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Enhanced Local Texture Feature Sets for Face
Recognition under Difficult Lighting Conditions

Xiaoyang Tan and Bill Triggs

Abstract— Making recognition more reliable under uncon-
trolled lighting conditions is one of the most important chal-
lenges for practical face recognition systems. We tackle this by
combining the strengths of robust illumination normalization,
local texture based face representations, distance transform based
matching, kernel-based feature extraction and multiple feature
fusion. Specifically, we make three main contributions: (i) we
present a simple and efficient preprocessing chain that eliminates
most of the effects of changing illumination while still preserving
the essential appearance details that are needed for recognition;
(ii) we introduce Local Ternary Patterns (LTP), a generalization
of the Local Binary Pattern (LBP) local texture descriptor that
is more discriminant and less sensitive to noise in uniform
regions, and we show that replacing comparisons based on local
spatial histograms with a distance transform based similarity
metric further improves the performance of LBP/LTP based
face recognition; and (iii) we further improve robustness by
adding Kernel PCA feature extraction and incorporating rich
local appearance cues from two complementary sources – Gabor
wavelets and LBP – showing that the combination is considerably
more accurate than either feature set alone. The resulting method
provides state-of-the-art performance on three data sets that are
widely used for testing recognition under difficult illumination
conditions: Extended Yale-B, CAS-PEAL-R1, and Face Recogni-
tion Grand Challenge version 2 experiment 4 (FRGC-204). For
example, on the challenging FRGC-204 data set it halves the error
rate relative to previously published methods, achieving a Face
Verification Rate of 88.1% at 0.1% False Accept Rate. Further
experiments show that our preprocessing method outperforms
several existing preprocessors for a range of feature sets, data
sets and lighting conditions.

I. INTRODUCTION

Face recognition has received a great deal of attention
from the scientific and industrial communities over the past
several decades owing to its wide range of applications in
information security and access control, law enforcement,
surveillance and more generally image understanding [53].
Numerous approaches have been proposed, including (among
many others) eigenfaces [37,43], fisherfaces [5] and lapla-
cianfaces [15], nearest feature line-based subspace analysis
[32], neural networks [22,38], elastic bunch graph matching
[46], wavelets [46], and kernel methods [48]. Most of these
methods were initially developed with face images collected
under relatively well controlled conditions and in practice they
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have difficulty in dealing with the range of appearance varia-
tions that commonly occur in unconstrained natural images
due to illumination, pose, facial expression, ageing, partial
occlusions, etc.

This paper focuses mainly on the issue of robustness to
lighting variations. For example, a face verification system
for a portable device should be able to verify a client at
any time (day or night) and in any place (indoors or out-
doors). Unfortunately, facial appearance depends strongly on
the ambient lighting and – as emphasized by the recent
FRVT and FRGC trials [33] – this remains one of the major
challenges for current face recognition systems. Traditional
approaches for dealing with this issue can be broadly clas-
sified into three categories: appearance-based, normalization-
based, and feature-based methods. In direct appearance-based
approaches, training examples are collected under different
lighting conditions and directly (i.e. without undergoing any
lighting preprocessing) used to learn a global model of the
possible illumination variations, for example a linear subspace
or manifold model, which then generalizes to the variations
seen in new images [6,4,23,9,50]. Direct learning of this
kind makes few assumptions but it requires a large number of
training images and an expressive feature set, otherwise it is
essential to include a good preprocessor to reduce illumination
variations (c.f . Fig.16).

Normalization based approaches seek to reduce the image to
a more “canonical” form in which the illumination variations
are suppressed. Histogram equalization is one simple example,
but purpose-designed methods often exploit the fact that (on
the scale of a face) naturally-occuring incoming illumination
distributions typically have predominantly low spatial frequen-
cies and soft edges so that high frequency information in the
image is predominantly signal (i.e. intrinsic facial appearance).
For example, the Multiscale Retinex (MSR) method of Jobson
et al. [19] cancels much of the low frequency information
by dividing the image by a smoothed version of itself. Wang
et al. [44] use a similar idea (with a different local filter)
in the Self Quotient Image (SQI). More recently, Chen et
al. [10] improved SQI by using Logarithmic Total Variation
(LTV) smoothing, and Gross & Brajovic (GB) [13] developed
an anisotropic smoothing method that relies on the iterative
estimation of a blurred version of the original image. These
methods are quite effective but their ability to handle spatially
non-uniform variations remains limited. Shan et al. [35] and
Short et al. [36] gave comparative results for these and related
methods.

The third approach extracts illumination-insensitive feature
sets [8,1,2,3,46,14] directly from the given image. These
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Fig. 1. (Lower curve) Degradation of the performance of LBP descriptors
with nearest-neighbour classification under the increasingly extreme illumina-
tion conditions of subsets 1-5 of the Yale database [5]. Example images are
shown on the horizontal axis. (Upper curve) Adding our preprocessing chain
greatly improves the performance under difficult illumination.
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Fig. 2. The stages of our full face recognition method.

feature sets range from geometrical features [8] to image
derivative features such as edge maps [1], Local Binary
Patterns (LBP) [2,3], Gabor wavelets [46,49,31], and local
autocorrelation filters [14].

Although such features offer a great improvement on raw
gray values, their resistance to the complex illumination vari-
ations that occur in real-world face images is still quite lim-
ited. For example, even though LBP features are completely
invariant to monotonic global gray-level transformations, their
performance degrades significantly under changes of lighting
direction and shadowing – see Fig. 1. Similar results apply
to the other features. Nevertheless, it is known that complete
illumination invariants do not exist [9] so one must content
oneself with finding representations that are more resistant to
the most common classes of natural illumination variations.

In this paper, we propose an integrative framework that
combines the strengths of all three of the above approaches.
The overall process can be viewed as a pipeline consisting of
image normalization, feature extraction and subspace repre-
sentation, as shown in Fig. 2. Each stage increases resistance
to illumination variations and makes the information needed
for recognition more manifest. The method centres on a rich
set of robust visual features that is selected to capture as
much as possible of the available information. A well-designed
image preprocessing pipeline is prepended to further enhance
robustness. The features are used to construct illumination-
insensitive subspaces, thus capturing the residual statistics of
the data with relatively few training samples (many fewer than
traditional raw-image-based appearance based methods such
as [23]).

We will investigate several aspects of this framework:

1) The relationship between image normalization and
feature sets. Normalization is known to improve the
performance of simple subspace methods (e.g. PCA) or
classifiers (e.g. nearest neighbors) based on image pixel
representations [35,44,10], but its influence on more
sophisticated feature sets has not received the attention
that it deserves. A given preprocessing method may or
may not improve the performance of a given feature
set on a given data set. For example, for Histogram
of Oriented Gradient features combining normalization
and robust features is useful in [11], while histogram
equalization has essentially no effect on LBP descriptors
[3], and in some cases preprocessing actually hurts
performance [12] – presumably because it removes too
much useful information. Here we propose a simple
image preprocessing chain that appears to work well for
a wide range visual feature sets, eliminating many of the
effects of changing illumination while still preserving
most of the appearance details needed for recognition.

2) Robust feature sets and feature comparison strate-
gies. Current feature sets offer quite good performance
under illumination variations but there is still room for
improvement. For example, LBP features are known to
be sensitive to noise in near-uniform image regions such
as cheeks and foreheads. We introduce a generalization
of LBP called Local Ternary Patterns (LTP) that is
more discriminant and less sensitive to noise in uniform
regions. Moreover, in order to increase robustness to
spatial deformations, LBP based representations typi-
cally subdivide the face into a regular grid and compare
histograms of LBP codes within each region. This is
somewhat arbitrary and it is likely to give rise to
both aliasing and loss of spatial resolution. We show
that replacing histogramming with a similarity metric
based on local distance transforms further improves the
performance of LBP/LTP based face recognition.

3) Fusion of multiple feature sets. Many current pattern
recognition systems use only one type of feature. How-
ever in complex tasks such as face recognition, it is often
the case that no single class of features is rich enough
to capture all of the available information. Finding and
combining complementary feature sets has thus become
an active research topic, with successful applications in
many challenging tasks including handwritten character
recognition [16] and face recognition [27]. Here we
show that combining two of the most successful local
face representations, Gabor wavelets and Local Binary
Patterns (LBP), gives considerably better performance
than either alone. The two feature sets are complimen-
tary in the sense that LBP captures small appearance
details while Gabor wavelets encode facial shape over a
broader range of scales.

To demonstrate the effectiveness of the proposed method we
give results on the Face Recognition Grand Challenge version
2 experiment 4 dataset (“FRGC-204”), and on two other face
datasets chosen to test recognition under difficult illumination
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Fig. 3. (Top) the stages of our image preprocessing pipeline, and (bottom)
an example of the effect of the three stages – from left to right: input image;
image after Gamma correction; image after DoG filtering; image after robust
contrast normalization.

conditions. FRGC-204 is a challenging large-scale dataset con-
taining 12 776 training images, 16 028 controlled target images
and 8 014 uncontrolled query images. To the best of knowledge
this is the first time that a preprocessing method has been
systematically evaluated on such a large-scale database, and
our method achieves very significant improvements, achieving
a Verification Rate of 88.1% at 0.1% False Acceptance Rate.

The rest of the paper is organized as follows: Section II
presents our preprocessing chain, Section III introduces our
LTP local texture feature sets, Section IV describes our
multiple-feature fusion framework, Section V reports exper-
imental results, and Section VI concludes. A preliminary
description of the methods was presented in the conference
papers [40,41].

II. ILLUMINATION NORMALIZATION

A. The Preprocessing Chain

This section describes our illumination normalization
method. This is a preprocessing chain run before feature
extraction that incorporates a series of stages designed to
counter the effects of illumination variations, local shadowing
and highlights while preserving the essential elements of visual
appearance. Fig. 3 illustrates the three main stages and their
effect on a typical face image. Although it was motivated
by intuition and experimental studies rather than biology, the
overall chain is reminiscent of the first few stages of visual
processing in the mammalian retina and LGN. In detail, the
stages are as follows.

Gamma Correction is a nonlinear gray-level transformation
that replaces gray-level I with Iγ (for γ > 0) or log(I) (for
γ = 0), where γ ∈ [0, 1] is a user-defined parameter. This
enhances the local dynamic range of the image in dark or
shadowed regions while compressing it in bright regions and
at highlights. The underlying principle is that the intensity
of the light reflected from an object is the product of the
incoming illumination L (which is piecewise smooth for the
most part) and the local surface reflectance R (which carries
detailed object-level appearance information). We want to
recover object-level information independent of illumination,
and taking logs makes the task easier by converting the
product into a sum: for constant local illumination, a given
reflectance step produces a given step in log(I) irrespective
of the actual intensity of the illumination. In practice a full

log transformation is often too strong, tending to over-amplify
the noise in dark regions of the image, but a power law with
exponent γ in the range [0, 0.5] is a good compromise1. Here
we use γ = 0.2 as the default setting.

Difference of Gaussian (DoG) Filtering. Gamma correction
does not remove the influence of overall intensity gradients
such as shading effects. Shading induced by surface structure
is a potentially useful visual cue but it is predominantly low
spatial frequency information that is hard to separate from
effects caused by illumination gradients. High pass filtering
removes both the useful and the incidental information, thus
simplifying the recognition problem and in many cases in-
creasing the overall system performance. Similarly, suppress-
ing the highest spatial frequencies potentially reduces both
aliasing and noise without destroying too much of the under-
lying recognition signal. DoG filtering is a convenient way to
achieve the resulting bandpass behaviour. Fine details remain
critically important for recognition so the inner (smaller)
Gaussian is typically quite narrow (σ0 ≤ 1 pixel), while the
outer one might have σ1 of 2–4 pixels or more, depending
on the spatial frequency at which low frequency information
becomes misleading rather than informative. Given the strong
lighting variations in our datasets we find that σ1 ≈ 2 typically
gives the best results, but values up to about 4 are not too
damaging and may be preferable for datasets with less extreme
lighting variations. LBP and LTP features do seem to benefit
from a little smoothing (σ0 ≈ 1), perhaps because pixel based
voting is sensitive to aliasing artifacts. Below we use σ0 = 1.0
and σ1 = 2.0 by default2.

We implement the filters using explicit convolution. To
minimize boundary effects, if the face is part of a larger
image the gamma correction and prefilter should be run on an
appropriate region of this before cutting out the face image.
Otherwise, extend-as-constant boundary conditions should be
used: using extend-as-zero or wrap-around (FFT) boundary
conditions significantly reduces the overall performance, in
part because it introduces strong gradients at the image borders
that disturb the subsequent contrast equalization stage. Prior
gamma normalization is still required: if DoG is run without
this, the resulting images suffer from reduced local contrast
(and hence loss of visual detail) in shadowed regions.

Masking. If facial regions (hair style, beard, . . . ) that are
felt to be irrelevant or too variable need to be masked out,
the mask should be applied at this point. Otherwise, either
strong artificial gray-level edges are introduced into the DoG
convolution, or invisible regions are taken into account during
contrast equalization.

Contrast Equalization. The final stage of our preprocessing

1Shot noise – the dominant noise source in modern CCD sensors –
is proportional to the square root of illuminance so γ = 0.5 makes it
approximately uniform:

√
I + ∆I ≈ √

I + ∆I

2
√

I
=

√
I + const. for

∆I ∝ √
I .

2Curiously, for some datasets it also helps to offset the center of the larger
filter by 1–2 pixels relative to the center of the smaller one, so that the final
prefilter is effectively the sum of a centered DoG and a low pass spatial
derivative. The best direction for the displacement is somewhat variable but
typically diagonal. The effect is not consistent enough to be recommended
practice, but it might repay further investigation.



4 TIP-05069-2009.R1

0 10 20 30 40 50 60
0

5

10

15

# of uniform pattern.

 

 

image a image b

0 10 20 30 40 50 60
0

5

10

15

20

# of uniform pattern.

 

 

image a image b

Fig. 4. (Top) Two images of the same subject from the FRGC-204
dataset. (Bottom) The LBP histograms of the marked image regions, (left)
without preprocessing, (right) after preprocessing. Note the degree to which
preprocessing reduces the variability of the histograms of these relatively
featureless but differently illuminated facial regions.

chain rescales the image intensities to standardize a robust
measure of overall contrast or intensity variation. It is im-
portant to use a robust estimator because the signal typically
contains extreme values produced by highlights, small dark
regions such as nostrils, garbage at the image borders, etc.
One could use (for example) the median of the absolute value
of the signal for this, but here we have preferred a simple and
rapid approximation based on a two stage process:

I(x, y) ← I(x, y)
(mean(|I(x′, y′)|a))1/a

(1)

I(x, y) ← I(x, y)
(mean(min(τ, |I(x′, y′)|)a))1/a

(2)

Here, a is a strongly compressive exponent that reduces the
influence of large values, τ is a threshold used to truncate large
values after the first phase of normalization, and the mean is
over the whole (unmasked part of the) image. By default we
use α = 0.1 and τ = 10.

The resulting image is well scaled but it can still con-
tain extreme values. To reduce their influence on subsequent
stages of processing, we apply a final nonlinear mapping
to compress over-large values. The exact functional form is
not critical. Here we use the hyperbolic tangent I(x, y) ←
τ tanh(I(x, y)/τ), thus limiting I to the range (−τ, τ).

B. Robustness and Computation Time

To illustrate the need for preprocessing we demonstrate its
effect on part of an LBP histogram feature set. Fig. 4 (top)
shows a matching target-query pair chosen randomly from
the FRGC-204 dataset. We chose a relatively featureless –
and hence not particularly informative – face region (white
squares) and extracted its LBP histograms, both without (bot-
tom left) and with (bottom right) image preprocessing. Without

None HE MSR GB LTV TT
Fig. 5. Examples of the effects of the different preprocessing methods.
Rows 1-5 respectively show images of one subject from subsets 1-5 of the
Yale-B data set, and rows 6-8 show images of different subjects from the
CAS-PEAL data set, with from left to right: (None) no preprocessing; (HE)
Histogram Equalization; (MSR) Multiscale Retinex; (GB) Gross & Brajovic
method; (LTV) Logarithmic Total Variation; (TT) Our preprocessing method.

preprocessing the two histograms are both highly variable and
very different, but preprocessing significantly reduces these
differences, quantitatively decreasing the χ2 inter-histogram
distance from 93.4 to 25.0.

Run time is also a critical factor in many applications. Our
method uses only simple closed-form image operations so it
is much more efficient than ones that require expensive itera-
tive optimizations such as Logarithmic Total Variation (LTV,
[10]) and anisotropic diffusion (GB, [13]). Our (unoptimized
Matlab) implementation3 takes only about 50 ms to process
a 128×128 pixel face image on a 2.8 GHz P4, allowing face
preprocessing to be performed in real time and thus providing
the ability to handle large face databases. In comparison, the
current implementation of GB is about 5 times slower and
LTV is about 300 times slower.

C. Competing Methods

Below we will use recognition rates under several fea-
ture sets and data sets to compare the performance of our

3A Matlab implementation is publicly available on the author’ homepage
http://parnec.nuaa.edu.cn/xtan.
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preprocessing chain with that of several competing methods.
We will not describe the methods tested in detail owing to
lack of space, but briefly they are: Histogram Equalization
(HE); Multiscale Retinex (MSR) [19]; Gross & Brajovic’s
anisotropic smoothing (GB) [13]; and Logarithmic Total Vari-
ation (LTV) [10]. The implementations of these algorithms
were based in part on the publicly available Torch3Vision
toolbox (http://torch3vision.idiap.ch). We would also like to
thank Terrence Chen for making his implementation of LTV
[10] available to us.

To illustrate the effects of the different preprocessors, Fig. 5
shows some example images from the Yale-B and CAS-PEAL
data sets, with the corresponding preprocessor outputs. As
the images suggest, and the experiments below confirm, point
transformations such as Histogram Equalization are not very
effective at removing spatial effects such as shadowing. In
contrast, GB and our method TT (which are the best perform-
ers below) remove much of the smooth shading information
and hence emphasize local appearance. The LTV images
appear washed out owing to the presence of small but intense
specularities and dark peaks in the output. This is partly a
display issue – MATLAB normalizes images based on their
extreme values – but we have not corrected it to emphasize
that many feature sets and image comparison metrics are also
sensitive to such peaks. In contrast, in GB the peaks tend
to diffuse away, while in our method they undergo strong
nonlinear compression.

III. LOCAL TERNARY PATTERNS

A. Local Binary Patterns (LBP)

Ojala et al. [29] introduced Local Binary Patterns (LBP)
as a means of summarizing local gray-level structure. The
LBP operator takes a local neighborhood around each pixel,
thresholds the pixels of the neighborhood at the value of the
central pixel and uses the resulting binary-valued image patch
as a local image descriptor. It was originally defined for 3×3
neighborhoods, giving 8 bit integer LBP codes based on the
8 pixels around the central one. Formally, the LBP operator
takes the form

LBP (xc, yc) =
∑7

n=0 2n s(in − ic) (3)

where in this case n runs over the 8 neighbors of the central
pixel c, ic and in are the gray-level values at c and n, and s(u)
is 1 if u ≥ 0 and 0 otherwise. The LBP encoding process is
illustrated in Fig. 6.

78 99 50
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54 49

12 13

1 1 0
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1

0

0 0

Threshold

Binary code: 

11000011

Fig. 6. Illustration of the basic LBP operator.

Two extensions of the original operator were made in [30].
The first defined LBP’s for neighborhoods of different sizes,
thus making it feasible to deal with textures at different scales.
The second defined the so-called uniform patterns: an LBP is
‘uniform’ if it contains at most one 0-1 and one 1-0 transition

when viewed as a circular bit string. For example, the LBP
code in Fig. 6 is uniform. Uniformity is important because
it characterizes the patches that contain primitive structural
information such as edges and corners. Ojala et al. observed
that although only 58 of the 256 8-bit patterns are uniform,
nearly 90 percent of all observed image neighbourhoods are
uniform and many of the remaining ones contain essentially
noise. Thus, when histogramming LBP’s the number of bins
can be reduced significantly by assigning all non-uniform
patterns to a single bin, typically without losing too much
information.

B. Local Ternary Patterns (LTP)
LBP’s have proven to be highly discriminative features for

texture classification [29] and they are resistant to lighting
effects in the sense that they are invariant to monotonic
gray-level transformations. However because they threshold at
exactly the value of the central pixel ic they tend to be sensitive
to noise, particularly in near-uniform image regions, and to
smooth weak illumination gradients. Many facial regions are
relatively uniform and it is legitimate to investigate whether
the robustness of the features can be improved in these regions.

This section extends LBP to 3-valued codes, Local Ternary
Patterns (LTP), in which gray-levels in a zone of width ±t
around ic are quantized to zero, ones above this are quantized
to +1 and ones below it to −1, i.e. the indicator s(u) is
replaced with a 3-valued function:

s′(u, ic, t) =





1, u ≥ ic + t
0, |u− ic| < t
−1, u ≤ ic − t

(4)

and the binary LBP code is replaced by a ternary LTP code.
Here t is a user-specified threshold – so LTP codes are more
resistant to noise, but no longer strictly invariant to gray-level
transformations. The LTP encoding procedure is illustrated in
Fig. 7. Here the threshold t was set to 5, so the tolerance
interval is [49, 59].

78 99 50

54
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54 49

12 13

1 1 0

0

0

0

-1 -1

Threshold

Ternary code: 

1100(-1)(-1)00

[54-t, 54+t], t=5

Fig. 7. Illustration of the basic LTP operator.

When using LTP for visual matching we could use 3n

valued codes, but the uniform pattern argument also applies in
the ternary case. For simplicity, the experiments below use a
coding scheme that splits each ternary pattern into its positive
and negative halves as illustrated in Fig. 8, subsequently
treating these as two separate channels of LBP descriptors
for which separate histograms and similarity metrics are
computed, combining the results only at the end of the
computation.

LTP’s bear some similarity to the texture spectrum (TS)
technique from the early 1990’s [45]. However TS did not in-
clude preprocessing, thresholding, local histograms or uniform
pattern based dimensionality reduction and it was not tested
on faces.
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Fig. 8. Splitting an LTP code into positive and negative LBP codes.

C. Distance Transform based Similarity Metric

Ahonen et al. [2] introduced an LBP based method for face
recognition that divides the face into a regular grid of cells and
histograms the uniform LBP’s within each cell, finally using
nearest neighbor classification in the χ2 histogram distance
for recognition:

χ2(p, q) =
∑

i

(pi − qi)2

pi + qi
(5)

Here p, q are image region descriptors (histogram vectors),
respectively.

This method gave excellent results on the FERET dataset.
However subdividing the face into a regular grid seems
somewhat arbitrary: the cells are not necessarily well aligned
with facial features, and the partitioning is likely to cause
both aliasing (due to abrupt spatial quantization of descrip-
tor contributions) and loss of spatial resolution (as position
within each grid cell is not coded). Given that the overall
goal of coding is to provide illumination- and outlier-robust
visual correspondence with some leeway for small spatial
deviations due to misalignment, it seems more appropriate
to use a Hausdorff-distance-like similarity metric that takes
each LBP or LTP pixel code in image X and tests whether a
similar code appears at a nearby position in image Y , with a
weighting that decreases smoothly with image distance. Such
a scheme should be able to achieve discriminant appearance-
based image matching with a well-controllable degree of
spatial looseness.

We can achieve this using Distance Transforms [7]. Given
a 2-D reference image X , we find its image of LBP or LTP
codes and transform this into a set of sparse binary images bk,
one for each possible LBP or LTP code value k (i.e. 59 images
for uniform codes). Each bk specifies the pixel positions at
which its particular LBP or LTP code value appears. We then
calculate the distance transform image dk of each bk. Each
pixel of dk gives the distance to the nearest image X pixel
with code k (2D Euclidean distance is used in the experiments
below). The distance or similarity metric from image X to
image Y is then:

D(X, Y ) =
∑

pixels (i, j) of Y w(dkY (i,j)
X (i, j)) (6)

Here, kY (i, j) is the code value of pixel (i, j) of image Y and

Fig. 9. From left to right: a binary layer, its distance transform, and the
truncated linear version of this.

w() is a user-defined function4 giving the penalty to include for
a pixel at the given spatial distance from the nearest matching
code in X . In our experiments we tested both Gaussian
similarity metrics w(d) = exp{−(d/σ)2/2} and truncated
linear distances w(d) = min(d, τ). Their performance is
similar, with truncated distances giving slightly better results
overall. For 120×120 face images in which an iris or nostril
has a radius of about 6 pixels and overall global face alignment
is within a few pixels, our default parameter values were σ = 3
pixels and τ = 6 pixels.

Fig. 9 shows an example of a binary layer and its distance
transforms. For a given target the transform can be computed
and mapped through w() in a preprocessing step, after which
matching to any subsequent image takes O(number of pixels)
irrespective of the number of code values.

IV. A FRAMEWORK FOR ILLUMINATION-INSENSITIVE
FACE RECOGNITION

A. The method

This section details our robust face recognition framework
introduced in Section I (c.f . Fig. 2). The full method incorpo-
rates the aforementioned preprocessing chain and LBP or LTP
features with distance transform based comparison. Hovever,
as mentioned above, face recognition is a complex task for
which it is useful to include multiple types of features, and
we also need to build a final classification stage that can handle
residual variability and learn effective models from relatively
few training samples.

The selection of an expressive and complementary set of
features is crucial for good performance. Our initial experi-
ments suggested that two of the most successful local appear-
ance descriptors, Gabor wavelets [21,46,26] and LBP (or its
extension LTP), were promising candidates for fusion. LBP is
good at coding fine details of facial appearance and texture,
whereas Gabor features encode facial shape and appearance
over a range of coarser scales5. Both representations are
rich in information and computationally efficient, and their
complementary nature makes them good candidates for fusion.

In face recognition, it is widely accepted that discriminant
based approaches offer high potential performance and im-
proved robustness to perturbations such as lighting variations

4w is monotonically increasing for a distance metric and monotonically
decreasing for a similarity one. In D, note that each pixel in Y is matched
to the nearest pixel with the same code in X . This is not symmetric between
X and Y even if the underlying distance d is, but it can be symmetrized if
desired.

5Gabor features have also been used as a preprocessing stage for LBP
feature extraction [52].
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(e.g. [5]) and that kernel methods provide a well-founded
means of incorporating domain knowledge in the discriminant.
In particular, Kernel Linear Discriminant Analysis (KLDA
[28]) has proven to be an effective method of extracting dis-
criminant information from a high dimensional kernel feature
space under subspace constraints such as those engendered by
lighting variations [26]. We use Gaussian kernels k(p, q) =
e−dist(p,q)/(2σ2), where dist(p, q) is ‖p−q‖2 for Gabor wavelets
and χ2 histogram distance (5) for LBP feature sets.

We now summarize our modified KLDA method. Let
φ() be the mapping to the implicit feature space, Φ =
[φ(x1), . . . , φ(xm)] be the operator mapping the m training
examples to the feature space, and Φ = ΦΠ = [. . . , φ(xi)−
µ, . . .] be the operator of centred training examples, where
Π = I − 1

m1m1>m and µ = 1
mΦ1m. To perform LDA, we

need explicit orthogonal coordinates for this implicit feature
space. If we had Φ in explicit form we could find its thin SVD
WDU> and project to coordinates using W> = (ΦUD−1)>.
We cannot do this directly, but we can find U and D = Λ1/2

from the thin eigendecomposition of the centred kernel matrix
of the training examples K = ΠKΠ = ΠΦ>ΦΠ =
UΛU>. This allows the projection of any example x to be
calculated using Λ−1/2 U>Πkx where kx = Φ>φ(x) is the
kernel vector of x against the training examples. Using these
coordinates, we find the projected within-class and between-
class scatter matrices SW ,SB , from which a basis V for the
kernel discriminative subspace is obtained by solving the thin
LDA eigendecomposition (SW + ε I)−1 SB V = VΞ for
eigenvectors V and eigenvalues Ξ. Here, ε is a small regular-
ization constant (10−3 below) and I is the identity matrix. The
optimal projection operator is then P = ΦUΛ−1/2 V and
test examples x can be projected into the optimal discriminant
space by

Ωx = P>φ(x) = V>Λ−1/2 U>kx. (7)

The projected feature vectors Ωtest are classified using the
nearest neighbour rule and the cosine ‘distance’

dcos(Ωtest,Ωtemplate) = − ΩT
test Ωtemplate

‖Ωtest‖ ‖Ωtemplate‖ (8)

where Ωtemplate is a face template in the gallery set. Other
similarity metrics such as L1, L2 or Mahalanobis distances
could be used, but [26] found that the cosine distance per-
formed best among the metrics it tested on this database, and
our initial experiments confirmed this.

When a face image is presented to the system, its Gabor
wavelet and LBP features are extracted, separately projected
into their optimal discriminant spaces (7) and used to com-
pute the corresponding distance scores (8). Each score s is
normalized using the ‘z-score’ method [17]

z =
s− µ

σ
(9)

where µ, σ are respectively the mean and standard deviation
of s over the training set.

Finally the two scores zGabor and zLBP are fused at the
decision level. Notwithstanding suggestions that it is more
effective to fuse modalities at an earlier stage of process-
ing [17], our earlier work found that although feature-level and
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Fig. 10. The overall architecture of our multi-feature subspace based face
recognition method.

decision-level fusion both work well, decision-level fusion is
better in this application [41]. Kittler et al. [20] investigated
a number of different fusion schemes including product, sum,
min and max rules, finding that the sum rule was the most
resilient to estimation errors and gave the best performance
overall. Thus we fuse the Gabor and LBP similarity scores us-
ing the simple sum rule: zGabor +zLBP. The resulting similarity
score is input to a simple Nearest Neighbor (NN) classifier to
make the final decision. A similar strategy was independently
proposed by [47].

Fig. 10 gives the overall flowchart of the proposed method.
We emphasize that it includes a number of elements that
improve recognition in the face of complex lighting variations:
(i) we use a combination of complementary visual features
– LBP and Gabor wavelets; (ii) the features are individually
both robust and information-rich; (iii) preprocessing – which
is usually ignored in previous work on these feature sets
[2,3,46,25] – greatly improves robustness; (iv) the inclusion of
kernel subspace discriminants increases discriminativity while
compensating for any residual variations. As we will show
below, each of these factors contributes to the overall system
performance and robustness.

B. Tensor-based Feature Representation

The LBP and Gabor feature sets described here are both
very high dimensional (usually over 10 000), and it would
be useful to be able to represent them more compactly
without sacrificing too much performance. Inspired by recent
work on tensor-based decompositions, we tested tensor-based
representations for LBP and Gabor features using General Ten-
sor Discriminant Analysis (GTDA) [42] as a dimensionality
reduction method. The resulting reduced tensors are written
as vectors, optionally subjected to additional stages of feature
extraction, then fed to the classifier. Note that there are many
other dimensionality reduction methods that could be applied
– notably local or manifold-based representations such as [51]
– but in this paper we will focus on global linear vector and
tensor reductions.

V. EXPERIMENTS

We illustrate the effectiveness of our methods by presenting
experiments on three large-scale face data sets with difficult
lighting conditions: Extended Yale B, CAS-PEAL-R1, and
Face Recognition Grand Challenge version 2 Experiment 4.
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For each data set we use its standard evaluation protocol in
order to facilitate comparison with previous work.

We divide the results into two sections, the first focusing
on nearest neighbour classification with various LBP/LTP
based feature sets and distance metrics, and the second on
KLDA based classifiers with combinations of LBP and Gabor
features. Note that unlike subspace based classifiers such as
KLDA, the Nearest Neighbour methods do not use a separate
training set – they simply compare probe images directly to
gallery ones using a given (not learned) feature set and distance
metric. They are thus simpler, but in general less discriminant
than methods that learn subspaces, feature sets or distance
metrics.

In both cases we compare several different preprocessing
methods. The benefits of preprocessing are particulary marked
for Nearest Neighbour classifiers. We only show results for
LBP/LTP here, but additional experiments showed that our
preprocessing method substantially increases the performance
of Nearest Neighbour classifiers for a wide variety of other
image descriptors including pixel or Gabor based linear or
kernelized eigen- or Fisher-faces under a range of descriptor
normalizations and distance metrics.

A. Data Sets

Fig. 11 shows some example images from our three datasets,
with the corresponding output of our standard preprocessing
chain.

Extended Yale-B. The Yale Face Dataset B [5] containing
10 people under 64 different illumination conditions has been
a de facto standard for studies of recognition under variable
lighting over the past decade. It was recently updated to the
Extended Yale Face Database B [23], containing 38 subjects
under 9 poses and 64 illumination conditions. In both cases
the images are divided into five subsets according to the angle
between the light source direction and the central camera axis
(12◦, 25◦, 50◦, 77◦, 90◦). For our experiments, the images with
the most neutral light sources (‘A+000E+00’) were used as
the gallery, and all frontal images of each of the standard
subsets 1–5 were used as probes (in all, 2 414 images of 38
subjects). The Extended Yale-B set only contains 38 subjects
and it has little variability of expression, ageing, etc. However
its extreme lighting conditions still make it a challenging task
for most face recognition methods.

CAS-PEAL-R1. The CAS-PEAL-R1 face database contains
30 863 images of 1 040 individuals (595 males and 445
females, predominantly Chinese). The standard experimental
protocol [12] divides the data into a training set, a gallery
set and six frontal probe sets. There is no overlap between
the gallery and any of the probes. The gallery contains one
image taken under standard conditions for each of the 1 040
subjects, while the six probes respectively contain images with
the following basic classes of variations: expression, lighting,
accessories, background, distance and ageing. Here we use the
lighting probe, which contains 2 243 images. The illumination
conditions are somewhat less extreme than those of Yale-B,
but the induced shadows are substantially sharper, presumably

TABLE I
DEFAULT PARAMETER SETTINGS FOR OUR METHODS.

Procedure Parameter Value
Gamma Correction γ 0.2
DoG Filtering σ0 1

σ1 2
Contrast Equalization α 0.1

τ 10
LTP t 0-0.2
LBP/LTP χ2 cell size 8×8
σ for KLDA kernels with LBP σ 105

because the angular light sources were less diffuse. This makes
it harder for all high-pass based preprocessors to separate
shadows from facial details.

When training KLDA on CAS-PEAL-R1, we use the stan-
dard CAS-PEAL-R1 protocol and training set, which contains
4 frontal images each of 300 subjects who were randomly
selected from the full 1 040-subject data set.

FRGC-204. The Face Recognition Grand Challenge version
2 Experiment 4 data set [33] is the largest data set studied
here. It contains 12 776 training images, 16 028 target images
and 8 014 query images. The targets were obtained under con-
trolled conditions but the probes were captured in uncontrolled
indoor and outdoor settings, including many images of poor
quality that pose a real challenge to any recognition method.
FRGC-204 is the most challenging data set studied here, owing
to its large size and to the wide range of natural variations
that it contains including large lighting variations, ageing and
image blur.

We use the standard FRGC experimental protocol based on
the Biometric Experimentation Environment (BEE) evaluation
tool6, reporting performance in terms of Receiver Operating
Characteristic (ROC) curves of Face Verification Rate (FVR)
versus False Accept Rate (FAR). BEE allows three types
of curves to be generated – ROC-I, ROC-II and ROC-III
– corresponding respectively to images collected within a
semester, within a year, and across years. Below we report only
ROC-III, the most challenging and most commonly reported
results. To facilitate comparison with previous publications on
FRGC-204, we used only Liu’s 6 388-image subset [26] of the
full FRGC-204 training set for training.

B. Experimental Settings

We restrict attention to geometrically aligned frontal face
views but allow lighting, expression and identity to vary.
Geometric alignment includes conversion to 8 bit gray-scale,
rigid image scaling and rotation to place the centers of the two
eyes at fixed positions, and image cropping to 128×128 pixels.
The eye coordinates are those supplied with the original data
sets.

Unless otherwise noted, the parameter settings listed in
table I apply to all experiments. The exact setting of the
preprocessor parameters is not critical: the method gives
similar results over a broad range of settings.

6This evaluates the entire (16028×8014) all-pairs similarity matrix be-
tween the query images and the targets – a very expensive calculation that
requires more than 128 million face comparisons.
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Fig. 11. Example images from the three data sets used for testing: (top) frontal images of a subject from Extended Yale-B – columns 1–5 respectively
contain samples from illumination subsets 1–5; (middle) a subject from the CAS-PEAL probes, with illumination ranging from left to right and from below
to above; (bottom) a subject from FRGC-204 – the first row shows controlled gallery images and the second one uncontrolled query images. In each case we
show raw (geometrically normalized) images on the left, and the corresponding output of our standard preprocessing method on the right. As the experiments
below confirm, preprocessing greatly reduces the influence of lighting variations, although it can not completely remove the effects of hard shadowing.

The GB and LTV preprocessors have a data fidelity param-
eter λ to set (c.f ., Eq. 10 below). For GB we set λ = 1 for
all experiments. For LTV we set λ = 0.75 (as recommended
in [10]) for Yale-B, but found that λ = 0.5 worked better for
CAS-PEAL and FRGC2.

For General Tensor Discriminant Analysis (GTDA) [42]
based dimensionality reduction we used the following settings.
For the Gabor features we applied 40 Gabor filters (5 scales
and 8 directions) to each 128 × 128 face image, taking the
modulus of the output and down-sampling it to 16 × 16 to
provide a 16× 16× 8× 5 tensor. This is input to GTDA over
the training set. The best results were obtained by retaining
99.9% of the overall energy, giving an output tensor of size
14×15×7×4 (a 43% reduction in overall feature dimension).
We also tested the decompositions discussed in [42]: resizing

the image to 64×64 and decomposing the tensor as 64×64×8
(‘GaborS’, with sum of coefficients over all orientations),
64× 64× 5 (‘GaborD’, with sum over all scales) and 64× 64
(‘GaborSD’, with sum over all scales and orientations), in each
case setting the output dimension in each mode to preserve
a fixed proportion of the overall energy. However these latter
settings gave poor recognition rates. For example, TT/GaborD-
GTDA/NN gave 22.0% and TT/GaborD-GTDA/KLDA/NN
gave 39.6% on CAS-PEAL.

For the LBP features, the image contains 16 × 16 LBP
blocks, each with a 59-D histogram, so we have a 16×16×59
tensor. We found that it was best to express this as a 256×59
2-mode tensor. After reduction with GTDA, the output tensor
had a size of 248× 47.
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Fig. 12. (Top) Overall nearest-neighbor recognition rates (%) on (left) Extended Yale-B and (right) CAS-PEAL-R1, using the proposed LBP based and
Gabor features and various preprocessing methods. (Bottom) Breakdown of error rates on the five Extended Yale-B subsets for (left) the various feature sets
with our standard preprocessing, and (right) the various preprocessing methods with LTP/DT features.

C. Results for Nearest Neighbour Classification

Fig. 12 (top) shows the extent to which nearest neighbour
based LBP face recognition can be improved by combining
three of the enhancements proposed here: using preprocessing
(PP); replacing LBP with LTP; and replacing local his-
togramming and the χ2 histogram distance with the Distance
Transform based similarity metric (DT). On Extended Yale-
B (top left), the absolute recognition rate is increased by
about 23.5% relative to standard unpreprocessed LBP/χ2.
Preprocessing alone boosts the performance by 20.2% (from
75.5% to 95.7%). Replacing LBP with LTP improves the
recognition rate to 98.7% and adding DT further improves
it to 99.0%. Similarly, on CAS-PEAL-R1 (top right), our
preprocessor improves the performance by over 20.0% for
LBP, and replacing LBP/χ2 with LTP/DT improves it by
another 5.0%. In each case our preprocessing method is the
most effective tested, followed by GB.

Fig. 12 (bottom) illustrates how the various feature sets and
preprocessing methods degrade with the increasingly extreme
illumination of Extended Yale-B sets 1–5. Even without image
preprocessing, our system performs quite well under the
mild lighting changes of subsets 1–3. However preprocessing
is required for good performance under the more extreme
conditions of subsets 4–5. For the most difficult subset 5,
preprocessing improves the performance by 43.1%, while
including either LTP or the distance transform respectively
increases performance over PP+LBP/χ2 by about 10.0% and

8.0%. Again our preprocessing method predominates, although
LTV catches up as the lighting becomes more difficult and
equals our method on subset 5. In contrast, GB does well on
the easier subsets but has trouble with subsets 4 and 5.

To aid comparison with previous work, note that on the
(older and smaller) 10 subject Standard Yale-B set our
PP+LTP/DT method gives perfect results for all 5 illumination
subsets. In contrast, on subsets 2–4: Harmonic Image Exem-
plars gives 100, 99.7, 96.9% [50]; nine points of light gives
100, 100, 97.2% [24]; and Gradient Angle gives 100, 100,
98.6% [9]. None of these authors test on the most difficult
set, 5.

Fig. 13 (left) shows how the size of the histogram pooling
neighborhood influences the performance of the LBP and LTP
feature sets, here with TT preprocessing on Extended YaleB
subset 5. The performance is optimal for sizes of around
6 × 6, however such small neighborhoods result in high di-
mensional face descriptors (and hence high computation cost)
and potentially increased sensitivity to spatial misalignment.
In practice, we preferred to use 8 × 8 as the default size
below. Moreover, for LBP/LTP learning methods based on
inter-example distances, the DT similarity measure provides
slightly better performance than binning without the need to
choose the neighborhood size.

The quantization threshold t is an important parameter for
LTP. It depends on the noise or the range of pixel values in
the preprocessed images, so we set it using a heuristic t =
ρ Median{σ(xi)|i = 1, . . . , N} where xi are the preprocessed
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Fig. 13. (Left) The influence of the size of the LBP/LTP histogram binning neighborhood on recognition rate, here with TT preprocessing. (The rate for
LBP/DT is 95.7% – only slightly below that shown for LTP/DT). (Right) the effect of different LTP quantization thresholds ρ on recognition rate (see the
text for the details). Both graphs are for Extended YaleB subset 5.

training images, σ() is their pixel standard deviation, and ρ
is a small constant that needs to be set by hand for each
preprocessor. In practice, we set ρ to a value between [0.1, 2]
for all preprocessors except LTV, for which we use [0.01, 0.2]
owing to the peakiness of the LTV output. Fig. 13 (right)
shows the resulting performance on Extended Yale B set 5
(for convenience, the ρ values for LTV have been multiplied
by 10 for display). We see that apart from HE, for which small
values are preferred, all of the illumination methods tested are
relatively insensitive to ρ. TT is both the best performer and
the least sensitive to ρ.

D. Results for KLDA Subspace based Classifiers

CAS-PEAL-R1. The above Nearest Neighbour based classi-
fiers give almost perfect results on Extended Yale B, but the
best of them only scores 49.2% on CAS-PEAL-R1. This is in
line with the state of the art – the best method tested in [12],
LGBPHS [52], scored slightly more than 50%, while pixel
based eigenfaces and fisherfaces respectively scored only 8.2%
and 21.8% – but it is not very satisfying in absolute terms.
CAS-PEAL-R1 is more difficult both because it contains 27
times more subjects than Extended Yale B, and because it
has a greater degree of intrinsic variability owing to its more
natural image capture conditions (less perfectly controlled
illumination, pose, expression, etc.).

To do better, we replaced the Nearest Neighbour classifier
with a kernel subspace (KLDA) based one and also generalized
the feature set to contain both LBP and Gabor features.
See section IV for a description of the resulting recognition
framework. Fig. 14 (bottom left) shows the resulting overall
face search performance (recognition rate within the first r
responses). Including both Gabor and LBP features increases
the rank-1 recognition rate by 30% relative to LBP features
alone and by 10% relative to Gabor features alone, which sug-
gests that the two feature sets do indeed capture different and
complementary information. The resulting rank-1 recognition
rate of 72.7% is more than 20% higher than the previous best
method on this data set [52].

Fig. 14 (top left) presents rank-1 recognition rates on CAS-
PEAL for the various preprocessing methods and feature
sets. The combination of LBP and Gabor features gives
better performance than the individual features under all six
preprocessors (including ‘None’). For Gabor features, MSR,
GB, LTV and TT (our method) all significantly improve
the performance relative to no preprocessing, whereas for
LBP/LTP features, only our method has a clear positive effect
(perhaps due to its inclusion of DoG filtering, which enhances
small facial details). Histogram equalization (HE) actually
reduces the performance for both feature sets, and LTV also
reduces it for LBP/LTP features. Our preprocessor is the best
method overall, beaten only by GB for pure Gabor features,
and GB is again the second best.

Fig. 15 shows the performance of the various illumination
preprocessors using Generalized Tensor Discriminative Analy-
sis (GTDA) feature extraction with nearest neighbor and kernel
subspace based classifiers. For comparison, the results for
vector representation based KLDA (Vec/KLDA/NN) are also
shown. We see that (at least with these settings) the tensor-
based representations have slightly lower performance than the
vector-based ones.

FRGC-204. Similar conclusions hold for the FRGC-204 data
set. Fig. 14 (bottom right) shows that the proposed Gabor+LBP
method increases the FVR at 0.1% FAR from about 80% for
either Gabor or LBP features alone to 88.1%. This exceeds the
state of the art on FRGC-204 [26] by over 12%, thus halving
the error rate on this important data set.

Fig. 14 (top right) shows how the various preprocessing
methods affect the performance of several combinations of
visual features and learning methods on FRGC-204. Replacing
Nearest Neighbours with KLDA greatly improves the perfor-
mance of both LBP and Gabor features under all prepro-
cessors, and in each case the combination of Gabor+LBP
outperforms either of the corresponding individual features.
Gabor+LBP also outperforms [26] for all preprocessors except
LTV. In general, the inclusion of KLDA and/or multiple
features decreases the performance differences between the
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Fig. 14. Performance of the full KLDA-based methods on (left) CAS-PEAL-R1 and (right) FRGC-204. (Top) Recognition rates for several combinations
of visual features and learning methods, under various preprocessing options, for (left) CAS-PEAL-R1, (right) FRGC-204 (FVR at 0.1% FAR). (Bottom left)
Search performance (% of cases with the correct subject within the first N matches) on CAS-PEAL-R1 for the KLDA Gabor, LBP and Gabor+LBP methods.
(Bottom right) ROC-III face recognition performance on FRGC-204 for the KLDA Gabor, LBP and Gabor+LBP methods. The BEE baseline and Liu’s method
[26] are also shown for comparison.

different preprocessing methods (or no preprocessing at all),
except that the LTV preprocessor uniformly decreases the per-
formance of all KLDA methods. Overall TT (our preprocessor)
still does best, although under KLDA, MSR is marginally
better than TT on LBP features and unpreprocessed images
perform surprisingly well for both LBP and LBP+Gabor
features (but not for Gabor alone).

Fig. 16 shows the influence of training set size on FRGC
validation rates for the KLDA based methods. Keeping all
222 subjects while reducing the number of training images
per subject has relatively little effect on performance until
there are fewer than about 10 images per subject. Conversely,
reducing the number of subjects while keeping a fixed number
of images per subject causes a much more rapid deterioration.
This suggests that (with our robust descriptors) the principal
degree of variation in this dataset is identity not lighting related
appearance changes.

Finally, we very briefly illustrate the contributions of the
individual stages of our preprocessing chain on the FRGC-

204 data set for various features and learning methods7. Fig 17
illustrates the effect of removing each of the four main stages
of preprocessing in turn while leaving the remaining stages
in place (the comparison is thus against our full preprocessor,
not against no preprocessing). In general, each stage of prepro-
cessing is beneficial and (not shown) the results are cumulative
over the stages, but the benefits are much greater for Nearest
Neighbour classifiers than for KLDA ones. The only case
in which omitting a single stage of preprocessing actually
improves the results is for DoG filtering with LBP features
under KLDA, and the improvement in this case is slight (and
to be contrasted with the large decrease that occurs when DoG
is omitted from LBP under Nearest Neighbour classification).
Also note that the last two stages of preprocessing involve
monotone gray-level transformations and hence (as expected)
have no effect on LBP features. We nevertheless include them

7We only present a small selection of our experimental results on prepro-
cessing owing to lack of space. In general the experiments show that under
nearest neighbour classification, each stage of preprocessing is beneficial
for a broad range of features and distance metrics including pixel-based
representations such as eigen- or fisher-faces, local filters such as Gabor
features and texture histograms such as LBP/LTP.
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Fig. 15. Comparative performance of various illumination processors for (left) Gabor features and (right) LBP features, using Generalized Tensor Discriminative
Analysis (GTDA) for dimensionality reduction in Nearest Neighbor (GTDA/NN) and KLDA-based Nearest Neighbour (GTDA/KLDA/NN) classifiers on the
CAS-PEAL face dataset.
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Fig. 16. Influence of the size of the training set on FRGC validation rates, for KLDA based methods with the Gabor, LBP and combined LBP+Gabor feature
sets, with (‘TT’) and without (‘NoPP’) preprocessing. The full FRGC training set contains 222 subjects with an average of about 29 images per subject (‘222
/ 28.8’ – the fifth group in the plot). The first four groups show that if we use all 222 subjects but reduce the number of training images by randomly selecting
respectively 2, 4, an average of about 7 or an average of about 14 images per subject, the performance gradually decreases, but quite good results can still be
obtained with about 10 images per subject. In contrast, the final two groups show that reducing the number of subjects quickly reduces the performance, even
if we use all of the available images for them. In general, the performance differences between the different feature sets and preprocessing methods increase
as the amount of training data is reduced: KLDA is quite effective at reducing these differences, but only when it has sufficient training data.

in our default preprocessor because they cause no harm for
LBP and have a very beneficial effect on Gabor wavelets and
a number of other feature sets for which we do not show
results including LTP and pixel-based features such as eigen-
and Fisher-faces.

E. Discussion

KLDA vs. preprocessing. The substantial performance gains
produced by replacing nearest neighbour classification with
KLDA on CAS-PEAL-R1 and FRGC-204 are welcome but
not particularly surprising. These data sets have many sources

of natural variation besides illumination (other imaging condi-
tions, expression, ageing, etc.) and their galleries contain very
few examples of each individual, giving Nearest Neighbour
methods based on generic (non-learned) features and distance
metrics little opportunity to generalize across these variations.

On the other hand, like Nearest Neighbours, KLDA is
based on an underlying image similarity metric: the feature
space distance embedded in its Gaussian kernel. Given the
extent to which preprocessing improves Nearest Neighbours
by providing a more illumination-resistant distance metric for
comparisons, one might have hoped for analogous improve-
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Fig. 17. Influence of the individual stages of our preprocessing chain. For
various features and learning methods on the FRGC-204 data set, we compare
the recognition rates (%) with our full preprocessing method to rates when
each of the four main steps of preprocessing is removed in turn, leaving the
remaining steps in place.

ments under KLDA. In this respect – even allowing for the
fact that facial lighting variations can be described quite well
by rather low-dimensional models, c.f . e.g. [5,6,4] – KLDA’s
ability to compensate for the absence of preprocessing is
somewhat surprising. Presumably, even though the supplied
training data was not designed to systematically span the space
of lighting variations, KLDA implicitly learns a nonlinear
descriptor space lighting model that is more accurate than
the default models that are implicitly embodied in the various
preprocessors tested, thus producing a more accurate implicit
“projection to an illumination invariant description”. Saying
this another way, rather than comparing each incoming exam-
ple to a relatively large but stable set of illumination-invariant
support vectors (nearby training examples after preprocessing),
it seems to be better to compare them to a smaller but
more variable set of non-invariant support vectors with similar
lighting (nearby unpreprocessed training examples).

Choice of preprocessor. Both GB and LTV belong to the vari-
ational Retinex framework in which a plausible illumination
image u is estimated by minimizing a functional combining
smoothness and fidelity terms

u = arg min
∫

image

‖∇u‖p + λ |f − u|q (10)

and then the albedo image v (the preprocessor output) is esti-
mated using Land’s retinex formula v = f/u (or equivalently
(log v = log f − log u). Here f is the input image, p, q are the
orders of the regularization and fidelity norms, and λ is a data
fidelity or roughness parameter. For GB, p = q = 2 (and the
fidelity term is further weighted by Weber’s contrast), while
for LTV p = q = 1.

Retinex based approaches have proven very effective for
illumination-invariant face recognition [13,10], but they do
tend to amplify noise in dark areas owing to the division by
u. For example this can be observed for GB in Fig. 5. Hence,
it is preferable to use noise-insensitive feature sets with them
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Fig. 18. Improvements due to replacing LBP/χ2 with the less noise-sensitive
features LTP and the more robust similarity metric DT, for various illumination
preprocessors on Extended Yale B set 5.

– e.g. LTP or Gabor rather than LBP, c.f ., Fig. 12 (top left),
Fig. 14 (top left) – and also robust similarity metrics – e.g.,
DT, c.f ., Fig. 12 (top).

The 2-norms used in GB strongly penalize both large
deviations |f(x) − u(x)| and large gradients ‖∇u‖ so the
solution u tends to be determined predominantly by the large
discontinuities in f(x). This can lead to artificats in v such as
haloing around edges.

In contrast, the 1-norms used in LTV give less haloing, but
(depending on the setting of λ and the darkness of the image)
they often allow a significant amount of fine scene texture
to leak into u, thus suppressing it in the output image v. As
Fig. 5 column 5 shows, even though LTV preserves facial
details such as eyes to some extent, its output is dominated
by a few patches of very high variation and many of the finer
textures needed for recognition are suppressed, particularly for
the more extreme illuminations. Despite this, with features that
are robust to the size of illumination variations such as LBP
and LTP, LTV does perform well on the challenging extended
YaleB subset 5 tests.

In contrast, our TT preprocessor takes a signal processing
approach motivated more by bottom-up human perception than
by retinex theory, trying to estimate at least one useful part
of the intrinsic (albedo) signal directly without passing via an
illumination image u. In practice it manages to remove many
of the illumination artifacts and provide a well-normalized
output, while still preserving much of the textural detail that
is needed for recognition.

To further illustrate these points, we give some additional
results comparing LBP/χ2 with LTP/DT for various preproces-
sors on Extended YaleB subset 5. For comparison we include
results for the p=1, q=2 preprocessor, called TVL2 or ROF
in the literature [34] – here we call it LTVL2 (c.f . standard
LTV is LTVL1). Fig. 18 shows that replacing LBP/χ2 with
the less noise-sensitive LTP features and the more robust DT
similarity metric significantly improves the performance for
all preprocessors.

Overall, our TT preprocessor seems to be the best choice:
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it provides the best performance among the methods tested
in almost all of our experiments, and it is also fast (at least
a factor of 10 faster than GB and LTV) and very simple to
implement. GB is the second choice for Nearest Neighbour or
KLDA classification on datasets with relatively mild illumi-
nation variations (CAS-PEAL-R1, FRGC-204 and Extended
Yale-B subsets 1-3). LTV performs poorly on these sets, but
becomes competitive for Nearest Neighbour classification on
sets with extreme lighting variations such as Yale-B subsets
4-5 – c.f . Fig. 12 (bottom right).

Facial alignment. Good alignment of the input image is
essential for most feature sets for face recognition. Throughout
our experiments, we simply aligned each image using a 2D
similarity transform based on the eye coordinates shipped with
the face database. Ruiz-del-solar et al. [18] have recently
investigated the robustness of LBP-like feature sets to errors
in eye positions, concluding that their performance remains
acceptable so long as the relative position error is below about
5%. This should hold for all of the datasets used here. Note
that none of the preprocessors studied here require accurate
alignment to work. Thus, besides face recognition, they are
likely to be useful tools for both face alignment and face
detection under strong lighting variations, c.f . [39].

VI. SUMMARY AND CONCLUSIONS

We have presented new methods for face recognition under
uncontrolled lighting based on robust preprocessing and an
extension of the Local Binary Pattern (LBP) local texture de-
scriptor. There are following main contributions: (i) a simple,
efficient image preprocessing chain whose practical recogni-
tion performance is comparable to or better than current (often
much more complex) illumination normalization methods;
(ii) a rich descriptor for local texture called Local Ternary
Patterns (LTP) that generalizes LBP while fragmenting less
under noise in uniform regions: (iii) a distance transform
based similarity metric that captures the local structure and
geometric variations of LBP/LTP face images better than the
simple grids of histograms that are currently used; and (iv)
a heterogeneous feature fusion-based recognition framework
that combines two popular feature sets – Gabor wavelets and
LBP – with robust illumination normalization and a kernelized
discriminative feature extraction method. The combination of
these enhancements gives the state of the art performance on
three well-known large-scale face datasets that contain widely
varying lighting conditions.

Moreover, we empirically make comprehensive analysis and
comparison with several state of the art illumination normal-
ization methods on the large-scale FRGC-204 dataset, and in-
vestigate their connections with robust descriptors, recognition
methods and image quality. This provides new insights into
the role of robust preprocessing methods played in dealing
with difficult lighting conditions and thus being useful in the
designation of new methods for robust face recognition.
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