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Abstract

Many recent keypoint detectors associate a local scale (for multiscale detectors) or

even a full affine frame (for affine-invariant detectors) to each detected keypoint. Al-

though conventional epipolar constraints are a powerful tool for matching point-like fea-

tures between pairs of images, they provide no constraint on their relative scales. We

present an enhanced epipolar constraint that exploits these scales, thus providing more

accurate correspondence search. The method encodes multiscale keypoints as image el-

lipses, invokes the classical Kruppa constraints that link corresponding ellipses, reduces

these to constraints on 1-D quadratic forms on the pencil (1-D family) of epipolar lines,

and enforces a scale-sensitive error model by a well-chosen algebraic transformation of

the resulting homogeneous representation. The required projections onto the epipolar

pencil are extracted from the Singular Value Decomposition of the Fundamental matrix.

The final method is very simple to use. Illustrative tests yielded 2–4 fold reductions in

false matches for both synthetic and real images. Matlab code is available.

1 Introduction

The conventional epipolar constraint is a powerful tool for matching keypoints (salient local

features) between pairs of images, but in its standard form it treats the detected keypoints

as point-like entities without intrinsic scales. In contrast, recent keypoint detectors (c.f . e.g.

[8, 9] and their references) typically associate a scale (for multiscale detectors) or a full

affine frame (for affine-invariant detectors) to each detection. In this paper we reformulate

the epipolar constraint in a way that allows this additional scale information to be brought

into play, thus providing a more selective overall matching process.

Specifically, we suppose that each detected keypoint can be described in terms of a circu-

lar or elliptical image region that characterizes the point’s position, scale and shape, and that

between pairs of images the ellipses of corresponding pairs of keypoints are in approximate

correspondence, i.e. consistent with one another under the inter-image epipolar geometry.

This will allow us to apply the classical Kruppa (conic correspondence) constraints1. We

1Note that these constraints do not control the feature scales themselves, but rather the way that they must change

(for true correspondences) as we move away from the epipole along the epipolar line.
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will convert these to a simple angular ‘epipolar pencil’ representation that is convenient for

matching, and construct an appropriate correspondence error metric in terms of this.

Before starting, we make several caveats. Firstly, note that our method is purely geomet-

ric. We treat ellipses as featureless geometric primitives, taking no account of the finer issue

of establishing detailed pointwise correspondence between their underlying image content.

Our approach is thus complementary to appearance-based correspondence methods such

as multiscale or affine visual descriptors (c.f . e.g. [8, 10, 13] and their references). Both

approaches provide useful constraints on correspondence and one should use whichever is

most convenient for the problem in hand (and, when possible, combine them). In partic-

ular, if two keypoints correspond to the same salient region of a locally smooth surface in

3D, one would expect their ellipses to correspond under both our geometric constraints and

appearance-based ones.

Secondly, throughout this paper we assume that the epipolar geometry (Fundamental

matrix) is known. Any standard method can be used to estimate it [5]. We build an error

model for uncertain multiscale points, not one for uncertain epipolar geometries.

Finally, note that even for fixed-scale keypoints, one can often model the uncertainties in

their estimated positions with associated uncertainty ellipses. This is entirely different from

the above use of ellipses to model associated image regions: although the resulting keypoint

positions should still correspond modulo the uncertainties, there is no particular reason to

expect their uncertainty ellipses to correspond because a keypoint may be localized well in

one image and poorly in the other. Although it is not our focus here, our framework can

handle this situation simply by omitting (13), the error term penalizing scale mismatch.

Prior Work. There has been a large amount of work on multiscale keypoint detectors and

descriptors – e.g. [8, 9, 10, 12, 13], to give only a few examples. The use of epipolar ge-

ometry for inter-image keypoint matching and dense stereo is very well established, and the

closely related ‘Kruppa constraints’ for correspondence between conics are also well known

[3, 5, 6]. However there seems to be surprisingly little work dealing explicitly with inte-

grating scales into epipolar geometry, perhaps because the authors interested in multiscale

detection have tended to take descriptor-centric approaches not geometry-centric ones. The

closest work that we are aware of is Forssén & Moe [4]. This uses elliptical blob features to

estimate and apply epipolar geometry, but in a less unified way than the method given here.

2 Derivation of the Model

We now derive our model for multiscale keypoint correspondence via ellipses. The deriva-

tion takes some time but the final model is straightforward to use and is summarized at the

end. We assume familiarity with the standard projective formulation of vision geometry (im-

age projection, epipolar geometry, conics, etc.). For details see e.g. [5]. ‘∼’ denotes equality

up to scale, and for a 3-vector v, ‘[v ]×’ denotes the corresponding 3×3 skew “cross product”

matrix.

Epipolar Pencil Coordinates. Before starting on ellipses, we reexpress some basic facts

about epipolar geometry in a useful form (c.f . e.g. [5] §18.4 ‘Kruppa Equations’). Let P,P′

be the 3×4 perspective projection matrices of two images, called respectively ‘left’ and

‘right’ below. Let F be the corresponding fundamental matrix – x⊤Fx′ = 0 is the epipolar

constraint between left image point x and right image point x′ – and let e and e′ be the

corresponding epipoles. From the Singular Value Decomposition (SVD) of F, we can extract
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the following representation

F = USV⊤ = (−v u e)
(

µ
ν

0

)

(u′ v′ e′ )
⊤

= uν v′⊤−v µ u′⊤ (1)

Here, the ‘twisted’ naming in the U matrix of the SVD ensures that when viewed as points,

the pairs (u,u′) and (v,v′) are in epipolar correspondence: u⊤Fu′ = 0 = v⊤Fv′. Moreover,

viewed as line-vectors, {u,v} and {u′,v′} respectively form bases for the pencils (1-D linear

families) of epipolar lines in the left and right images, and (u,u′) and (v,v′) are correspond-

ing pairs of epipolar lines: right point-vector v′ lies on the right epipolar line u′ (as u′⊤v′=0)

and has left epipolar line Fv′ ∼ u, and vice versa. Finally, the left epipole e lies on the lines

u and v and we can choose its sign so that [e ]× = uv⊤−vu⊤.

To make this more concrete, define the 2×3 “epipolar pencil projection” matrices2

B ≡ (u v)
⊤
, B′ ≡ (µ u′ ν v′ )

⊤
(2)

and note that

F = B⊤
(

0 1
−1 0

)

B′, [e ]× = uv⊤−vu⊤ = B⊤
(

0 1
−1 0

)

B, BB⊤ = I2×2 (3)

It follows that points x,x′ are in epipolar correspondence, x⊤Fx′ = x⊤B⊤ ( 0 1
−1 0

)

B′ x′ = 0, if

and only if the 2-vectors
(α

β

)

= Bx and
(

α ′
β ′

)

= B′ x′ are equal up to scale. We can view

(α,β )⊤,(α ′,β ′)⊤ as homogeneous 2D coordinates for the ‘projections’ of x,x′ onto the left

epipolar pencil under B,B′, with epipolar correspondence if and only if the projections agree

up to scale. Moreover, x′ has left epipolar line β ′ u−α ′ v, and x = α u + β v + γ e lies on

left epipolar line β u−α v, so the corresponding epipolar lines have the dual coordinates

(β ,−α) and (β ′,−α ′). Thus, the projections B,B′ allow us to reduce image-based epipolar

geometry calculations to 1D epipolar pencil ones. We will apply this to conics below. The

appendix shows how to extend this to spherical images and signed epipolar geometry.

Conic Correspondence on the Epipolar Pencil. The geometry of projections and epipolar

constraints for quadrics is well known [5] – see fig. 1. Let Q be a 3D quadric – here typically

a (possibly planar) ellipsoid. Its images in the two cameras are 2D conics q,q′ representing

the envelopes of the image rays tangent to Q. Exactly two epipolar planes are tangent to Q in

3D, and in each image these generate a pair of corresponding epipolar lines that are tangent

to the conics q,q′. Conversely, given any two image conics q,q′ with corresponding epipolar

lines, it turns out that there is a 3D quadric Q (in fact a 1 parameter family of them) whose

images are q and q′. The epipolar constraint between conics is thus the requirement that the

two epipolar lines tangent to q are in epipolar correspondence with the two epipolar lines

tangent to q′.
In formulae, if we represent Q in dual (hyperplane) form by 4×4 symmetric matrix Q and

q,q′ in dual (line) form by 3×3 symmetric matrices q,q′, the image projections are simply

2Well-normalized image coordinates should be used to evaluate the B’s: F → K−⊤
1 FK−1

2 on input to the SVD and

B1 → B1 K1, B2 → B2 K2 on output, where Ki ∼
(

1/ fx −px/ fx
1/ fy −py/ fy

1

)

are nominal calibration matrices with “focal

lengths” / normalization scales fx, fy (in pixels) and “principal point” / image centre (px, py)
⊤. The exact values

used are not critical, but if unnormalized pixel coordinates are used the resulting epipolar pencil coordinates tend to

be very distorted, leading to unintuitive behaviour in the below angular error estimates.
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Figure 1: Projection of a 3D quadric to two image conics, and then projection via B,B′

of the pair of epipolar lines tangent to each conic (or equivalently, of the quadratic form

defined by the conic) to the epipolar pencil. The reduced Kruppa constraints state that the

two projections agree.

q ∼ PQP⊤ and q′ ∼ P′ QP′⊤ [11]. More explicitly, the dual form of an image ellipse with

2D centre c and 2D covariance matrix V is

q =

(

cc
⊤−V c

c
⊤ 1

)

(4)

so an image line n
⊤( x

y)−d = 0 is tangent to q if and only if (n
⊤ −d )q ( n

−d ) = (n⊤
c−d)2−

n
′⊤

V n = 0. For a circle, V = r2
I, the tangency equation becomes (n⊤

c−d)2 = r2, i.e. any

line that passes at distance r from the centre c is tangent to the circle. Analogous forms hold

for the 3D quadric Q and its tangent planes, with 3D c,V,n.

In this framework, conic correspondence turns out to be encapsulated by the ‘Kruppa

constraints’3 [3, 5]

[e ]× q [e ]⊤× ∼ Fq′ F⊤ (5)

Each side of this equation is a 3×3 symmetric rank 2 matrix of the form l1l⊤2 + l2l⊤1 where

l1, l2 are the left epipolar lines tangent q or q′, as appropriate. Applying (3) and cancelling

extraneous factors of B⊤ ( 0 1
−1 0

)

gives the 2×2 symmetric ‘Reduced Kruppa Constraints’4 [5]

BqB⊤ ∼ B′ q′ B′⊤, or in coordinate form

(

qvv

quv

quu

)

∼

(

ν2 q′vv

µν q′uv

µ2 q′uu

)

(6)

3An alternative form is that conics correspond iff the symmetric part of [e ]× qFq′ F⊤ vanishes. Under corre-

spondence this matrix is ∼ [e ]×. C.f . a homography H is consistent with F iff FH is skew (and ∼ [e ]×).
4Kruppa constraints were originally developed for camera autocalibration [3, 5]. In this context, q,q′ are chosen

to be the “images of the dual absolute quadric” q = KK⊤, q′ = K′ K′⊤, where K,K′ are the camera internal parameter

matrices. Their reduced quadratic (6) determines the metric circle structure (“circular points”) of (α,β ) – i.e. which

pairs of epipolar lines correspond to orthogonal pairs of 3D epipolar planes.
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where the coordinates are quv ≡ u⊤qv, q′uu ≡ u′⊤q′ u′, etc. These equations provide two

independent algebraic constraints representing the two epipolar tangencies. Below we will

use (a,b,c)⊤ to denote either the left or right hand side of (6), as needed.

Evaluating the dual conic q on the epipolar line vector corresponding to ‘point’ (α,β )⊤

induces a corresponding reduced quadratic form on the pencil

(β −α )BqB⊤
(

β
−α

)

= aα2 −2bαβ + cβ 2 (7)

and similarly for q′ with B′. For example, inserting (4) into (7) gives (αc β − βc α)2 −
(β −α ) Ṽ

(

β
−α

)

where
(

αc

βc

)

≡ B( c

1) and Ṽ ≡ B
(

V 0
0 0

)

B⊤. If V → 0 this has a double root

at (αc,βc)
⊤ as expected.

Algebraic Weakness of Kruppa Form. To gain further intuition, we briefly switch to

angular coordinates (α,β )⊤ ∼ (cosθ ,sinθ)⊤, letting the roots of the reduced quadratic be5

θ± = θ̄ ±δθ . Then up to scale, (7) becomes

sin(θ −θ+) sin(θ −θ−) = (sinθ cosθ+ − cosθ sinθ+)(sinθ cosθ−− cosθ sinθ−) (8)

=
(

cos2δθ − cos2(θ − θ̄)
)

/2 (9)

where the various forms follow from standard trigonometric identities, and

(

a
b
c

)

∼
(

sinθ+ sinθ−
(cosθ+ sinθ−+sinθ+ cosθ−)/2

cosθ+ cosθ−

)

= 1
2

(

cos2δθ−cos2θ̄
sin2θ̄

cos2δθ+cos2θ̄

)

(10)

(

p
q
r

)

≡
(

c−a
2b

c+a

)

∼
(

cos2θ̄
sin2θ̄

cos2δθ

)

(11)

We would like to use reduced Kruppa vectors (a,b,c)⊤ or (p,q,r)⊤ to quantify the extent to

which two ellipses are in epipolar correspondence. The (cos2θ̄ ,sin2θ̄) components of (11)

should provide good control over errors in the mean epipolar line direction θ̄ . Unfortunately,

the cos2δθ term provides much less control over δθ . In particular, for ellipses that are small

relative to their distance to the epipole, δθ is small and cos2 2δθ ≈ 1−4δθ 2
provides only

a weak second order constraint on it: the Kruppa constraints are algebraically complete but

unsuitable as error models because they provide too little control over the sizes of the small

ellipses that make up most of the keypoint population. One way around this would be to

introduce a fourth coordinate s ≡
√

p2 +q2 − r2 ∼ sin2δθ into (11), to give better control of

δθ . We will embed an analogous transformation in our error metric. Henceforth we suppose

that (p,q,r)⊤ has been rescaled to make p2 +q2 = 1, so that (11) becomes an equality.

Epipolar Pencil Error Model. We need to design an error weighting that reflects our ex-

pectations regarding uncertainties in keypoint positions and scales. A great many models

are possible. Here we develop just one as an example, based on the assumption that both

the position uncertainty and the scale uncertainty of a typical keypoint are proportional to

5To ensure consistent signs we take θ− ≤ θ+ < θ− +π , i.e. 0 ≤ δθ < π
2

. Also, we assume that the quadratics

(7) have real roots (b2 ≥ 4ac, or r2 ≤ p2 + q2 = 1 below), i.e. that neither image ellipse contains (surrounds) its

epipole. This is true for most keypoints. If not, we can either discard the point, or note that (5), (6) still provide valid

constraints on the match – the geometric interpretation is now that the circular points implied on the line (α,β )⊤ by

the two quadratics must agree – and, e.g., use r−1 in place of 1− r in (12), (13) below, noting that for a match of

this kind, both quadratics must have r > 1.
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its scale and that deviations are approximately Gaussian. To concretize this algebraically

on the epipolar pencil we will use σ ≡
√

(1− r)/2 = sinδθ as a surrogate for the ellipse

scale, as this scales linearly with δθ at small angles and increases smoothly to 1 at very large

ones δθ ≈ π
2

or θ+ − θ− ≈ π . (Moreover, −σ2 = (r− 1)/2 is the minimum value of (8)).

Assuming independent Gaussian errors of (small) standard deviation δθ in θ̄ , the standard

(two-sample z-test) statistic for deviations of the means is (θ̄ − θ̄ ′)2/(δθ 2 +δθ ′2). We will

algebraize this as

dθ̄ ≡ sin2 2(θ̄−θ̄ ′)
sin2 δθ+sin2 δθ ′ =

(pq′−q p′)2

σ2+σ ′2 =
(pq′−q p′)2

1−(r+r′)/2
(12)

Various penalties (log-normal, etc.) are possible for the errors in δθ , but one viable statistic

is
(

δθ/δθ ′)k
+
(

δθ ′/δθ
)k−2 for some k. This is symmetric, scale invariant, zero at equality

and grows as O(δθ−k) when either δθ shrinks to zero with the other held constant. We will

algebraize this as

dδθ ≡
(

sinδθ
sinδθ ′

)k

+
(

sinδθ ′
sinδθ

)k

−2 =
(

σ
σ ′

)k

+
(

σ ′
σ

)k

−2 =
(

1−r
1−r′

)k/2

+
(

1−r′
1−r

)k/2

−2 (13)

Our final error model will be a weighted6 sum of (12) and (13), and for simplicity we will

use k = 2 below. Although we will not consider them here, other more heuristic error models

could also be used, for example weighting squared distances between (p,q,r,s)⊤ vectors with

a suitable function such as 1

σ2+σ ′2 , 1
σ σ ′ or 1

σ2 + 1

σ ′2 .

Summary of Method. The final method is very straightforward. For each ellipse, the matrix

q or q′ (4) is projected using B or B′ (from the SVD of F) to obtain (a,b,c)⊤ (6), normalized

to give (p,q,r)⊤ (11), and – see appendix (14) – optionally unwrapped to signed form. ‘Dis-

tances’ between these vectors are then computed using a weighted sum of (12) and (13) and

used to decide whether pairs of ellipses might correspond.

Further Points. Here we opted for algebraic representations for simplicity, but it would

also have been possible to explicitly recover and use θ̄ ,δθ . In particular, if an efficient

data structure for inlier search is required, one could represent search intervals as rectangles

in (θ̄ ,δθ) coordinates and use some data structure such as a box tree that allows efficient

search for all of the left image rectangles containing an observed pair (θ̄ ′,δθ ′) from the right

image. This would require cutting the θ̄ circle to a flat interval [0,2π] (so some points would

generate two rectangles), and using the given (θ̄ ,δθ) value, the acceptance thresholds on

(12)-(13) and, for (12), a bound on r′: r′ ∈ [−1,1], to derive search bounds on (θ̄ ′,δθ ′).
The main limitation of the epipolar pencil representation is that it suppresses all informa-

tion about positions along epipolar lines. If such information is useful7, it must be applied

separately from the epipolar pencil method. The above derivations also assume that F,B,B′

are known exactly and we currently make no effort to incorporate uncertainties in these into

the computations. Although the resulting effective geometric search regions (wedge-shaped

ones starting at the epipoles) are actually statistically more correct and simpler to use than

the common parallel strips along epipolar lines, in practice it is wise to allow a few additional

pixels of slack to account for uncertainties in F, especially for keypoints near the epipoles.

6E.g., with the above weightings and for small δθ , a factor-of-2 error in δθ has about the same penalty as a

position error of 2δθ .
7For example, if the scene is bounded by known 3D half spaces or by the plane at infinity, their homographies

can be used to limit the search for a given point’s correspondent along its epipolar line.
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Figure 2: Experiments on synthetic data. Top left: left and right images of a scene contain-

ing random 3D ellipsoids, showing the epipolar lines tangent to a selected ellipse in the right

image, and the corresponding lines in the left image almost tangent to the corresponding

(noise perturbed) left ellipse. Bottom left: distributions of matching penalty values for cor-

rect but noise perturbed correspondences, for (left) the θ̄ (mean angle) penalty (12), (right)

the δθ (angular spread) penalty (13). For each penalty d we histogram
√

d (|linear error|
rather than squared error) to show that the penalties behave roughly like χ2

1 variables, i.e. the

linear errors resemble half-Gaussians (red curves). Right: scatter plot of δθ penalty versus

θ̄ penalty values over a large dataset. The black ‘*’s are correct matches and the red ‘o’s are

incorrect ones. Again we plot linear errors
√

d. Clearly both the mean and the spread terms

are useful for distinguishing inliers from outliers.

3 Experiments

We now describe some illustrative experiments with the method8 on both synthetic data and

a real image dataset. A more detailed study will be published later.

Synthetic Data. We generate artificial scenes consisting of N 3D ellipsoids with random

centres in the cube [−1,1]3, random scales distributed as s−2 in the interval [0.005,0.1], and

random ellipticities with log-normal density of standard deviation 30%. These are viewed

by two inwards-facing perspective cameras 4 units from the cube centre and 60◦ apart. The

resulting image ellipses are perturbed in position and scale by Gaussian noise with standard

deviation 33% of the ellipse radius. The ground truth epipolar geometry is used. Fig. 2 (top

left) shows an example of the image pairs generated and their epipolar geometry.

With these settings we find that for true correspondences, the errors underlying the θ̄
(12) and δθ (13) penalty terms are approximately jointly Gaussian (see fig. 2, bottom left

and right), so that the penalties dθ̄ ,dδθ themselves have scaled 1 d.o.f. χ2 distributions. In

contrast, the distribution of errors for incorrect matches is much broader and is approxi-

mately uniform near the origin. This implies that a near-optimal inlier-outlier decision rule

is to threshold the χ2
2 variable dθ̄ /µθ̄ + dδθ /µδθ , where µθ̄ ,µδθ are the empirical means

of the penalty functions (i.e. the variances of the underlying errors) for true matches. At a

fixed percentage of false rejections, we find that using this rule reduces the number of false

positives by a factor of around 2 to 2.5 relative to classical epipolar thresholding based on

dθ̄ alone. This gain holds across a wide range of feature densities N, rejection percentages,

8A Matlab implementation is available from http://ljk.imag.fr/membres/Bill.Triggs/src.

http://ljk.imag.fr/membres/Bill.Triggs/src
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Figure 3: Experiments on real data. (Left) For SIFT interest points, the distributions of
√

dθ̄

and
√

dδθ for corresponding features appear to be exponential with medians mθ̄ ≈ 1.0 and

mδθ ≈ 0.6 (i.e. scale lengths 1.5 and 0.9). (Middle) The histogram over an image pair of

numbers of candidate matches satisfing the epipolar correspondence rule
√

dθ̄ /mθ̄ < t, for

varying thresholds t. Darkness is proportional to log frequency. (Right) The corresponding

histogram for the combined decision rule
√

dθ̄ /mθ̄ +
√

dδθ /mδθ < t, which is approximately

optimal for independent exponential variables against a uniform background of outliers. The

combined rule is about 4 times more selective, producing many fewer incorrect correspon-

dences.

scene parameters, etc. It is increased by reduced uncertainty in, or broader distributions of,

the ellipse scales, but we believe that our settings for these are representative of real detec-

tors. For frontal camera motion (epipole at the image centre) the distribution of δθ values

becomes somewhat broader and the gain is increased to around 4. Note that points with par-

ticularly large scales and ones that lie near the epipole are associated with broad sectors of

epipolar lines, and therefore tend to match many other points under dθ̄ alone. Adding dδθ is

particularly useful for eliminating these. On the other hand, there are typically many points

with similar scales so dδθ alone is not useful – it is only useful in combination with dθ̄ .

Real data. We also tested the method using SIFT interest points on a real dataset con-

sisting of calibrated images of toy cars on a turntable9 [1]. As a surrogate for ground-truth

correspondences, we used conventional epipolar constraints over a triangle of images – ‘Ref-

erence’, ‘Auxilliary’ and ‘Test’ – selecting point pairs that corresponded both geometrically

and by least squares patch matching in Reference and Auxilliary, and accepting any point

within a generous region around the intersection of their two epipolar lines in Test as an

inlier for the purposes of the evaluation. The resulting correspondences are far from perfect,

but they suffice for an initial proof-of-concept test of the method on real data. Fig. 3 (left)

shows that the distributions of
√

dθ̄ and
√

dδθ for such ‘inliers’ are approximately expo-

nential (Cauchy-like), not Gaussian. A corresponding scatter plot (not shown) demonstrates

that the two error metrics again provide very complementary information for correspon-

dence search. Fig. 3 (middle) and (right) show that selecting possible correspondences by

thresholding a weighted combination of the two metrics produces far fewer false matches

than using epipolar line distances dθ̄ alone. Similar conclusions are reached if the putative

inliers for the tests are found using SIFT descriptor matching instead of 3-image epipolar

constraints.

9http://www-sigproc.eng.cam.ac.uk/imu

http://www-sigproc.eng.cam.ac.uk/imu
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4 Summary and Conclusions

We have introduced a framework for epipolar correspondence search that provides tighter

constraints for matching multiscale keypoints by constraining the features’ relative scales

as well as their positions. The method works by representing uncertain keypoints as image

ellipses, using 2×3 projection matrices B,B′ extracted from the fundamental matrix F to

project these onto the epipolar pencil – i.e. w.r.t. (α,β )⊤ coordinates on the 1-D family of

left epipolar lines – and formulating the quality of the match in terms of an algebraic error

model in these coordinates. The method is elegant, simple to use (probably simpler than

the traditional image search along epipolar strips) and gives a substantial reduction in false

correspondences – typically a factor of 2–4 in our synthetic and real experiments.

5 Appendix: Spherical Images and Unwrapping

This appendix extends the above epipolar pencil constructions to the ‘spherical’ (also called

‘oriented’ or ‘signed’) approach to projective vision in which image points are identified with

points on the camera’s viewing sphere (the sphere of incoming 3D visual rays at its centre)

[2, 7]. In this framework, epipolar lines correspond to half great circles joining the epipole to

its antipode (c.f . the lines of longitude between the north and south poles of the earth): given

the 3D line joining the two camera centres, take the circle of 3D half planes with this line as

edge and project each half plane (on edge) into the two images making its two epipolar half-

circles; the image of any 3D point on the half plane lies on both half-circles. In terms of a

flat image, there is thus a full circle of distinct epipolar half-lines, and for any given point x′,
only the correct half of its epipolar line (to the left of the epipole or to the right of it) need be

searched for its correspondent x. Hence, this framework provides slightly sharper epipolar

constraints whenever the epipole is in the image (notably for omnidirectional cameras).

Algebraically, with appropriate choices of signs, we can write this as Fx′ ∼ [e ]× x with

equality up to positive rescalings. Using (3) and cancelling a common factor of B⊤ ( 0 1
−1 0

)

,

we find that B′ x′ ∼ Bx, again with equality up to positive rescalings. So the epipolar pen-

cil coordinates (α,β )⊤ fully support the circular structure: the coordinates of correspond-

ing points coincide up to positive rescalings and we can view them as angular coordinates

(cosθ ,sinθ)⊤ with 0 ≤ θ < 2π and correspondence possible if and only if θ = θ ′. The nec-

essary signs for B,B′ can not be recovered from F alone10 so the easiest approach is to take

a pair of corresponding spherical points, check that their pencil coordinates correspond, and

if not flip the sign of B. This will suffice for us here, although further refinements to ensure

right-handedness, put u,v in canonical positions, etc., are possible.

We can extend this to epipolar pencil conic matching. The basic formulae for conics and

Kruppa constraints are intrinsically unsigned because converting ( c

1) to its antipode
(−c

−1

)

leaves q unchanged in (4). This is reflected in the systematic appearance of 2θ̄ in (10), etc.

To correct for this we can algebraically ‘unwrap’ the first two rows of (11). Using multiple

angle formulae and assuming normalization to p2 +q2 = 1, we have

(

cos θ̄

sin θ̄

)

= ±
( √

(1+p)/2

q/
√

2(1+p)

)

= ±
(

q/
√

2(1−p)√
(1−p)/2

)

(14)

10F itself can usually only be recovered up to sign, and even then the SVD of F is invariant under (u,v′) ↔
(−u,−v′), (v,u′) ↔ (−v,−u′), e ↔−e, and e′ ↔−e′, some of which affect B,B′.
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where for numerical stability the first form is preferred if p > 0 and the second if p < 0. To

choose the sign we take any signed point within (the desired branch of) the ellipse – e.g. its

centre ( c

1) – find its pencil projection Bx or B′x′ ∼
(

cosθ
sinθ

)

, choose the sign that aligns (14)

the best with this direction, and replace the first two coordinates of (11) with the result (14)

so that the feature vector encodes the desired half of the epipolar line. The right hand side of

(12) is unchanged but it now represents only sin2(θ̄ − θ̄ ′) so it should be scaled up by 4 to

preserve the relative weightings of position and scale errors.
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