More generally, we emphasize that
the asymptotic expansion which is classically derived in the context of a flat
bottom has to be enriched at any order by a sequence of suitable functions.
Thus we derive the general asymptotic expansion that is valid with or without
roughness patterns and propose a numerical procedure that is accurate enough
to compute the approximation of the solution at any order, by means of an
additive procedure of elementary solutions of Stokes or Reynolds-type problems.
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Numerical experiments, see Fig. 2 to 5, highlight the differences in terms of
computational costs: taking into account the boundary layer due to the rough-
ness patterns leads to the definition of a mesh with a large number of degrees
of freedom. In order to avoid this complexity, a possible answer is to derive
a procedure based on the computation of simple solutions defined on regular
domain: this is the role of the ansatz. Numerical results give a preview of the
perturbations due to the roughness patterns compared to a smooth boundary,
which justifies an insight into the boundary layer structure and its interaction
with the main flow.

1.3 Main ideas

In this subsection, we want to present, without particular mathematical devel-
opments, the mains ideas related to our purpose. When dealing with roughness
patterns at the bottom, several difficulties arise. To approach the solution of the
Stokes problem in all the domain Ωε(t), u+, v+ and p+ should be also defined
on Ω−

ε (t) so that we have, at least, to extend the values of u0, v0 and p0 for
negative values of Z := y/ε. Then, the influence of the scale effects induced by
the roughness patterns on the average flow has to be included in a suitable way.
This leads to the definition of an asymptotic expansion based on a sequence of
problems defined not only in the classical thin film Reynolds domain but also
in the additional boundary layer modelling the roughness patterns.

More precisely, the main idea relies on the following procedure:

i) Reynolds flow at main order for Z > 0. The main flow is described by
the Reynolds solution (in the rescaled domain {0 < Z < h+(x)} due to
the scaling process of the thin film domain), with the classical no-slip
boundary condition located at the fictitious boundary Z = 0.

ii) Extension of the Reynolds flow at main order in the boundary layer Z < 0.
This solution is extended to Z < 0 by means of a polynomial function wich
satisfies the Stokes system, thus guaranteeing that the extended function
in real variables satisfies the Stokes system in the whole domain. Unfortu-
nately, the no-slip boundary condition is not satisfied at the bottom (as it
has been imposed on y = 0 instead) but we can check that it is approached
at an order O(ε). This is why we need to define an additive corrector.

iii) Corrective Stokes flow. We define the solution of a Stokes-type problem
(in the rescaled domain {Y > −h−(X)} due to the scaling process of
the boundary layer) which counterbalances the deviation of the boundary
condition at he bottom, so that the sum of the initial Reynolds solution
and the corrective Stokes-type solution, expressed in real variables, does
satisfy the boundary condition at the bottom.

To this point, we emphasize that this procedure leads to the definition of a
solution which satsfies both the Stokes system and the boundary condition at
the bottom. Of course, we have to check wether the no-slip boundary condition
is satisfied at the top of the domain or not.
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Figure 2: Mesh used for the computations of the solution of the Stokes system
(approximation with the (P2, P2, P1) finite element approximation). Domain
with roughness patterns or with smooth boundary.

Figure 3: Pressure distribution in the domain with/without roughness patterns.
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Figure 4: Horizontal velocity distribution in the domain with/without roughness
patterns.

Figure 5: Vertical velocity distribution in the domain with/without roughness
patterns.
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iv) Identification of the top boundary condition deviation: towards an iterative
procedure. As we will see, since the Reynolds solution has been made
compatible with the boundary condition at the top, the question only
relies on the value of the corrector at the top. We will prove that the value
of the corrector on the top boundary is a non-zero value ; more precisely,
the corrector Stokes solution exponentially decreases (as Y → +∞) to a
constant which can be identified to this non-zero value. This justifies the
renewal of the procedure: we define the solution of the Reynolds equation
with the previous non-zero value on the top Z = h+(x), zero value at the
bottom Z = 0, extended for Z < 0. In this way, the sum of the previous
functions satisfy the Stokes system, the no-slip boundary condition at the
top. Unfortunately, it does not satisfy the no-slip boundary condition
at the bottom, because of the extension process, but we will see that
the boundary condition is now satisfied with an order O(ε2). Thus, the
Stokes correction procedure can be repeated easily by defining a suitable
Stokes solution whose behaviour at infinity will be analyzed in order to
counterbalance the perturbation effects on the boundary conditions at the
top.

To summarize the procedure, one may say that, to each Reynolds flow, one may
associate a corrective Stokes flow, whose property relies on the correction of
the no-slip boundary condition at the bottom. In return, the behaviour of the
corrective Stokes solution at infinity has a perturbation impact on the no-slip
boundary condition on the top, thus leading to the suitable definition of the
Reynolds flow at the next order.

After defining the sequence of corrective problems (which, in practice, is
not so obvious), we will focus on the behaviour of the related solutions. To
be more precise, this analysis cannot be decoupled from the definition of the
corrective problems, as constants have to be chosen carefully in order to work
with well-posed problems and induce a suitable behaviour of the elementary
solutions.

1.4 Organisation of the paper

The paper is organized as follows:

In Section 2, we present the formal asymptotic expansion, based on a se-
quence of functions which alternatively satisfy a Reynolds-type problem and a
corrective Stokes problem (defined in a semi-infinite boundary layer domain).
The main ideas leading to the consideration of such an asymptotic expansion
are also presented.

In Section 3, we prove the well-posedness of the intermediate problems and
analyse the behaviour of the solutions. Moreover, we establish an algorithm
related to the computation of the approximation of the solution, at any order.
In particular, we show that each problem only depends on the previous ones,
although this property is not clear at first glance !
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Section 4 is devoted to the error analysis which, in the end, rigorously justifies
the asymptotic expansion. As the remainder satisfies a Stokes problem with
source terms and non-homogeneous boundary conditions, we first recall classical
Stokes estimates, based on Bogovskii formulae, and establish control inequalities
on these source terms. As the domain does depend on the small parameter, we
then establish the estimates in adapted spaces which, in particular, do not
depend on ε.

In Section 5, we focus on the coupling scale effects: we present quantitative
comparison results related to the order of convergence of the asymptotic expan-
sion with or without roughness correction, illustrating the degradation of the
convergence procedure when omitting the roughness correction. Then we focus
on another scales-coupling effect related to the converging-diverging profile of
the lubricated space: in particular, we show how this situation is much more
complicated than the analysis of the constant cross-section channel (which is not
relevant in the lubrication framework) commonly done in the boundary layer
analysis of the Stokes problem.

2 Asymptotic expansion: ansatz and intermedi-

ate problems

2.1 Notations

With the sight of the different scales in the domain, we split the domain Ωε(t)
into three parts : Ωε(t) = Ω−

ε (t) ∪ Γ ∪ Ω+
ε where Ω−

ε (t) and Ω+
ε are defined by

Ω+
ε =

{
(x, y) ∈ T

d × R , 0 < y < εh+(x)
}

,

Ω−
ε (t) =

{
(x, y) ∈ T

d × R , −ε2h−

(
x − st

ε2

)
< y < 0

}
,

and the boundary Γ connecting the two subdomains is defined by

Γ = T
d × {0}.

The first step of the constuction of the ansatz is to notice that the flow is
controlled by that in the domain Ω+

ε which is of “order ε” with respect to the
vertical coordinate, and that the flow in the domain Ω−

ε (t), which is of “order ε2”
in both horizontal and vertical directions, can induce a correction. Roughly
speaking, the flow is mainly governed by a Reynolds flow in the domain Ω+

ε

corresponding to the classical thin film assumption. But, due to the roughness
patterns, one must add corrective terms which consist in a Stokes flow at scale ε2,
located in a boundary layer domain.

Let us define the two rescaled subdomains. As a matter of fact, the main flow
is governed by the Reynolds thin film flow, based on the changes of variables

Z :=
y

ε
.
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Due to the consideration of the roughness patterns, the boundary layer is
rescaled by the homothetic transformation

X :=
x

ε2
, Y :=

y

ε2
, T :=

t

ε2
.

Definition 2.1 We define the following rescaled domains:

− The Reynolds domain is defined by

ωR :=
{
(x, Z) ∈ T

d × R , 0 < Z < h+(x)
}
,

with the following upper/lower boundaries:

γ+ =
{
(x, Z) ∈ T

d×R , Z = h+(x)
}
, γ0 =

{
(x, Z) ∈ T

d×R , Z = 0
}
.

− The boundary layer domain is defined by

ωbl(T ) =
{
(X, Y ) ∈]0, 1[d×R , −h−(X − sT ) < Y

}
,

with the following lower boundary

γbl(T ) =
{
(X, Y ) ∈]0, 1[d×R , Y = −h−(X − sT )

}
.

Notice that the boundary layer does depend on time, as this subdomain
has a moving boundary which immerges from the roughness patterns of the
lower surface and the shear velocity of this surface. Actually, time-dependant
boundary conditions leads us to define a more suitable rescaled variable which
takes into account the shear effects and the adhering conditions that relate
time and space variables. Notice that time-dependency of the boundary layer is
taken into account in the space variable as a simple parameter, which allows us
to insist on the instantaneity of the Stokes system, even at this rescaled level.

2.2 Ansatz

We propose the following asymptotic expansion



u
v
p


 :=




u(N)

v(N)

p(N)


+




R
(N)

S(N)

Q(N)


 (1)

with the following partial sums:

u(N)(x, y, t) =
N∑

j=0

εj

[
uj

(
x,

y

ε

)
+ ε ũj+1

(
x,

x − st

ε2
,

y

ε2

)]
,

v(N)(x, y, t) =

N∑

j=0

εj+1

[
vj

(
x,

y

ε

)
+ ṽj+1

(
x,

x− st

ε2
,

y

ε2

)]
,

p(N)(x, y, t) =

N∑

j=0

εj−2

[
pj

(
x,

y

ε

)
+ ε p̃j+1

(
x,

x− st

ε2
,

y

ε2

)]
.
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Each term of this expansion corresponds to the solution of a Reynolds problem
or Stokes problem (which will be further discussed). More precisely, we will
see that (uj , vj , pj) is the solution of a Reynolds-type problem. This solution
being extended in the boundary layer, this leads to a perturbation of the no-slip
boundary condition on the shearing (bottom) surface. Thus, the exact boundary
condition is not satisfied and we have to impose a correction ; this is the role
of (ũj+1, ṽj+1, p̃j+1) which is the solution of a Stokes problem in an unbounded
(semi-infinite) domain. As a consequence, the behaviour of the Stokes solution,
as Y → +∞, is such that it defines a perturbation of the zero no-slip boundary
condition at the top of the domain and, thus, this will be taken into account
in the definition of the elementary solution at next order, in order to balance
all the effects related to the successive perturbations of the flow and boundary
conditions.

Let us mention that the expansion includes the definition of a remainder

(R(N),S(N),Q(N))

which, by means of substraction, is proven to satisfy a Stokes problem (with
source terms) in the “physical” domain. A major task of this work is to derive
some bounds on the remainder (with respect to ε) in order to prove in a rigorous
way that the asymptotic expansion is valid.

Before describing the systems satisfied by the revious terms, let us highlight
that difficulties are twofold: not only well-posedness of the elementary problems
is a major task, but also suitable definition of these elementary problems is
crucial: in the range of difficulty, it can be viewed as the most important point
of the analysis, as it enhances to include all the corrective properties of the
expansion by keeping the well-posedness properties of the elementary problems
and feasibility of a numerical procedure (algorithm) for the computation of the
solution.

2.3 Order 0 and first correction at order 1

We first describe the systems satisfied by the main contributions of the flow.
We put the ansatz, see Eq. (1), into the Stokes system.

• Horizontal components of the velocity field. For the first equation of the
initial system, we obtain the following expression with respect to the ε
powers:

0 = −∂2
xu− ∂2

yu + ∂xp

= ε−3
(
− ∆Xũ1 − ∂2

Y ũ1 + ∇Xp̃1

)

+ ε−2
(
− ∂2

Zu0 + ∇xp0 − ∆Xũ2 − ∂2
Y ũ2 + ∇Xp̃2

)
+ O(ε−1).

This decomposition allows us to propose the following equation

−∆Xũ1 − ∂2
Y ũ1 + ∇Xp̃1 = 0,
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and separating the variables (x,X, Y ) and the variables (x, Z), we propose
the following equations

−∂2
Zu0 + ∇xp0 = −A0 and − ∆Xũ2 − ∂2

Y ũ2 + ∇Xp̃2 = A0,

where function A0 may only depend on common variable x.

• Vertical component of the velocity field. For the second equation of the
initial system, we obtain the following expression with respect to the ε
powers:

0 = −∂2
xv − ∂2

yv + ∂yp = ε−3
(
−∆Xṽ1 − ∂2

Y ṽ1 + ∂Y p̃1 + ∂Zp0

)
+ O(ε−2).

Separating the variables (x,X, Y ) and the variables (x, Z) again, we obtain

∂Zp0 = −B0 and − ∆Xṽ1 − ∂2
Y ṽ1 + ∂Y p̃1 = B0,

where function B0 may only depend on common variable x.

• Free divergence equation. The third equation of the initial system reads

0 = divxu + ∂Zv

= ε−1
(
divXũ1 + ∂Y ṽ1

)
+ ε0

(
divxu0 + ∂Zv0 + divXũ2 + ∂Y ṽ2

)
+ O(ε1).

This justifies the following equation

divXũ1 + ∂Y ṽ1 = 0,

and the definition of a function C0 which only depends on variable x such
that

divxu0 + ∂Zv0 = −C0 and divXũ2 + ∂Y ṽ2 = C0.

• Boundary conditions on Γ+
ε . We transcript the ansatz for z = εh+(x).

For the horizontal velocity u we obtain

0 = u0(x, h+(x)) + εũ1

(
x,

x − st

ε2
,
h+(x)

ε

)
+ εu1(x, h+(x)) + O(ε2).

This computation leads to

u0(x, h+(x)) = 0 and u1(x, h+(x)) = − lim
ε→0

ũ1

(
x,

x − st

ε2
,
h+(x)

ε

)
.

Actually, the boundary condition will be analyzed in a more explicit way,
as we will impose, in fact, the following approximate boundary condition

u1(x, h+(x)) = − lim
Y →∞

∫

Td

ũ1 (x,X − sT, Y ) dX,
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which corresponds to the previous boundary condition, up to the scaling
procedure. In the same way, for the vertical velocity component v, we
obtain

0 = ε v0(x, h+(x)) + εṽ1

(
x,

x − st

ε2
,
h+(x)

ε

)
+ O(ε2).

This computation leads to

v0(x, h+(x)) = − lim
ε→0

ṽ1

(
x,

x − st

ε2
,
h+(x)

ε

)
,

which will be translated into

v0(x, h+(x)) = − lim
Y →∞

∫

Td

ṽ1 (x,X − sT, Y ) dX.

• Boundary conditions on Γ−
ε . We extend the solution (u0, v0, p0) in the

boundary layer Ω−
ε of the domain Ωε. Indeed, the natural boundary condi-

tions at the bottom for the velocity (u0, v0) are given on γ0 corresponding
to the fictitious boundary {Z = 0}:

u0 = s and v0 = 0 on γ0.

Next, noticing that the Reynolds solution (u0, v0, p0) is polynomial with
respect to the vertical variable Z, we can consider that it is defined and
regular on ωR ∪ (T × R

−). More precisely, we have (using for instance a
Taylor formula and the degree of the polynomials), for all (x, Z) ∈ T×R

−

u0(x, Z) = s + Z ∂Zu0(x, 0) +
Z2

2
∂2

Zu0(x, 0) +
Z3

3!
∂3

Zu0(x, 0),

v0(x, Z) = Z ∂Zv0(x, 0) +
Z2

2
∂2

Zv0(x, 0) +
Z3

3!
∂3

Zv0(x, 0) +
Z4

4!
∂4

Zv0(x, 0).

In this way, the extended function satisfies the Stokes system in the whole
domain. Besides, we deduce that, at the boundary Γ−

ε , we obtain

u0

(
x,−εh−

(
x − st

ε2

))
= s− εh−

(
x − st

ε2

)
∂Zu0(x, 0) + O(ε2),

v0

(
x,−εh−

(
x − st

ε2

))
= −εh−

(
x− st

ε2

)
∂Zv0(x, 0) + O(ε2).

Remark 2.1 It is important to notice that the next order term in this
development with respect to ε, that is term of order ε2, will be offset in
the boundary layer by the next terms such as ũ2 (so that we should not
forget those terms later in the development). In practice, we will show
that the constant (w.r.t. Z) A0, B0 and C0 are zero so that the horizontal
velocity u0 is a polynomial of degree 2 in the variable Z, and the vertical
velocity v0 is a polynomial of degree 3.
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In the same way, we will build u1 as the solution of a Reynolds-type
problem satisfying the boundary conditions

u1(x, h+(x)) = − lim
Y →∞

∫

Td

ũ1 (x,X − sT, Y ) dX, u1(x, 0) = 0.

The combination of the homogeneous Dirichlet condition on γ0 and the
extension of u1 to Ω−

ε leads to the following property:

u1

(
x,−εh−

(
x − st

ε2

))
= O(ε).

Plugging this development in the ansatz on Γ−
ε , we obtain

s = u0

(
x,−εh−

(
x − st

ε2

))
+ εũ1

(
x,

x − st

ε2
,−h−

(
x − st

ε2

))

+ εu1

(
x,−εh−

(
x− st

ε2

))
+ O(ε2)

= s − ε h−

(
x − st

ε2

)
∂Zu0(x, 0) + εũ1

(
x,

x − st

ε2
,−h−

(
x − st

ε2

))
+ O(ε2).

Thus, we impose the boundary condition on γbl(0):

ũ1(x,X,−h−(X)) = h−(X) ∂Zu0(x, 0).

Concerning the boundary conditions on Γ−
ε written for the vertical veloc-

ity v, we obtain

0 = ε v0

(
x,−εh−

(
x − st

ε2

))
+ εṽ1

(
x,

x − st

ε2
,−h−

(
x − st

ε2

))
+ O(ε2)

= εṽ1

(
x,

x − st

ε2
,−h−

(
x − st

ε2

))
+ O(ε2).

We then impose the boundary condition on γbl(0):

ṽ1(x,X,−h−(X)) = 0.

Summarizing the previous decomposition procedure, we deduce the equations
and the boundary conditions satisfied by the first terms of the ansatz:

◦ Main flow at scale ε0: Reynolds flow in the thin film domain.
The functions (u0, v0, p0) satisfy the classical Reynolds problem

(
R(0)

)





−∂2
Zu0 + ∇xp0 = −A0, on ωR,

∂Zp0 = −B0, on ωR,
divxu0 + ∂Zv0 = −C0, on ωR,

u0 = s, on γ0,
v0 = 0, on γ0,
u0 = 0, on γ+,
v0 = −β1, on γ+,
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where the functions A0, B0 and C0 only depend on the variable x. We
will see, a posteriori, that A0 = 0, B0 = 0 and C0 = 0. Coefficient β1

will be related to the corrective procedure (although it will be proven to
be independent from the corrective procedure), see Remark 2.6.

◦ First correction at scale ε1: Stokes flow in the boundary layer.
We first set T = 0 (the boundary problem can be defined in a similar way
for any time T 6= 0). The functions (ũ1, ṽ1, p̃1) satisfy a Stokes problem:

(
S(1)

)





−∆Xũ1 − ∂2
Y ũ1 + ∇Xp̃1 = 0, on ωbl(0),

−∆Xṽ1 − ∂2
Y ṽ1 + ∂Y p̃1 = B0, on ωbl(0),

divXũ1 + ∂Y ṽ1 = 0, on ωbl(0),

ũ1 = Ũ1, on γbl(0),

ṽ1 = Ṽ1, on γbl(0),
(ũ1, ṽ1, p̃1) is X−periodic,

where the source term in the boundary condition should be read as

Ũ1 : X → h−(X) ∂Zu0(x, 0) and Ṽ1 ≡ 0.

The value of Ũ1 is chosen as follows: the solution of the Reynolds problem(
R(0)

)
being initially defined for Z > 0, it is naturally defined on Z < 0 by means

of the polynomial extension (as the solution of Problem
(
R(0)

)
is polynomial in

the Z variable). In this way, the Reynolds solution expressed in real variables

satisfies the Stokes system in the whole real domain. Then the value of Ũ1

corresponds to the value of (the extension on Z < 0 of) u0, in rescaled variables.

Moreover, we will prove that the solutions ũ1 and ṽ1 of
(
S(1)

)
satisfy

lim
Y →+∞

∫

]0,1[d
ũ1(x,X, Y ) dX exists; it is denoted α1(x),

lim
Y →+∞

∫

]0,1[d
ṽ1(x,X, Y ) dX exists; it is denoted β1(x).

Remark 2.2 Since (u0, v0, p0) is the solution of the classical Reynolds equation
(see the system (R(0)) with A0 = 0, B0 = 0 and C0 = 0), we easily compute

Ũ1 : X 7→ −h−(X)

(
h+(x)

2
∇xp0(x) +

s

h+(x)

)
.

In the same way, we will see that β1 = 0 whereas α1 6= 0.

Remark 2.3 Notice in particular that the variables x only plays the role of a
parameter in this Stokes problem

(
S(1)

)
. This remark will be common to all the

Stokes problems written in this part.

Remark 2.4 Rigorously, the boundary layer problem is time-dependent and
should be defined as:
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−∆Xũ[T ] − ∂2
Y ũ[T ] + ∇Xp̃[T ] = 0, on ωbl(T ),

−∆Xṽ[T ] − ∂2
Y ṽ[T ] + ∂Y p̃[T ] = B0, on ωbl(T ),

divXũ[T ] + ∂Y ṽ[T ] = 0, on ωbl(T ),

ũ[T ] = Ũ1(· − sT ), on γbl(T ),

ṽ[T ] = Ṽ1(· − sT ), on γbl(T ),
(ũ[T ], ṽ[T ], p̃[T ]) is X−periodic.

Notice that the so-called “initial boundary corrector” (ũ1, ṽ1, p̃1) does not depend
on time T , unlikely to the boundary corrector solution. But we now argue that
the “general boundary corrector” (ũ[T ], ṽ[T ], p̃[T ]) (defined at time T ) can be
deduced from the “initial boundary corrector” thanks to the periodic structure of
the bottom function h−:

(
ũ[T ], ṽ[T ], p̃[T ]

)
(·,X, Y ) =

(
ũ1, ṽ1, p̃1

)
(·,X − sT, Y ).

A similar remark can be made on all issues discussed later.

Remark 2.5 On the same way, the rigorous definition of α1 (or of β1), in the
construction of the corrector system, should be the following one:

α1(x) = lim
Y →+∞

∫

]0,1[d
ũ1(x,X − sT, Y ) dX

which, actually, does not depend on T since ũ1 is periodic with respect to X
(using the change of variable X′ = X− sT ).

Remark 2.6 The behaviour at infinity of the solution of the Stokes problem is
such that

lim
Y →+∞

∫

]0,1[d
ṽ1(x,X, Y ) dX := β1(x).

This limit value is exactly the one that has to be imposed in the definition of the
previous Reynolds problem, namely (R(1)). At first glance, one may think that
problems (R(1)) and (S(1)) are strongly coupled through the constant β1:

− constant β1 is necessary to define the Reynolds problem ;

− constant β1 results from the behaviour of the solution of the Stokes prob-
lem, whose data highly depend on the solution of the Reynolds problem.

As will be proven later, not only is each problem well-posed but also - this might
be surprising - the two problems are NOT coupled, as β1 will be proven to be
independent from the Stokes problem ! See in particular Proposition 3.7 and
also Subsection 3.3 (algorithm).

Due to the non-zero limit of the integral quantity
∫
]0,1[d ũ1(x,X, Y ) dX as Y

tends to +∞, the contribution of ũ1 in the asymptotic development brings an
error at the top boundary. That is corrected by the following contribution:
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◦ Second correction at scale ε1: Reynolds flow in the thin film
domain. The functions (u1, v1, p1) satisfy the Reynolds problem:

(
R(1)

)





−∂2
Zu1 + ∇xp1 = −A1, on ωR,

∂Zp1 = −B1, on ωR,
divxu1 + ∂Zv1 = −C1, on ωR,

u1 = 0, on γ0,
v1 = 0, on γ0,
u1 = −α1, on γ+,
v1 = −β2, on γ+.

where the two functions A1, B1 and C1 only depend on the variable x and
will be precise later (indeed, A1 = 0, B1 = 0 and C1 is given by Eq. (7)).

Now, we present the systems satisfied by the corrective terms in the asymp-
totic expansions: these contributions allow a better description of the initial
Stokes flow by increasing the order of the approximation. Notice that the fol-
lowing system highly depends on the previous solutions as source terms.

2.4 Higher orders of the asymptotic expansion

Each order of precision is obtained using a Reynolds flow corresponding to the
next order of the thin film assumption ; then the corrections due to the roughness
patterns have to be taken into account. Notice that the solutions of the previous
systems may play the role of source terms in the proposed corrections.

◦ Correction at scale εj: Stokes flow in the boundary layer.

For 2 ≤ j ≤ N + 1, the functions (ũj , ṽj , p̃j) satisfy the classical Stokes
problem:

(
S(j)

)





−∆Xũj − ∂2
Y ũj + ∇Xp̃j = F̃ j , on ωbl(0),

−∆Xṽj − ∂2
Y ṽj + ∂Y p̃j = G̃j , on ωbl(0),

divXũj + ∂Y ṽj = H̃j , on ωbl(0),

ũj = Ũ j , on γbl(0),

ṽj = Ṽj , on γbl(0),
(ũj , ṽj , p̃j) is X−periodic,

where the boundary conditions are related to

Ũ j : X → −

[ j+1

2
]+1∑

k=1

(−1)kh−(X)k

k!
∂k

Zuj−k(x, 0),

Ṽj : X → −h−(X)Cj−2(x) +

[ j

2
]+2∑

k=2

(−1)kh−(X)k

k!
divx∂k−1

Z uj−k−1(x, 0).
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The source terms are defined by

F̃ j : (X, Y ) → Aj−2 + (2∇x · ∇Xũj−2 + ∆xũj−4 −∇xp̃j−2) (·,X, Y ),

G̃j : (X, Y ) → Bj−1 + (2∇x · ∇Xṽj−2 + ∆xṽj−4) (·,X, Y ),

H̃j : (X, Y ) → Cj−2 − divxũj−2(·,X, Y ).

The value of Ũ j and Ṽj is chosen as follows: the solution of the Reynolds
problem

(
R(j−1)

)
being initially defined for Z > 0, it is naturally defined on

Z < 0 by means of the polynomial extension (as the solution of Problem
(
R(j−1)

)

is polynomial in the Z variable). In this way, the Reynolds solution expressed
in real variables satisfies the Stokes system in the whole real domain. Then the
value of Ũ j and Ṽj corresponds to the value of (the extension on Z < 0 of) uj−1

and vj−1, in rescaled variables.

Moreover, we will prove that, using a good choice for the values Aj−2, Bj−1

and Cj−2 (see Eq. (5)–(7)), the solutions ũj and ṽj of (S(j)) satisfy

lim
Y →+∞

∫

]0,1[d
ũj(x,X, Y ) dX exists; it is denoted αj(x),

lim
Y →+∞

∫

]0,1[d
ṽj(x,X, Y ) dX exists; it is denoted βj(x).

Remark 2.7 Note that for small values of the integer j, the expressions of the
source terms are lightly different. In fact, by convention we must read 0 when a
term is not defined. For example, F̃2 = A0 since ũ0 = 0, ũ−2 = 0 and p̃0 = 0.

Remark 2.8 The boundary terms given by Ũ j and Ṽj come from to the error
due to the extension of all the previous interior terms uk and vk, k < j, see
their extensions (14) on page 31.

◦ Main flow at scale εj: Reynolds flow in the thin film domain.

For 2 ≤ j ≤ N , the functions (uj , vj , pj) satisfy the Reynolds problem:

(
R(j)

)





−∂2
Zuj + ∇xpj = F j , on ωR,

∂Zpj = Gj , on ωR,
divxuj + ∂Zvj = Hj , on ωR,

uj = 0, on γ0,
vj = 0, on γ0,
uj = −αj , on γ+,
vj = −βj+1, on γ+,

with the general source terms

F j : (x, Z) → −Aj(x) + ∆xuj−2(x, Z),

Gj : (x, Z) → −Bj(x) + ∂2
Zvj−2(x, Z) + ∆xvj−4(x, Z),

Hj : x → −Cj(x).
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Remark 2.9 As previously, note that for small values of the integer j,
the expressions of the source terms are slightly different. By convention
we must read 0 when a term is not defined. For example G2 = −B2 +∂2

Zv0

since v−2 = 0.

Remark 2.10 Coefficient βj+1 should be related to the corrective pro-
cedure (although it will be proven to be independent from the corrective
procedure) at the next step. More precisely, the behaviour at infinity of the
solution of the Stokes problem

(
S(j)

)
is such that

lim
Y →+∞

∫

]0,1[d
ṽj+1(x,X, Y ) dX := βj+1(x).

This limit value is exactly the one that has to be imposed in the definition
of the Reynolds problem (R(j)). At first glance, one may think that, by
means of construction, problems (R(j+1)) and (S(j+1)) are strongly coupled
through the constant βj+1. As will be proven later, not only is each problem
well-posed but also - this might be surprising - the two problems are NOT
coupled, as βj+1 will be proven to be independent from the Stokes problem !
See in particular Proposition 3.7 and and also Subsection 3.3 (algorithm).

Then, substracting the asymptotic expansion from the initial solution, we easily
find that the remainder should satisfy a Stokes system in the initial domain, with
source terms which highly depend on the above solutions, see part 4. In order
to make the previous asymptotic expansion rigorous, we will have to control
the remainder. Before entering into the details of the definition and control of
the remainder, let us describe the mathematical properties of the Reynolds-type
and Stokes-type problems which have been presented in this section.

3 Mathematical results related to the different

scale problems

3.1 Stokes problems: well-posedness and behaviour of the

solutions

In this section, we show that the Stokes problems (S(j)) introduced above are
well posed. Moreover, we prove that for a suitable choice of the “constants” Aj ,
Bj and Cj , the limits

lim
Y →+∞

∫

]0,1[d
ũj(x,X, Y ) dX and lim

Y →+∞

∫

]0,1[d
ṽj(x,X, Y ) dX,

do exist.
We present a result (see Proposition 3.2) whose interest is twofold: i) it allows

us to obtain a well-posedness result on the Stokes problems (S(j)) by using a
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lift procedure and classical results on Stokes systems in semi-infinite domains ;
ii) it allows us to explain how the boundary conditions and the source term
in the divergence equation can be translated into boundary conditions on the
plane Y = 0.

Definition 3.1 Let H̃ ∈ Cper(ωbl, R), Ũ ∈ Cper(]0, 1[d, Rd) and Ṽ ∈ Cper(]0, 1[d, R).
Consider a solution (ũ, ṽ) of the following problem





divXũ + ∂Y ṽ = H̃, on ωbl,

ũ = Ũ , on γbl,

ṽ = Ṽ , on γbl,
(ũ, ṽ) is X−periodic.

(2)

Then we define the linear operators

Lu : (H̃, Ũ , Ṽ) 7−→

∫

]0,1[d
ũ(X, 0) dX ∈ R

d,

Lv : (H̃, Ũ , Ṽ) 7−→

∫

]0,1[d
ṽ(X, 0) dX ∈ R.

Remark 3.1 The existence of such a solution to equation (2) immediatly fol-

lows from the fact that for all function ũ on ωbl such that ũ = Ũ on Y =
−h−(X), the couple

(
ũ(X, Y ) , Ṽ(X) +

∫ Y

−h−(X)

(
H̃ − divXũ

)
(X, ζ) dζ

)

defines a solution of (2).

We will see that for pratical cases, the velocity imposed at the bottom are
pecular form. We will use the following proposition.

Proposition 3.2 Let f ∈ C∞(R, Rd), f ∈ C∞(R, R) and H̃ ∈ Cper(ωbl, R). We
have

Lv

(
H̃, f(h−(X)), f(h−(X))

)
= −

∫

{Y <0}

H̃(X, Y ) dXdY −

∫

]0,1[d
f(h−(X)) dX.

Proof. We apply the Green’s formula :

∫

{Y <0}

H̃(X, Y ) dX dY =

∫

{Y <0}

(
divXũ + ∂Y ṽ

)

=

∫

]0,1[d

(
ũ(X,−h−(X))
ṽ(X,−h−(X))

)
·

(
−∇Xh−(X)

−1

)
dX

+

∫

]0,1[d

(
ũ(X, 0)
ṽ(X, 0)

)
·

(
0
1

)
(−dX).
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As ũ and ṽ have a particular shape on the bottom boundary, a simple compu-
tation leads to
∫

{Y <0}

H̃(X, Y ) dX dY = −

∫

]0,1[d
f(h−(X)) dX −

∫

γbl

f(h−(X)) · ∇Xh−(X) dX

−

∫

]0,1[d
ṽ(X, 0) dX

By periodicity of function h−, we have

∫

γbl

f(h−(X)) · ∇Xh−(X) dX =

∫

γbl

∇XF(h−(X)) dX = 0,

where F is a primitive of f . That concludes the proof. @blacksquare
As a consequence of Proposition 3.2, it is possible to define a lift proce-

dure, so that problem (S(j)) reduces to an associated Stokes problem with free-
divergence and homogeneous boundary conditions. Well-posedness of such a
Stokes problem is well-known (see [15, 16, 17, 23] which provide the functional
framework).

In the sequel, we focus on the behaviour at infinity of the solution of problem
(S(j)). This analysis relies on an iterative process.

3.1.1 Initialization step: analysis of problem (S(1))

We properly define the Stokes problem (S(1)) introduce on page 16 so that it is
well-posed and the behaviour of the solution is controlled as Y → +∞.

Lemma 3.3 There exist source term B0 (in fact B0 = 0) such that the sys-
tem (S(1)) admits a solution which is written, for all (X, Y ) ∈]0, 1[d×]0, +∞[,





ũ1(X, Y ) = Lu(0, Ũ1, Ṽ1) +
∑

k∈Zd\{0}

P
(1)
k

(Y )e−2π‖k‖Y +2πik·X

ṽ1(X, Y ) = Lv(0, Ũ1, Ṽ1) +
∑

k∈Zd\{0}

Q
(1)
k

(Y )e−2π‖k‖Y +2πik·X

p̃1(X, Y ) =
∑

k∈Zd\{0}

R
(1)
k

(Y )e−2π‖k‖Y +2πik·X

where P
(1)
k

, Q
(1)
k

and R
(1)
k

are affine functions.

It is important to notice that the X-average on ũ1 (resp. v1) does not depend
on Y . We deduce that its limit when Y tends to +∞, denoted α1 (resp. β1),
satisfies

α1 = Lu(0, Ũ1, Ṽ1) (resp. β1 = Lv(0, Ũ1, Ṽ1)).

As a straigthforward consequence, we get the following property (notice that, for

the pressure, polynomial functions R
(1)
1 and R

(1)
−1 will be considered as constant,

in the proof):
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Corollary 3.4 The solution of
(
S(1)

)
satisfies:

‖ũ1(X, Y ) − α1‖ ≤ C(δ) e−δY Y > 0, ∀δ < 2π,
|ṽ1(X, Y ) − β1| ≤ C(δ) e−δY Y > 0, ∀δ < 2π,

|p̃1(X, Y )| ≤ C e−2πY Y > 0,

where the constant C(δ) only depends on δ.

Proof.(of Lemma 3.3) The existence of a solution to the Stokes problem (S(1))
as follows is usual, see for instance [1, 17]. Moreover, if (ũ1, ṽ1, p̃1) is a solu-
tion of (S(1)) satisfying ∇ũ1, ∇ṽ1, p̃1 ∈ L2(]0, 1[d×(0, +∞)), then it is also a
solution of:




−∆Xũ1 − ∂2
Y ũ1 + ∇Xp̃1 = 0, on ωbl ∩ {Y > 0},

−∆Xṽ1 − ∂2
Y ṽ1 + ∂Y p̃1 = B0, on ωbl ∩ {Y > 0},

divXũ1 + ∂Y ṽ1 = 0, on ωbl ∩ {Y > 0},∫
]0,1[d

ũ1(X, 0) dX = Lu(0, Ũ1, Ṽ1),∫
]0,1[d ṽ1(X, 0) dX = Lv(0, Ũ1, Ṽ1),∫

]0,1[d×(0,+∞)
p̃1(X, Y ) dX dY = 0,

(ũ1, ṽ1, p̃1) is X−periodic.

Remark 3.2 In all the Stokes problems which appear in this paper, the pres-
sures are given up to an additive constant. This constant is choosen here such
that ∫

]0,1[d×(0,+∞)

p̃(X, Y ) dX dY = 0.

This allows us to pass to the Fourier transform with respect to X:

ũ1(X, Y ) =
∑

k∈Zd

ûk(Y )e2πik·X, ṽ1(X, Y ) =
∑

k∈Zd

v̂k(Y )e2πik·X,

p̃1(X, Y ) =
∑

k∈Zd

p̂k(Y )e2πik·X.

The previous system on (ũ1, ṽ1, p̃1) is translated into





(2π)2‖k‖2ûk − ûk

′′
+ 2πikp̂k = 0 on {Y > 0} ∀k ∈ Z

d

(2π)2‖k‖2v̂k − v̂k

′′
+ p̂k

′
= B0δk=0 on {Y > 0} ∀k ∈ Z

d

2πik · ûk + v̂k

′
= 0 on {Y > 0} ∀k ∈ Z

d

û0(0) = Lu(0, Ũ1, Ṽ1)

v̂0(0) = Lv(0, Ũ1, Ṽ1)∫ +∞

0
p̂0(Y ) dY = 0

(3)
where ûk

′
, v̂k

′ and p̂k belong to L2(0, +∞). Now we solve the Fourier problem
and describe the behaviour of the solution of the Stokes problem.
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• For k = 0, the system reduces to




−û0

′′
= 0 on {Y > 0}

−v̂0
′′ + p̂0

′
= B0 on {Y > 0}

v̂0

′ = 0 on {Y > 0}

û0(0) = Lu(0, Ũ1, Ṽ1)

v̂0(0) = Lv(0, Ũ1, Ṽ1)∫ +∞

0
p̂0(Y ) dY = 0

Then, as we look for a solution in a suitable space, namely

û0

′
∈ L2(0, +∞), v̂0

′ ∈ L2(0, +∞), p̂0 ∈ L2(0, +∞),

this leads us to the following equalities û0 = Lu(0, Ũ1, Ṽ1), v̂0 = Lv(0, Ũ1, Ṽ1),
p̂0 = 0 with the choice

B0 = 0. (4)

• For k 6= 0, we proceed as follows. The idea is to decompose ûk as the sum

ûk = (k · ûk)k + (k⊥ · ûk)k⊥.

- Taking the scalar product with k⊥ of the first equation of the system (3),
we immediately deduce that

(2π)2‖k‖2(k⊥ · ûk) − (k⊥ · ûk)′′ = 0 on {Y > 0} ∀k ∈ Z
d.

Since we have k⊥ · ûk ∈ L2(0, +∞) then it takes the form ake−2π‖k‖Y with
ak ∈ R.

- Now, taking the scalar product with k of the first equation of the system (3),
we obtain the pressure with respect to the quantity k · ûk:

p̂k = 2πi(k · ûk) −
i

2π‖k‖2
(k · ûk)′′.

Moreover, using the third equation of the system (3) we express k · ûk as a
function of v̂k:

k · ûk = (2π)−1iv̂k

′
,

and then the second equation of the system (3) corresponds to the following
homogeneous linear differential equation for the quantity v̂k:

1

(2π)2‖k‖2
v̂k

′′′′
− 2v̂k

′′
+ (2π)2‖k‖2v̂k = 0.

The solutions of this ODE take the form

v̂k(Y ) = (akY + bk)e2π‖k‖Y + (ckY + dk)e−2π‖k‖Y ,

with (ak, bk, ck, dk) ∈ R
4. Since we have v̂k

′
∈ L2(0, +∞), then we necessarily

obtain ak = bk = 0. Finally, v̂k takes the form

v̂k(Y ) = (ckY + dk)e−2π‖k‖Y , (ck, dk) ∈ R
2.
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By using the expression of k · ûk and p̂k as a function of v̂k, we successively get

k · ûk(Y ) = (2π)−1i((ck − 2π‖k‖dk) − ‖k‖ckY/L)e−2π‖k‖Y ,
p̂k(Y ) = cke−2π‖k‖Y .

Finally, we obtain the contribution ûk using the results for k · ûk and k⊥ · ûk.

Defining the following affine functions

P
(0)
k

(Y ) = (2π)−1i((ck − 2π‖k‖dk) − 2π‖k‖ckY )k + akk
⊥,

Q
(0)
k

(Y ) = ckY + dk and R
(0)
k

(Y ) = ck,

the proof is concluded. @blacksquare

3.1.2 Induction step: analysis of problem (S(j)) for j ≥ 2

We show the following result about the solution of the problem (S(j)) introduced
page 18:

Lemma 3.5 Let j ≥ 2. There exist source terms Aj−2, Bj−1 and Cj−2 such
that
∫

]0,1[d
F̃ j(X, ·) dX = 0,

∫

]0,1[d
G̃j(X, ·) dX = 0,

∫

]0,1[d
H̃j(X, ·) dX = 0.

For such a choice, the solution of the system (S(j)) is written, for all (X, Y ) ∈
]0, 1[d×]0, +∞[,





ũj(X, Y ) = Lu(H̃j , Ũ j , Ṽj) +
∑

k∈Zd\{0}

P
(j)
k

(Y )e−2π‖k‖Y +2πik·X

ṽj(X, Y ) = Lv(H̃j , Ũ j , Ṽj) +
∑

k∈Zd\{0}

Q
(j)
k

(Y )e−2π‖k‖Y +2πik·X

p̃j(X, Y ) =
∑

k∈Zd\{0}

R
(j)
k

(Y )e−2π‖k‖Y +2πik·X

where P
(j)
k

, Q
(j)
k

and R
(j)
k

are polynomial functions.

We deduce that the X-average of ũj and ṽj does not depend on Y , so that

αj = Lu(H̃j , Ũj , Ṽj) and βj = Lv(H̃j , Ũj , Ṽj).

As a straigthforward consequence, we get the following property:

Corollary 3.6 For all j ≥ 2, the solution of
(
S(j)

)
satisfies:

‖ũj(X, Y ) − αj‖ ≤ C(δ) e−δY Y > 0, ∀δ < 2π,
|ṽj(X, Y ) − βj | ≤ C(δ) e−δY Y > 0, ∀δ < 2π,

|p̃j(X, Y )| ≤ C(δ) e−δY Y > 0, ∀δ < 2π,

where C(δ) only depends on δ.
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Proof.(of Lemma 3.5) It is based on the induction.
• Initialization (j = 2). Recall that

F̃2 = A0, G̃2 = B1 and H̃2 = C0.

In order to ensure that the averages with respect to the variable X are null,
since A0, B1 and C0 only depend on the variable x, we have to choose

A0 = 0, B1 = 0 and C0 = 0.

Consequently the source terms are null and we can apply exactly the same
procedure that for the proof of the lemma 3.3. We obtain





ũ2(X, Y ) = Lu(0, Ũ2, Ṽ2) +
∑

k∈Zd\{0}

P
(2)
k

(Y )e−2π‖k‖Y +2πik·X

ṽ2(X, Y ) = Lv(0, Ũ2, Ṽ2) +
∑

k∈Zd\{0}

Q
(2)
k

(Y )e−2π‖k‖Y +2πik·X

p̃2(X, Y ) =
∑

k∈Zd\{0}

R
(2)
k

(Y )e−2π‖k‖Y +2πik·X

where P
(2)
k

, Q
(2)
k

and R
(2)
k

are affine functions.
• Induction. Let j ≥ 2 and suppose that lemma 3.5 holds for any index

k < j and let us prove that it still holds for k = j.
First, we have to show that it is possible to choose Aj−2, Bj−1 and Cj−2

(which do not depend on the Stokes variables (X, Y )) such that the source terms
are free average with respect to X. Recalling that

F̃ j(X, Y ) = Aj−2 + (2∇x · ∇Xũj−2 + ∆xũj−4 −∇xp̃j−2) (·,X, Y ).

Since ũj−2 is X-periodic, and since the X-average of p̃j−2 is zero by induction
assumption, it is sufficient to impose

Aj−2 = −∆x

(∫

]0,1[d
ũj−4(·,X, Y ) dX

)
,

that is
Aj−2 = −∆xαj−4. (5)

It is important to notice that Aj−2 does not depend on Y . In the same way, us-

ing the definition of G̃j : G̃j(X, Y ) = Bj−1 +(2∇x · ∇Xṽj−2 + ∆xṽj−4) (·,X, Y ),
we naturally impose

Bj−1 = −∆xβj−4. (6)

Finally, using the following definition H̃j(X, Y ) = Cj−2 −divxũj−2(·,X, Y ), we
impose

Cj−2 = divxαj−2. (7)
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With these choices for Aj−2, Bj−1 and Cj−2, the source terms F̃ j , G̃j and H̃j

are periodic and free-average with respect to the X variable. Moreover, thanks
to the induction assumption they take the following form

F̃ j(X, Y ) =
∑

k∈Zd\{0}

P̃k(Y )e−2π‖k‖Y +2πik·X,

G̃j(X, Y ) =
∑

k∈Zd\{0}

Q̃k(Y )e−2π‖k‖Y +2πik·X,

H̃j(X, Y ) =
∑

k∈Zd\{0}

R̃k(Y )e−2π‖k‖Y +2πik·X,

where P̃k, Q̃k and R̃k are polynomial. Using the Fourier transform of the sys-
tem (S(j)) we deduce an equivalent system on the Fourier coefficients (ûk, v̂k, p̂k):





(2π)2‖k‖2ûk − ûk

′′
+ 2πikp̂k = P̃ke−2π‖k‖Y on {Y > 0} ∀k ∈ Z

d

(2π)2‖k‖2v̂k − v̂k

′′
+ p̂k

′
= Q̃ke−2π‖k‖Y on {Y > 0} ∀k ∈ Z

d

2πikûk + v̂k

′
= R̃ke−2π‖k‖Y on {Y > 0} ∀k ∈ Z

d

û0(0) = Lu(H̃j , Ũ j , Ṽj)

v̂0(0) = Lv(H̃j , Ũ j , Ṽj)∫ +∞

0
p̂0(Y ) dY = 0

where ûk

′
, v̂k

′
and p̂k belong to L2(0, +∞).

• For k = 0, since P̃0 = 0, Q̃0 = 0 and R̃0 = 0 we deduce that (see the
proof of Lemma 3.5 for the same kind of calculations):

û0 = Lu(H̃j , Ũj , Ṽj), v̂0 = Lv(H̃j , Ũj , Ṽj) and p̂0 = 0.

• For k 6= 0, using the same method as previously (see the proof of Lemma 3.5),
we first obtain a linear differential equation on the function defined by f(Y ) =
k⊥ · ûk(Y ):

(2π)2‖k‖2f(Y ) − f ′′(Y ) = k⊥ · P̃ke−2π‖k‖Y .

Since P̃k is a polynom, we know that the solutions of this linear differential
equation take the following form:

k⊥ · ûk(Y ) = Pk(Y )e−2π‖k‖Y ,

where Pk a polynom. Next we obtain

p̂k = 2πi(k · ûk) −
i

2π‖k‖2
(k · ûk)′′ −

i

2π‖k‖2
(k · P̃k)e−2π‖k‖Y ,

k · ûk =
i

2π

(
v̂k

′
− R̃ke−2π‖k‖Y

)
.
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Moreover v̂k satisfies the non-homogeneous linear differential equation

1

(2π)2‖k‖2
v̂k

′′′′
− 2v̂k

′′
+ (2π)2‖k‖2v̂k (8)

=

(
Q̃k +

i

2π‖k‖2
(k · P̃k

′
) −

i

‖k‖
(k · P̃k)

)
e−2π‖k‖Y .

The solutions of this ODE are the sum of i) the solution of the homoge-
neous equation (which has been solved before) and ii) a particular solution
which, due to the form of the right-hand side, can be obtained under the form

Q
(1)
k,1(Y )e−2π‖k‖Y , the polynomial function Q

(1)
k,1. From this, we deduce that the

solutions of Equation (8) can be written as

v̂k(Y ) = (akY + bk)e2π‖k‖Y + (Q
(1)
k,1(Y ) + ckY + dk︸ ︷︷ ︸

= Q
(1)
k

(Y )

)e−2π‖k‖Y .

As before, since v̂k

′
belongs to L2(0, +∞), we have to keep terms in Q

(1)
k

(Y )e−2π‖k‖Y

only. Finally, we obtain expressions for ûk and p̂k, which concludes the proof.
@blacksquare

3.2 Well-posedness of the Reynolds problem

In this part, we show that the Reynolds-type problems (R(j)) are well posed as
soon as the “constants” Aj , Bj and Cj are choosen as previously.

In particular, due to the fact that Cj = divxαj , system (R(j)) implies that
uj + αj , vj + βj+1 and pj satisfy the following Reynolds-type problems on ωR:

(R)





−∂2
Zu + ∇xp = F , on ωR,

∂Zp = G, on ωR,
divxu + ∂Zv = 0, on ωR,

(u, v) = (U0,V0), on γ0,
(u, v) = (0, 0), on γ+.

Here, we assume that the data satisfy some regularity assumptions, i. e. U0, V0 ∈
C∞(Td)d, F ∈ C∞(ωR)d and G ∈ C∞(ωR). Moreover, we assume that

∫

Td

V0(x) dx = 0, (9)

which correspond to a compatibility condition for the system (R).

Now let us highlight two crucial properties:

• we first show that βj+1 only depends on the solution of the Stokes problem(
S(j−1)

)
, as will be proved in Proposition 3.7 ;
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• as a consequence, we show that Assumption (9) is always satisfied for the
Reynolds problems (R(j)), as will be stated in Remark 3.3

Proposition 3.7 Coefficient βj+1 which couples problems
(
R(j)

)
and

(
S(j+1)

)

only depends on the solution of problems
(
S(j−1)

)
and

(
R(k)

)
for k ≤ j − 2.

More precisely, we have

βj+1(x) = divx

(∫

{Y <0}

ũj−1(x,X, Y ) dXdY

)

−divx




[ j+1

2
]+2∑

k=2

(−1)k

k!

(∫

]0,1[d
h−(X)k dX

)
∂k−1

Z uj−k(x, 0)


 .

Proof. We recall that from the Fourier analysis we have βj+1 = Lv(H̃j+1, Ũj+1, Ṽj+1),

where Ũ j+1 can be viewed as a polynomial function of h−(X) and where Ṽj+1,
which is also a polynomial function of h−(X), takes the following form

Ṽj+1(X) = −h−(X)Cj−1(x) +

[ j+1

2
]+2∑

k=2

(−1)kh−(X)k

k!
divx∂k−1

Z uj−k−1(x, 0),

Applying Proposition 3.2, we obtain

βj+1(x) = −

∫

{Y <0}

H̃j+1(x,X, Y ) dX dY + Cj−1(x)

∫

]0,1[d
h−(X) dX

−




[ j+1

2
]+2∑

k=2

(−1)kh−(X)k

k!
divx∂k−1

Z uj−k−1(x, 0) dX


 .

Let us rewrite the right-hand side: first, by definition H̃j+1 = Cj−1 − divxũj−1

so that∫

{Y <0}

H̃j+1(x,X, Y ) dX dY

= Cj−1(x)

∫

{Y <0}

1 dXdY −

∫

{Y <0}

divxũj−1(x,X, Y ) dXdY

= Cj−1(x)

(∫

]0,1[d
h−(X) dX

)
− divx

(∫

{Y <0}

ũj−1(x,X, Y ) dXdY

)
.

Then, the last term in the right-hand side is simply treated by putting the divx

operator out of the partial sum. Thus, we get

βj+1(x) = divx

(∫

{Y <0}

ũj−1(x,X, Y ) dXdY

)

−divx




[ j+1

2
]+2∑

k=2

(−1)k

k!

(∫

]0,1[d
h−(X)k dX

)
∂k−1

Z uj−k−1(x, 0)


 .

Thus, the proof is concluded. @blacksquare
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Remark 3.3 It is important to notice that for the Reynolds problems (R(j)),
Assumption (9) is always satisfied since V0 = βj+1. From Proposition 3.7, we
deduce that βj+1 is a x-divergence term wich implies, due to the periodicity, that

∫

Td

βj+1(x) dx = 0.

This corresponds to Assumption (9).

To study the Reynolds system (R), we first use some algebraic transforma-
tions: Integrating the pressure equation gives

p(·, Z) = p +

∫ Z

0

G(·, ζ) dζ, (10)

where x 7→ p(x) is a function to be determined (called “reduced pressure”).
Then, putting the above equality into the (u, p) relationship gives

−∂2
Zu + ∇xp = F −

∫ Z

0

∇xG(·, µ) dµ.

Again, integrating twice in the Z-variable, we obtain:

u(·, Z) =
Z(Z − h+)

2
∇xp +

h+ − Z

h+
U

0 (11)

+

∫ Z

0

∫ η

0

{
F(·, ζ) −

∫ ζ

0

∇xG(·, µ) dµ

}
dζ dη

−
y

h+

∫ h+

0

∫ η

0

{
F(·, ζ) −

∫ ζ

0

∇xG(·, µ) dµ

}
dζ dη,

and the vertical velocity field is given by

v(·, Z) = V0 −

∫ Z

0

divxu(·, ζ)dζ. (12)

Integrating between 0 and h+ the divergence equation of (R), we get

divx

(h+3

12
∇xp

)
= divx

(h+

2
U

0
)
− V0 (13)

+divx

(∫ h+

0

∫ y

0

∫ η

0

{
F(·, ζ) −

∫ ζ

0

∇xG(·, µ) dµ

}
dζ dη dy

)

−divx

(
h+

2

∫ h+

0

∫ η

0

{
F(·, ζ) −

∫ ζ

0

∇xG(·, µ) dµ

}
dζ dη

)
.

Lemma 3.8 Under the compatibility condition (9), problem (R) admits a unique
solution (u, v, p) ∈ C∞(ωR)d+2.
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Proof. Obviously, Eq. (13) with assumption (9) can be written as

divx (A∇xp) = divxB − C with

∫

Td

C = 0,

where the left-hand side and right-hand side obviously depend on all the data,
i. e.

A :=
h+3

12
, B := B(h+, F ,G, U0), C := V0,

with
A ∈ C∞(Td), B ∈ C∞(Td)d, C ∈ C∞(Td).

Thus, existence and uniqueness of a solution p ∈ H1(T) (defined up to an ad-
ditive constant) immediatly follows from the Lax-Milgram theorem. Then u, v
and p are defined and uniquely determined by means of integration, see Eq. (10),
(11) and (12), and the regularity of (u, v, p) follows from the regularity of p (with
respect to the x-variable) and the data. @blacksquare

Since the compatibility condition (9) is satisfied for the systems (R(j)) (see
the Remark 3.3), we deduce the following result:

Corollary 3.9 For j ∈ N the problem (R(j)) admits a unique solution (uj , vj , pj) ∈
C∞(ωR)d+2.

As we noted in the subsection 2.3 for the first order term (u0, v0, p0), see
for instance the Remark 2.1, we can easily show by induction that the solution
(uj , vj , pj) of the problem (R(j)) is polynomial with respect to the variable Z.
Moreover the degree of these polynomials are given by, for any n ∈ N,

deg p2n = deg p2n+1 = 2n,

deg u2n = deg u2n+1 = 2n + 2,

deg v2n = deg v2n+1 = 2n + 3.

It is therefore natural to extend the velocity field (uj , vj) for Z < 0, putting

uj(x, Z) =

j+2∑

k=0

∂k
Zuj(x, 0)

Zk

k!
and vj(x, Z) =

j+3∑

k=0

∂k
Zvj(x, 0)

Zk

k!
.

Due to the boundary dirichlet condition imposed on (uj , vj) for Z = 0, and due
to the divergence equation on this velocity (see the divergence equation for the
problem (R(j))), we obtain for all j ∈ N

∗

uj(x, Z) =

j+2∑

k=1

∂k
Zuj(x, 0)

Zk

k!
,

vj(x, Z) = −Cj(x) −

j+3∑

k=2

divx∂k−1
Z uj(x, 0)

Zk

k!
.

(14)
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These are the terms which, measured in Z = −εh−

(
x − st

ε2

)
, must be com-

pensated the boundary layer corrector.

By Lemmas 3.3, 3.5 and 3.8 (and related corollaries), we have proved that
each term of the asymptotic expansion satisfies a well-posed problem. Moreover,
we have characterized the behaviour of each solution.

3.3 Algorithm

In the two previous subsections, we have proved that the intermediate problems
− Stokes problems (S(j)) and Reynolds-type problems (R(j)) − were all well
posed, independently of each other. Clearly, to solve the Stokes problem, you
must know some solution of the problem of Reynolds and vice versa. Here, we
describe the procedure to really solve all the problems thoroughly.

To evaluate the development up to order N (see the ansatz, , see Eq. (1)
on page 11), we theoretically just add all intermediate profiles: (u0, v0, p0),
(ũ1, ṽ1, p̃1), (u1, v1, p1), (ũ2, ṽ2, p̃2) etc. In practice the first terms are obtained
as described in the introduction, see subsection 1.3. More generally, assuming
known the terms (uk, vk, pk) and (ũk, ṽk, p̃k) for any k < j, we compute the
terms (uj , vj , pj) and (ũj , ṽj , p̃j) as follows.

INITIALIZATION:

0. Main flow: (u0, v0, p0) solves (R(0)) with

A0 = 0, B0 = 0, C0 = 0, β1 = 0

1.A Corrective Stokes flow: (ũ1, ṽ1, p̃1) solves (S(1)) with

Ũ1(X) = h−(X) ∂Zu0(x, 0), Ṽ1 ≡ 0

1.B. Corrective Reynolds flow: (u1, v1, p1) solves (R(1)) with

α1 = lim
Y →+∞

∫

]0,1[d
ũ1(·,X, Y ) dX, β2 = 0,

A1 = 0, B1 = 0, C1 = divxα1.

ITERATIVE PROCEDURE: Assume that, for 1 ≤ k ≤ j − 1,

• problem (S(k)) is defined, i. e. in particular, the source terms (F̃k, G̃k,

H̃k) and the boundary terms (Ũk, Ṽk) have been defined. Let (ũk, ṽk, p̃k)
be its solution.

• problem (R(k)) is defined, i. e. in particular, the source terms (Fk, Gk,
Hk) and the boundary terms (αk, βk+1) have been defined, meaning that
coefficients Ak, Bk and Ck have been also defined. Let (uk, vk, pk) be its
solution.
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j.A Corrective Stokes flow: (ũj , ṽj , p̃j) solves (S(j)) with

• the following source terms

F̃ j(X, Y ) = Aj−2 + (2∇x · ∇Xũj−2 + ∆xũj−4 −∇xp̃j−2) (·,X, Y ),

G̃j(X, Y ) = Bj−1 + (2∇x · ∇Xṽj−2 + ∆xṽj−4) (·,X, Y ),

H̃j(X, Y ) = Cj−2 − divxũj−2(·,X, Y ).

• the following boundary conditions

Ũ j(X) = −

[ j+1

2
]+1∑

k=1

(−1)kh−(X)k

k!
∂k

Zuj−k(x, 0),

Ṽj(X) = −h−(X)Cj−2(x) +

[ j
2
]+2∑

k=2

(−1)kh−(X)k

k!
divx∂k−1

Z uj−k−1(x, 0).

j.B Corrective Reynolds flow: (uj , vj , pj) solves (R(j)) with

• the following boundary values

αj = lim
Y →+∞

∫

]0,1[d
ũj(·,X, Y ) dX

βj+1 = divx

(∫

{Y <0}

ũj−1(·,X, Y ) dXdY

)

−divx




[ j+1

2
]+2∑

k=2

(−1)k

k!

(∫

]0,1[d
h−(X)k dX

)
∂k−1

Z uj−k(·, 0)


 .

• the following constants

Aj = −∆xαj−2, Bj = −∆xβj−3, Cj = divxαj .

• the following source terms

F j(x, Z) = −Aj(x) + ∆xuj−2(x, Z),

Gj(x, Z) = −Bj(x) + ∂2
Zvj−2(x, Z) + ∆xvj−4(x, Z),

Hj(x) = −Cj(x).

4 Error analysis

The error analysis is based on a three-step procedure: i) first we recall classical
estimates related to the Stokes system satisfied by the remainder. At this stage,
the estimates do depend on the small parameter ε through the expression of
the source terms and also through the domain Ωε whose measure tends to zero
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as ε tends to zero ; ii) then we establish estimates which allow us to control
the source terms ; iii) finally we translate the previous estimates (expressed
in a norm which depends on the small parameter) into estimates which are
relevant with respect to a convergence procedure: the chosen norm preserves
the constant states defined in thin domains.

The remainder is defined by the ansatz proposed on Eq. (1). Using the
linearity of the Stokes system, we easily deduce, after some formal computations,
that the remainder (R(N),S(N),Q(N)) satisfies a Stokes-type system:

(Aε)





−∆xR − ∂2
yR + ∇xQ = F

(N)
ε , on Ωε(t),

−∆xS − ∂2
yS + ∂yQ = G

(N)
ε , on Ωε(t),

divxR + ∂yS = H
(N)
ε , on Ωε(t),

R = U
(N)
ε , on Γ+

ε ,

S = V
(N)
ε , on Γ+

ε ,

R = U
−(N)
ε , on Γ−

ε (t),

S = V
−(N)
ε , on Γ−

ε (t).

where the source terms take the following forms:

F
(N)
ε (x, y, t) = F

R
ε

(
x,

y

ε

)
+ F

bl
ε

(
x,

x − st

ε2
,

y

ε2

)
,

G
(N)
ε (x, y, t) = GR

ε

(
x,

y

ε

)
+ Gbl

ε

(
x,

x− st

ε2
,

y

ε2

)
,

H
(N)
ε (x, y, t) = HR

ε

(
x,

y

ε

)
+ Hbl

ε

(
x,

x − st

ε2
,

y

ε2

)
,

with the following precise definitions:

F
R
ε := εN−1

(
ε∆xuN + ∆xuN−1

)
,

F
bl
ε := εN−2

(
ε3∆xũN+1 + ε2∆xũN + ε∆xũN−1 + ∆xũN−2

+2ε∇x · ∇XũN+1 + 2∇x · ∇XũN − ε∇xp̃N+1 −∇xp̃N

)
,

GR
ε := εN−2

(
ε3∆xvN + ε2∆xvN−1 + ε∆xvN−2 + ∆xvN−3

+ε∂2
ZvN + ∂2

ZvN−1

)
,

Gbl
ε := εN−2

(
ε3∆xṽN+1 + ε2∆xṽN + ε∆xṽN−1 + ∆xṽN−2

+2ε∇x · ∇XṽN+1 + 2∇x · ∇XṽN

)
,

HR
ε := 0,

Hbl
ε := −εN

(
εdivxũN+1 + divxũN

)
.

About the boundary condition, using the ansatz at the boundary Γ+
ε and Γ−

ε
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we get

U
(N)
ε (x) =

N+1∑

j=1

εj

(
αj(x) − ũj

(
x,

x

ε2
,
h+(x)

ε

))
− εN+1

αN+1(x),

V
(N)
ε (x) =

N+1∑

j=1

εj

(
βj(x) − ṽj

(
x,

x

ε2
,
h+(x)

ε

))
,

U
−(N)
ε (x) = εN+2 × function(h−

(x − st

ε

)
,uN (x, 0), ...u0(x, 0)).

V
−(N)
ε (x) = εN+2 × function(h−

(x − st

ε

)
, vN (x, 0), ...v0(x, 0)).

For sake of simplicty we do not explicitely give the functions appearing in the

boundary terms U
−(N)
ε and V

−(N)
ε . They write like the boundary term Ũ j

and Ṽj in the Stokes problem (S(j)).

The existence and uniqueness results of such a problem are well-known (see
for example [8]). We will endeavour to obtain estimates of the solution according
to the sources terms and to the dependence into ε. By means of construction, as
the initial Stokes problem is well-posed and all intermediate problems are also
well-posed, we have necessarily

∫

Ωε

H(N)
ε =

∫

Γ+
ε

(
R

S

)
· n =

∫

Td

V(N)
ε −

∫

Td

U
(N)
ε · ∇xh+. (15)

In the sequel, we will drop the overscripts (·)(N) for the sake of clarity.

4.1 Lift procedure

4.1.1 Lift velocity at the boundary

To obtain estimates on the remainder (R,S,Q) with respect to ε we first in-
troduce a explicit velocity field which has the same boundary conditions. We
introduce

f(x, y) =
y + ε2h−(x/ε2)

εh+(x) + ε2h−(x/ε2)

and we consider the following velocity field (R̃bound, S̃bound) defined on Ωε by

R̃bound(x, y) = f(x, y)Uε(x) + (1 − f(x, y))U
−
ε (x),

S̃bound(x, y) = f(x, y)Vε(x) + (1 − f(x, y))V−
ε (x).

Due to the definition of the function f , this vector field satisfies

(R̃bound, S̃bound) = (Uε,Vε) on Γ+
ε ,

(R̃bound, S̃bound) = (U−
ε ,V−

ε ) on Γ−
ε .
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4.1.2 Lift velocity using the Bogovskii formulae

One of the features of the previous Stokes system is that the divergence of
(R,S) is not equal to zero. A classic method consists in making an lifting of

the velocity field (R,S) by introducing a solution (R̃div, S̃div) of the following
problem:

(A′
ε)





divxR̃div + ∂yS̃div = H, on Ωε,

R̃div = 0, on Γ−
ε ,

S̃div = 0, on Γ−
ε ,

R̃div = 0, on Γ+
ε ,

S̃div = 0, on Γ+
ε .

where H = Hε − (divxR̃bound + ∂yS̃bound). An explicit solution of this system
exists, it corresponds to the Bogovskii formulae (see [6]). The advantage of this
formula is to allow to have precise estimations of the solution. In particular, we
have (see for instance [13, p.121]):

Proposition 4.1 (Bogovskii [6]) If H ∈ Hm(Ωε), m ≥ 0 satisfies

∫

Hm(Ωε)

H = 0, (16)

then there exists a solution (R̃div, S̃div) ∈ Hm+1(Ωε) of problem (A′
ε) such that

‖∇x,y(R̃div, S̃div)‖Hm(Ωε) ≤
c

ε
‖H‖Hm(Ωε),

where the constant c does not depend on ε. Besides, one has also

‖(R̃div, S̃div)‖L2(Ωε) ≤ c‖H‖L2(Ωε).

Remark 4.1 In fact, the constant c/ε that appears in the right hand side mem-
ber is explicitely given in [13]. It depends on the geometry of the domain Ωε

and, more precisely, it depends on the number of star-shaped subdomains with
respect to some open ball to cover Ωε. For the rugous domain Ωε, let us focus
on the boundary layer Ω−

ε (t): the average slope of the roughness patterns is 1
whereas the thickness of the domain is ε so that the bottom of a roughness can be
“seen” from a ball of radius O(ε). Thus, covering up the domain, whose length
is of order 1, with such balls, we need O(1/ε) balls. Besides, a straightforward
use of the Poincaré inequality (note that the domain thickness is of order ε)
provides the L2−bound.

Remark 4.2 Note that the condition (16) exactly corresponds to the condi-
tion (15) satisfied for the Stokes system (Aε).
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4.2 Classical Stokes estimates

In order to cancel the boundary condition and the divergence of the vector field
considered, we define R = R − (R̃bound + R̃div) and S = S − (S̃bound + S̃div).
We have 




−∆xR − ∂2
yR + ∇xQ = Fε, on Ωε,

−∆xS − ∂2
yS + ∂yQ = Gε, on Ωε,

divxR + ∂yS = 0, on Ωε,
R = 0, on Γ−

ε ,

S = 0, on Γ−
ε ,

R = 0, on Γ+
ε ,

S = 0, on Γ+
ε .

where Fε = Fε −∆x,y(R̃bound + R̃div) and Gε = Gε −∆x,y(S̃bound + S̃div). We
are now able to derive classical estimates:

Proposition 4.2 One has:

i) Estimates in the L2−norm:

‖(R,S)‖L2(Ωε) . ε2‖(Fε,Gε)‖L2(Ωε),

‖Q‖L2(Ωε) . ε‖(Fε,Gε)‖L2(Ωε).

ii) Estimates in the H1−norm:

‖(R,S)‖H1(Ωε) . ε‖(Fε,Gε)‖L2(Ωε),

‖Q‖H1(Ωε) . ‖(Fε,Gε)‖L2(Ωε).

Proof. Choosing R as a test function in the first equation, S as test function
in the second one and using the free divergence relation to cancel the pressure
term, we obtain the following estimate

‖∇xR‖2
L2(Ωε) + ‖∂yR‖2

L2(Ωε) + ‖∇xS‖
2
L2(Ωε) + ‖∂yS‖

2
L2(Ωε)

≤ ‖Fε‖L2(Ωε)‖R‖L2(Ωε) + ‖Gε‖L2(Ωε)‖S‖L2(Ωε).

Succesively using the Poincaré inequality and the Young inequality ab ≤ 1
2a2 +

1
2b2 in the right-hand side of the previous inequality, we obtain

‖Fε‖L2(Ωε)‖R‖L2(Ωε) ≤ cε‖Fε‖L2(Ωε)‖∂yR‖L2(Ωε)

≤
1

2
‖∂yR‖2

L2(Ωε) +
1

2
c2ε2‖Fε‖

2
L2(Ωε),

where the constant c does not depend on ε. A similar estimate holds for the other
source terms ‖Gε‖L2(Ωε) and ‖S‖L2(Ωε). Hence, we successively get (omitting
the constants for the sake of simplicity)

‖∇xR‖2
L2(Ωε) + ‖∂yR‖2

L2(Ωε) + ‖∇xS‖
2
L2(Ωε) + ‖∂yS‖

2
L2(Ωε)

. ε2‖Fε‖
2
L2(Ωε) + ε2‖Gε‖

2
L2(Ωε), (17)
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Then, using the Poincaré inequality again we obtain

‖R‖2
L2(Ωε) + ‖S‖2

L2(Ωε) . ε4‖Fε‖
2
L2(Ωε) + ε4‖Gε‖

2
L2(Ωε). (18)

In the same way, taking respectively −∆xR − ∂2
yR and −∆xS − ∂2

yS as test
functions in the two first equations of the Stokes problem, we get

‖∆xR‖2
L2(Ωε)+‖∂2

yR‖2
L2(Ωε)+‖∆xS‖

2
L2(Ωε)+‖∂2

yS‖
2
L2(Ωε) . ‖Fε‖

2
L2(Ωε)+‖Gε‖

2
L2(Ωε).

It is then easy to estimate the pressure:

‖∇xQ‖2
L2(Ωε) + ‖∂yQ‖2

L2(Ωε) . ‖Fε‖
2
L2(Ωε) + ‖Gε‖

2
L2(Ωε). (19)

Using the Poincaré-Wirtinger inequality we obtain

‖Q‖2
L2(Ωε) . ε2‖Fε‖

2
L2(Ωε) + ε2‖Gε‖

2
L2(Ωε). (20)

All these estimate imply the result announced by the proposition. @blacksquare

Corollary 4.3 In terms of velocities (R,S), one has:

i) Estimates in the L2−norm:

‖(R,S)‖L2(Ωε) . ε2‖(Fε,Gε)‖L2(Ωε) + ε2‖(R̃bound, S̃bound)‖H2(Ωε)

+ ε2‖(R̃div, S̃div)‖H2(Ωε) + ‖(R̃bound, S̃bound)‖L2(Ωε)

+ ‖(R̃div, S̃div)‖L2(Ωε),

‖Q‖L2(Ωε) . ε‖(Fε,Gε)‖L2(Ωε) + ε‖(R̃bound, S̃bound)‖H2(Ωε)

+ ε‖(R̃div, S̃div)‖H2(Ωε).

ii) Estimates in the H1−norm:

‖(R,S)‖H1(Ωε) . ε‖(Fε,Gε)‖L2(Ωε) + ε‖(R̃bound, S̃bound)‖H2(Ωε)

+ ε‖(R̃div, S̃div)‖H2(Ωε) + ‖(R̃bound, S̃bound)‖H1(Ωε)

+ ‖(R̃div, S̃div)‖H1(Ωε),

‖Q‖H1(Ωε) . ‖(Fε,Gε)‖L2(Ωε) + ‖(R̃bound, S̃bound)‖H2(Ωε)

+ ‖(R̃div, S̃div)‖H2(Ωε).

4.3 Explicit estimates with respect to ε

4.3.1 Control of the source terms

As the norms ‖ · ‖L2(Ωε) and ‖ · ‖H1(Ωε) highly depend on ε, the control of
the source terms ‖Fε‖

2
Hs(Ωε), ‖Gε‖

2
Hs(Ωε), ... stated in Proposition 4.6, is not

sufficient. Thus, the dependancy with respect to ε has to be given in an explicit
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way: for this we must analyse each term of Fε, Gε, ... These terms are twofold:
some of them are related to a thin film flow (in which case they depend on x
and y/ε) and some others are related to the boundary layer (in which case they
depend on x, x/ε2 and y/ε2). We prove, in the Appendix A and Appendix B,
page 46, the following propositions whose the goal is to control the source terms
with respect to ε.

Proposition 4.4 Let f ∈ C1(Td × ωbl), such that X 7→ f(·,X, ·) is periodic,
f(·, ·, Y ) = O(e−Y ) for Y → +∞ (uniformly w.r.t. the other variables). Let us
consider the function fε defined by

∀(x, y) ∈ Ωε(t), fε(x, y) = f

(
x,

x − st

ε2
,

y

ε2

)
.

Then we have

‖fε‖2
L2(Ωε(t)) . ε2, ‖fε‖2

H1(Ωε(t)) . 1/ε2. (21)

Proposition 4.5 Let g ∈ C0(ωR) defined on {(x, Z), Z < 0} by a regular ex-
tension and let us consider a function gε defined by

∀(x, y) ∈ Ωε(t), gε(x, y) = g
(
x,

y

ε

)
.

Then we have
‖gε‖2

L2(Ωε(t)) . ε. (22)

Recalling the definition of the source terms Fε, Gε and Hε (see the beginning
of Subsection 4.1), Equations (21) and (22) allow us to derive L2−estimates with
respect to ε:

‖Fε‖L2(Ωε) . εN−1,

‖Gε‖L2(Ωε) . εN−3/2,

‖Hε‖L2(Ωε) . εN+1,

(23)

and also H1−estimates:
‖Hε‖H1(Ωε) . εN−1.

4.3.2 Boundary lift

We first use the following estimates about the function f introduced in the
subsection 4.1.1:

‖f‖L2(Ωε) ≤ ε1/2, ‖∇xf‖L2(Ωε) ≤ ε−1/2, ‖∂yf‖L2(Ωε) ≤ ε−1/2,

‖∇x∂yf‖L2(Ωε) ≤ ε−3/2, ‖∇2
x
f‖L2(Ωε) ≤ ε−5/2, ∂2

yf ≡ 0.
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We easily deduce the following bounds for the lift velocity at the boundary:

‖R̃bound‖L2(Ωε) ≤ εN+3/2,

‖∇xR̃bound‖L2(Ωε) ≤ εN+1/2,

‖∆xR̃bound‖L2(Ωε) ≤ εN−3/2,

‖∂yR̃bound‖L2(Ωε) ≤ εN+1/2,

∂2
yR̃bound ≡ 0,

‖∂y∇xR̃bound‖L2(Ωε) ≤ εN−1/2,

‖S̃bound‖L2(Ωε) ≤ εN+5/2,

‖∇xS̃bound‖L2(Ωε) ≤ εN+1/2,

‖∆xS̃bound‖L2(Ωε) ≤ εN−3/2,

‖∂yS̃bound‖L2(Ωε) ≤ εN+3/2,

∂2
y S̃bound ≡ 0,

‖∂y∇xS̃bound‖L2(Ωε) ≤ εN−1/2.

4.3.3 Bogovskii lift

From the estimates for the boundary lift (R̃bound, S̃bound), we can use the propo-
sition 4.1 with a control on the source term H with respect to ε. We obtain

‖(R̃div, S̃div)‖L2(Ωε) ≤ εN+1/2

‖(R̃div, S̃div)‖H1(Ωε) ≤ εN−1/2

‖(R̃div, S̃div)‖H2(Ωε) ≤ εN−3/2.

(24)

4.3.4 Estimates

Coupling the estimates on the source terms (23) and the estimates on the lift (24)
we can rewrite the corollary 4.3 as follows:

Corollary 4.6 (Estimates on the remainder) One has:

‖(R,S)‖L2(Ωε) . εN+1/2

‖Q‖L2(Ωε) . εN−1/2

‖(R,S)‖H1(Ωε) . εN−1/2

‖Q‖H1(Ωε) . εN−3/2

4.4 Error analysis on adapted spaces

In this subsection, we translate the previous estimates (which highly depend on
the thin domain Ωε) into similar estimates in which the chosen norm does not
depend on the thickness ε. This is motivated by the fact that the Ωε−norm of
any constant function vanishes as ε tends to 0, as the measure of the domain
tends to 0. Thus, estimates have to be expressed in suitable norms that do not
depend on ε and allow us to capture the scale effects in both the rescaled “thin
film domain” (i. e. the Reynolds domain) and the rescaled boundary layer (i. e.
the Stokes domain).

Definition 4.7 (Rescaling operator and unfolding operator) Let δ be a
positive integer, and let (x, y) ∈ T

d×]a, b[.
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i) The “rescaling operator”

Rδ : L2(Td×]a, b[) → L2(Td×]a, b[)
f 7→ Rδ(f),

is defined by
∀Z ∈]a, b[, Rδ(f) (·, Z) := f (·, δZ) .

ii) The “unfolding operator”

Uδ : L2(Td×]a, b[) → L2(Td×]0, 1[d×]a, b[)
f 7→ Uδ(f),

is defined by

∀x ∈ T
d, ∀X ∈]0, 1[d Uδ(f)(x,X, ·) := f

(
δ
[x
δ

]
+ δX, ·

)
,

where [·] denotes the integer part in Z
d.

Notice that the so-called “rescaling operator” only rescales the (vertical)
last coordinate ; the “unfolding operator” only acts on the (horizontal) first
variable. The main properties of these operators, from [12], are recalled in the
appendix C.The formal development we have introduced requires the separation

of the domain Ωε into two “sub-domains”: ωR and ωbl. To take into account
the anisotropy of each of these domains, we express the usual L2(Ωε)-norm as
follows (the proof of this lemma is given in Appendix C).

Lemma 4.8 Let f ∈ H1(Ωε). The following estimates hold:

i) Zeroth order derivative:

‖f‖
2
L2(Ωε) = ε ‖Rε (f)‖

2
L2(ωR) + ε2 ‖Rε2 ◦ Uε2 (f)‖

2
L2(ωbl)

.

ii) First order derivatives:

‖∇xf‖
2
L2(Ωε) = ε2 ‖∇x (Rε2 ◦ Uε2 (f))‖

2
L2(ωbl)

+
1

ε2
‖∇X (Rε2 ◦ Uε2 (f))‖

2
L2(ωbl)

+ ε ‖∇x (Rε (f))‖
2
L2(ωR) ,

‖∂yf‖
2
L2(Ωε) =

1

ε
‖∂Z (Rε (f))‖

2
L2(ωR) +

1

ε2
‖∂Y (Rε2 ◦ Uε2 (f))‖

2
L2(ωbl)

.

Now let us define a norm that is adapted to the measure of a function for
both the “thin film” approximation and the “rouhness boundary layer” aspect:

JfK2s = ‖Rε (f)‖
2
Hs(ωR) + ‖Rε2 ◦ Uε2 (f)‖

2
Hs(ωbl)

.

Unlike the Ωε−norms whose drawback is to fail at capturing concentration ef-
fects, this norm preserves the constant states independantly from the value of ε.
Thus, it is a correct way to characterize convergence results in both the thin
film region and the boundary layer. We can re-write Proposition 4.6 using the
norm J·Ks:
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Theorem 4.9 (Third estimates on the remainder) One has:

i) L2−estimates:

J(u, v) − (u(N), v(N))K0 . εN−1/2, Jp − p(N)K0 . εN−3/2,

ii) H1−estimates:

J(u, v) − (u(N), v(N))K1 . εN−3/2, Jp − p(N)K1 . εN−5/2.

5 Discussion on the different scale effects

In this section, we discuss two qualitative aspects of the asymptotic expansion.
Firstly, we focus on the contribution of the roughness patterns on the thin film
approximation, considering the additive terms that tend to alter the approxi-
mation of the corresponding thin film flow. Then we focus on a typical case that
is considered in most of the boundary layer studies and that is much simpler
than in our study: the constant cross-section channel, meaning that function h+

is constant. Not only this situation would not be relevant in lubrication, but
also we show that such an assumption would fail in capturing essential coupling
effects that we have described for the statement of the equivalent flow.

5.1 Contribution of the rugosities in the thin film approx-

imation

Let us consider the thin film approximation with a flat bottom, i. e.

∀X ∈]0, 1[d, h−(X) = 0.

Then the asymptotic expansion reduces to

u
(N)
△ (x, y, t) = u0

(
x,

y

ε

)
+

N∑

j=1

ε2ju2j

(
x,

y

ε

)
,

v
(N)
△ (x, y, t) = εv0

(
x,

y

ε

)
+

N∑

j=1

ε2j+1v2j

(
x,

y

ε

)
,

p
(N)
△ (x, y, t) = ε−2p0

(
x,

y

ε

)
+

N∑

j=1

ε2j−2p2j−2

(
x,

y

ε

)
,

meaning that only half of the sequence of Reynolds problems (R(2j)) is consid-
ered. Moreover, each Reynolds problem is easy to treat: the pressure obeys an
elliptic (Reynolds) equation and the corresponding velocity field can be deduced
from the pressure gradient by means of a simple integration, see for instance [24].
When considering the roughness patterns, we can check that each Reynolds-type
solution of problem (R(2j)) has to be modified by a two-shot correction: i) a
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Stokes boundary layer correction (in order to treat the boundary value default
due to the extension of the Reynolds solution in the boundary layer) and ii) a
Reynolds correction (in order to compensate the behaviour of the Stokes cor-
rection at infinity).

Note also that the introduction of the roughness patterns needs two levels of
correction in the description of the thin film approximation, unlike most of the
related boundary layer analysis: in particular, a Stokes flow in a constant cross-
section channel with rugosities needs only one level of correction: the sequence of
Stokes-type solutions is composed of a main classical Stokes solution, corrected
by one-single Stokes boundary layer solution.

Besides, it is possible to draw a quantitative study of the convergence of
the asymptotic expansion, with or without roughness correction, towards the
solution of the full problem. More precisely, suppose that, aiming at evaluating
the exact solution defined on Ωε(t), one uses the asymptotic expansion related
to the thin film approximation only (i. e. voluntarily omitting the boundary
layer corrections) ; then the error is not controlled by the remainder anymore.
If the boundary layer corrections are neglected, the error may be controlled
by the lack of precision due to the neglection of the first order boundary layer
correction and the related remainder, namely

εũ1

(
x,

x − st

ε2
,

y

ε2

)
+ εu1

(
x,

y

ε

)
+ O(ε2),

εṽ1

(
x,

x − st

ε2
,

y

ε2

)
+ ε2v1

(
x,

y

ε

)
+ O(ε2),

ε−1p̃1

(
x,

x − st

ε2
,

y

ε2

)
+ ε−1p1

(
x,

y

ε

)
+ O(1).

Thus the error is controlled by the following estimates (using the results of
propositions 4.4 and 4.5)

‖ (u, v) − (u
(N)
△ , v

(N)
△ )‖L2(Ωε) . ε3/2, ‖ε2(p − p

(N)
△ )‖L2(Ωε) . ε1/2,

whereas the full asymptotic expansion satisfies (see Corollary 4.6):

‖ (u, v) − (u(N), v(N))‖L2(Ωε) . εN+1/2, ‖ε2(p − p(N))‖L2(Ωε) . εN+1/2.

Note that, at main order (i. e. N = 1), the truncated velocity field is of or-
der ε3/2 with or without roughness correction. In contrast, the approximation
of the pressure distribution is severely altered by the neglection of the roughness
correction ; this is a key-point in the framework of lubrication as one may be
interested in the control of the load, defined as the L1−norm of the pressure in
the whole domain.
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5.2 Multiscale coupling effects due to the curvature of the

film thickness

In most of the boundary layer problems dealing with Stokes or Navier-Stokes
equations, the typical situation is concerned with a simple geometrical case,
as the considered domain is a constant cross-section channel, perturbed by the
roughness patterns. In the context of lubrication, this situation is not relevant
as a converging-diverging profile has to be considered for the modelling of lu-
bricated devices such as journal bearings, plain bearings, roller bearings etc.
As we will state further, neglecting the curvature of the macroscopic thin film
gap h+ leads to a much simpler boundary layer analysis, in the sense that the
related Stokes or Reynolds subproblems lead to straightforward computations
of the corresponding solutions. More precisely, assuming that

∀x ∈ T
d, h+(x) := H > 0.

The computation of the solutions becomes much easier than in the full lubri-
cation problem, as simplifications lead to a straightforward determination of
solution which only depend on the second space variable:

• As a straightforward consequence of the main assumption in this subsec-
tion, any Stokes boundary layer problems is such that coefficients do not depend
on x as a parameter, i. e.

∀j ∈ N, Aj = 0, Bj = 0, Cj = 0.

• The main Reynolds problem (R(0)) reduces to a simple Couette flow:

u0(x, Z) = (1 − Z/H) s, v0 ≡ 0, p0 ≡ 0.

The corrective Stokes problem (S(1)) now reads

(
S(1)

)





−∆Xũ1 − ∂2
Y ũ1 + ∇Xp̃1 = 0, on ωbl(0),

−∆Xṽ1 − ∂2
Y ṽ1 + ∂Y p̃1 = 0, on ωbl(0),

divXũ1 + ∂Y ṽ1 = 0, on ωbl(0),

ũ1 = Ũ1, on γbl(0),
ṽ1 = 0, on γbl(0),

(ũ1, ṽ1, p̃1) is X−periodic,

where the boundary condition should be read as Ũ1(X) = −
h−(X)

H
s. In the

sequel, we will introduce the linear operators Mu, Mv and Mp, which only de-
pends on the data h− and H , such that the solution of the Stokes problem (S(1))
reads

ũ1 = Mu s, ṽ1 = Mv s, p̃1 = Mp s.

Remark 5.1 In practice, these operators Mu, Mv and Mp are represented
by matrices which are easily obtained by resolving d Stokes problem like

(
S(1)

)

with the vectors of a base of R
d instead of s.
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Using the linearity of this Stokes problem and the proposition 3.2 we deduce
that the limits α1 and β1 satisfy

α1 = L s and β1 = 0,

where L ∈ Md(R) is the matrix of the application s 7→
−1

H
Lu(0, h−(X) s, 0).

Remark 5.2 In practice, using the definition of Lu, we have

Ls = −
1

H

∫

[0,1]d
Mu s(X, 0) dX.

• In that case, the corrective Reynolds problem (R(1)) can be written with
respect to the unknowns u1 + α1, v1 and p1. It is similar to the Reynolds
problem (R(0)), replacing s with α1 = L s. We obtain

u1(x, Z) = −(Z/H)Ls, v1 ≡ 0, p1 ≡ 0.

• In the same way, the corrective Stokes problem (S
(2)
C ) is similar to the

Reynolds problem (S(1)), replacing s with L s. By linearity, we deduce

ũ2 = Mu Ls, ṽ2 = Mv Ls, p̃2 = Mp Ls.

• More generaly, we obtain, for all ∈ N
∗,

uj(x, Z) = −(Z/H)Lj s, vj ≡ 0, pj ≡ 0.

ũj = Mu Lj−1 s, ṽj = Mv Lj−1 s, p̃j = Mp Lj−1 s.

Such analysis implies that, for N ∈ N we obtain, for instance for the horizontal
velocity u(N):

u(N) = s−

(
Z

H
− ε Mu

)(
(Id + εL + · · · + (εL)N )s

)
,

where the symbol Z denotes the application (x, y, t) 7→ y/ε. Passing to the
limit N → +∞ we introduce

u(∞) = s−

(
Z

H
− ε Mu

)(
(Id − εL)−1s

)
,

v(∞) = ε Mv

(
(Id − εL)−1s

)
,

p(∞) =
1

ε
Mp

(
(Id − εL)−1s

)
.

The functions (u(∞), v(∞), p(∞)) exactly satisfies the Stokes equations in Ωε,
and the bottom boundary condition corresponding to the initial Stokes prob-
lem. Using an Fourier analysis (exactly as in the part 3.1.1), we show that
the boundary condition on the top boundary is satisfied with an error of or-
der e−H/ε. Following the same method that in the part 4, we deduce that, for
any sobolev norms,

‖u− u(∞)‖ . e−H/ε, ‖v − v(∞)‖ . e−H/ε, ‖p − p(∞)‖ . e−H/ε.
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Proposition 5.1 If the height h+ is constant then it suffices to solve d Stokes
problems to deduce an approximation with an exponential decreasing error.

A Proof of Proposition 4.4

Expressing the L2−norm of function fε, we have

‖fε‖2
L2(Ωε(t)) =

∫

Td

(∫ εh+(x)

−ε2h−((x−st)/ε2)

∣∣∣f
(
x,

x − st

ε2
,

y

ε2

)∣∣∣
2

dy

)
dx.

Using the change of variable Y = y/ε2, we get

‖fε‖2
L2(Ωε(t)) = ε2

∫

Td

(∫ h+(x)/ε

−h−((x−st)/ε2)

∣∣∣f
(
x,

x − st

ε2
, Y
)∣∣∣

2

dY

)
dx

≤ ε2

∫

Td

(∫

R

∣∣∣f
(
x,

x − st

ε2
, Y
)∣∣∣

2

1[Y >−h−((x−st)/ε2)](Y ) dY

)
dx

Now considering the function

F : T
d×]0, 1[d → R

(x,X) 7→

∫

R

|f(x,X, Y )|2 1[Y >−h−(X)](Y ) dY,

we use a straightforward adaptation of Theorem 2 in [19] to obtain:
∫

Td

|F(x,x/ε)| dx ≤

∫

Td

sup
X∈]0,1[d

|F(x,X)| dx.

By periodicity wit respect to the second variable, the same argument applies to
function (x,X) 7→ F(x,X − st/ε2) so that, defining the constant

C(f) :=

∫

Td

(
sup

X∈]0,1[d

∣∣∣∣
∫

R

|f(x,X, Y )|2 1[Y >−h−(X)](Y ) dY

∣∣∣∣

)
dx,

we obtain:
‖fε‖2

L2(Ωε(t)) ≤ ε2C(f).

In order to state the H1−estimates, we proceed as follows: first we have

∇xfε(x, y, t) = ∇xf

(
x,

x − st

ε2
,

y

ε2

)
+

1

ε2
∇Xf

(
x,

x − st

ε2
,

y

ε2

)
.

∂yfε(x, y, t) =
1

ε2
∂Y f

(
x,

x − st

ε2
,

y

ε2

)
.

Then we apply the previous computation related to the L2−estimate in order
to get the result:

‖∇x,yfε‖2
L2(Ωε(t)) = ‖∇xfε‖2

L2(Ωε(t)) + ‖∂yfε‖2
L2(Ωε(t)).
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Using the formula (a+ b)2 ≤ 2(a2 + b2) for the derivative with respect to x, and
using the previous L2−estimate, we get:

‖∇x,yfε‖2
L2(Ωε(t)) ≤ 2 ε2 C(∇xf) + 2 ε−2C(∇Xf) + ε−2C(∂Y f).

Finally, the following H1−estimate is obtained:

‖fε‖2
H1(Ωε(t)) ≤ ε2C(f) + 2 ε2 C(∇xf) + 2 ε−2C(∇Xf) + ε−2C(∂Y f).

which concludes the proof.

B Proof of Proposition 4.5

By means of a simple calculation, we get

‖gε‖2
L2(Ωε(t)) =

∫

Td

(∫ εh+(x)

−ε2h−((x−st)/ε2)

∣∣∣g
(
x,

y

ε

)∣∣∣
2

dy

)
dx

= ε

∫

Td

(∫ h+(x)

−εh−((x−st)/ε2)

|g(x, Z)|2 dZ

)
dx

= ε

∫

Td

(∫ h+(x)

0

|g(x, Z)|2 dZ

)
dx + O(ε2),

which states the result.

C Proof of Lemma 4.8

First, we infer from [12] the following property of the unfolding operator:

Proposition C.1 One has:

i) For any f, g ∈ L2(Td×]a, b[),

Uδ(fg) = Uδ(f)Uδ(g).

ii) For any f ∈ L1(Td×]a, b[),

∫

Td

∫ b

a

f(x, y) dy dx =

∫

Td

∫

]0,1[d

∫ b

a

Uδ(f)(x,X, y) dy dX dx.

Using this proposition, we now prove the Lemma 4.8. More precisely, we
prove item i) (other items may be proven with a straightforward computation).
Thus we have:

‖f‖2
L2(Ωε) = ‖f‖2

L2(Ω+
ε ) + ‖f‖2

L2(Ω−

ε ) .
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Using the properties of the rescaling operator,

‖f‖
2
L2(Ω+

ε ) :=

∫

Td

∫ εh+(x)

0

|f(x, y)|
2

dy dx

= ε

∫

Td

∫ h+(x)

0

|f (x, εZ)|
2

dZ dx (a)

= ε

∫

Td

∫ h+(x)

0

|Rε(f) (x, Z)|2 dZ dx (b)

where we have used (a) the change of variables y = εZ, (b) the definition
of the rescaling operator. Using the properties of the rescaling and unfolding
operators,

‖f‖2
L2(Ω−

ε ) :=

∫

Td

∫ 0

−ε2h−( x

ε2 )
|f(x, y)|2 dy dx

=

∫

Td

∫

R

|f(x, y)|
2

1]−ε2h−( x

ε2 ),0[(y) dy dx

=

∫

Td

∫

]0,1[d
Uε2

(∫

R

|f(·, y)|
2

1]−ε2h−( x

ε2 ),0[(y) dy

)
(x,X) dX dx (a)

=

∫

Td

∫

]0,1[d

(∫

R

|Uε2(f)|
2
(x,X, y)1]−ε2h−(X),0[(y) dy

)
dX dx (b)

=

∫

Td

∫

]0,1[d

(∫ 0

−ε2h−(X)

|Uε2(f)|
2
(x,X, y) dy

)
dX dx

= ε2

∫

Td

∫

]0,1[d

(∫ 0

−h−(X)

|Uε2(f)|
2
(x,X, ε2Y ) dY

)
dX dx (c)

= ε2

∫

Td

∫

]0,1[d

(∫ 0

−h−(X)

|Rε2 ◦ Uε2(f)|
2
(x,X, Y ) dY

)
dX dx (d)

where we have used (a) Proposition C.1-ii), (b) Proposition C.1-i), (c) the change
of variables y = ε2Y , (d) the definition of the rescaling operator.
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quelques modèles d’écoulements de fluides visqueux incompressibles, vol-
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