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FRACTIONAL ORDER KINETIC EQUATIONS AND HYPOELLIPTICITY

R. ALEXANDRE

AsstracT. We give simple proofs of hypoelliptic estimates for somedels of kinetic equations with a
fractional order dfusion part. The proofs are based on energy estimates togethd~. Bouchut and
B. Perthame previous ideas.

1. INTRODUCTION

Recently, after the study initiated by Morimoto and Xu [1le paper of Lerner and all [14] was
concerned with hypoellipticféects related to a kinetic equation similar to the followingeo

(1.1) Af(t, X, V,) + V.V f(t, X, V) + a(t, x, v)|Dy/#f = g

Here we assume that &, v) € R1*™" for some integen > 1, thatg € L?, wherel? = L?(R*2").
We denote hyj.|| the associated norm. The usual interpretation from kintbgory is that plays the
role of a time variablex the position and the velocity. The coicienta is assumed for example
to be smooth and strictly positive, see below for preciseottygsis. The parametgris assumed to
satisfy O< g < 1.

As regards Fourier transformation, we shall denoterbly andé the Fourier variables dual i
x andv respectively. Other notations used in (1.1) are standael far example [13, 17]. Let us
note immediately that the third (elliptic) term on the l.Lhaf (1.1) is not exactly similar to the one
considered in [14, 15] in that the behavior therein was tasn|¢|? for small frequency variables
but this is not an important point from the point of viewloftheory. In the rest of the paper, we shall
always assume that all functions such as f, g are smooth

Forp = 1, (1.1) is a well known model of Fokker Planck or Kolmogorauation, for which one
can find numerous methods for proving hypoellipticity, seeexample [13, 9, 14, 15, 16] and the
references therein.

We refer for example to [19] for physical motivations forghype of kinetic equations. Another
motivation is linked with the study of the spatially inhongsgous Boltzmann equation without cut-
off, see for example [2, 18, 1, 3, 7, 5, 6, 11], see also the reesnlts of [8] and references therein.

As far as we know, the study of hypoellipti¢tects for problem (1.1) was initiated by Morimoto
and Xu [15] and they derive therein a partial and non optiraalit. This study was then completed

with optimal results by Lerner and all [14], where they pravgpically that|DX|%ﬂf e L2and a
similar estimate w.r.t. time variable. In both works, théhaus used.? type methods.

While still working with an energy method, we want to showtthaslight modification of the
computations of Bouchut [9] can lead to the same results asetend all [14], and therefore in
comparison, we provide a very simple proof. One advantadieaisit is very simple to keep track
of the diferent constants depending on the givenfitcientsa, and furthermore, we avoid using any
deep pseudo fferential calculus. However, in order to study the model jgnob(1.1), we do use
one result, namely Proposition 1.1 from Bouchut [9], whos®opis also elementary as it relies on
averaging regularity type arguments. Bouchut’s resulbisrgby
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2 R. ALEXANDRE

Proposition 1.1. [Proposition 1.1 of9]] Assume fe L2, g e L2, |D,f|*f € L? for somen > 0 and
(1.2) Ot +Vv.Vxf =g,

Then )
IDx| T+ | < Nl = [[IDy|” fl| T+

The proof done in [9] uses both Fourier transform w.r.t. tiamel space variables, &), and ar-
guments introduced in [10]. It might be plausible to only &®eirier transform w.r.t. variablg by
using the arguments of [10]. For completeness, we give yahean proof which was used in Alexan-
dre [1] following arguments introduced by Perthame [16] im $tudy of higher moments estimates.
Our proof is also elementary, but uses this time both spadevelocity variables Fourier transform.
However, we do not use Fourier transform w.r.t. time vagabhd therefore we can also deal with the
Cauchy initial value problem associated with model prob({ér). We refer also to [4] for another
proof involving Fourier transform w.r.t. time and spaceiaales and a certain kind of uncertainty
principle. Allin all, it is now clear that any otherf@iérent and simple proof of the above Proposition
would be of interest.

Once given Proposition 1.1, we can proceed to study hyjptieliéTects connected with (1.1). As
usual, we shall begin to study the case of constiarty 1, that is

(1.3) Af(t, X, V,) + V.V, f(t, X, V) + IDJ#f =q.

Of course, a direct Fourier analysis is able to take careisfdimple model, but recall that we are
looking for energy type estimates.
Our main result is given by

Theorem 1.2. (1) Let f satisfy(1.3). Then one has

2
IIDVZ £l + 11D« %% f]] < gl

(2) Let f satisfy(1.1). Assume that & b%y + a_ for some strictly positive constant ga smooth
positive function b and a compactly supported and positimetiony. Then one has

2B
IIDVZ £l + 11D« =% 1] < Calllgll + I £11].

As it will appear clearly in the proof, similar estimate w.rspace variable also holds for time
variable. Furthermore, the proofs given below can also lapted to take into account the initial
value problem. Finally, the assumption armight appear strange, but this is one possible choice
among many others. We mention thaiifs assumed to be only locally bounded from below, then all
proofs adapt up to introducing cufdunctions. Finally, the proof also shows that it is not nseeg
to have a diusion term as above. One might consider instead an equatibrnes

K(t, x, V)
Ot + V.V f + jﬁ;n |h|n—+2ﬁ[f(v+ h) — f(V)]dh =g
with good assumptions on the kerrt€l This example is closer to a linear version of Boltzmann
operator. Details are left to the interested reader. In asg cthe main issue is concerned with the
multipliers introduced in the proofs with the above kerkel

2. THE FREE TRANSPORT EQUATION: PROOF OF ProprosiTioN 1.1

We are interested in the transport equation (1.2), undemsbemptions of Proposition 1.1.

It is shown by Bouchut that we obtajB,|T= f € L2. The method of proof was based on velocity
arguments, see [9, 10] and references therein. In fact engitoof is also provided in [4] using
a kind of uncertainty principle, but which is more complexindfly, another argument based on
Perthame method [16] is also possible, see for example Atrd1]. As mentioned by Bouchut, the
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commutator method seems to require more derivatives wartablev, but in that case, the proof is
very easy (see the proof in [9]).

We shall apply Perthame’s argument for the usual FokkerdRlaase below, following [1]. Note
that this a Fourier method, using characteristics assmtiat the Fourier side which is also somehow
used in the paper by Lerner and all [14].

If ~ denotes the Fourier transform with respect to the variatded and K, &) the dual variables,
one has A .

o f —kV:f =0
Multiplying by f, and taking the complex conjugate also, we obtain:
ol f1? - k Ve f1? = 2Re(@, ) < 161l
Then

t
| f(t.k &) |2sf ( fg1 (o £+ skt—s)ds
Fixr > 0 andD > 0, andk. Then
f dtf|k|r | f(t.k.&) I?
—00 é_‘

:f dtf K" | f(t,k, &) |2+f dtf K" | f(t,k &) [°= A+ B.
—o  Jigl=D —0  Jigl<D

For B, one has: .
Bsf dtf |k|rf ( fg| (k. &+skt—9)ds
—00 |§|SD —00

Changing variable ig, this gives

B < f dt f delk f Lolesuen(l 0] (&t — 9ds

Change variables in(for fixed s) to get

Bs [t [deh [ Beweo( fgl (kgtds
0 —0o0
Sincelé — sK > [|£] — gk, it follows that

B < f "t f dekI1D( g1 (k. £.1)
0

<o f dt f delk2 D2 | fi2(k, £,1) + C. f dt f Az 2 (k.&.1)
0 0

for anye > 0.
Now for A, we get directly

A< f dt f delgl™D MK | (L k. &) 2.

ChooseD = |k|#1 Then
As f dt f dglel™ | fit.k &) P

Then note thalk/?(~9D? = |k2C-1+25 = |K|", if we choose the value afsuch thar = 21, We
choosem = 2«a. Thereforer = 127“ In conclusion with all these choices, we get, for fixedy

absorbing the right hand side with the left hand side:

f "t f K25 | itk ) Ps f " dt f deléli? | F(t.k.&) 2 +C, f "t f dela 2 (k. .1
oo & —00 0
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and therefore
IDxI T+ ]| < IDVI” F1I + llgll.

It should be observed that we do not have the same scalingBamichut. But this can fixed easily

as follows. We proceed as above, repladhdy AD but use instead Cauchy Schwarz inequality for
B, with the same choice of parameters:

B [ ekt fgl ey s [ e e e[ d [asgl ke
while i i i
Ax f’“fm dtfd§|§||m| flt k&) P
The we get an inequality such as: -
U <AUZV3 + 17™W
If we chooset such that the two terms on the r.h.s. coincide then we get, sfime computations
U < VimzWie,

Now integrate w.r.tk and use Holder inequality with expongmt& m/(m + 2) to get

[ust[ v [ w

Recalling tham = 2, we get exactly
= o 1
IDx* £l < lIgll =+ [IDy|* fl| 7.

Remark 2.1. On can also get estimations for the initial value problemy ave consider the trans-
port equation(1.2) for say positive time and a given initial value at tifdefy. For example, in that
case, the small frequency part gives an additional term wban be estimated as follows

=t [ pkfiRekerw = [dt kIR Pe
0 [¢/<D 0 |&-tki<D

< f dt f L w0 | Fok &) P<I k™D f | Fo(k&) 7.
0 R KK R3

3. PROOF OF THE FIRST PART OF THEOREM 1.2 THE CONSTANT COEFFICIENT CASE

Here we shall prove the first part of Theorem 1.2 relatetl satisfying (1.3). We shall again adapt
the ideas of Bouchut, except for a modification of the testtiplidr in Step 4 below.

Step 1: We multiply (1.3) byf and integrate over all variables. Taking into account usyaime-
try cancellation, we get
1 1
(3.4) DV EIl < liglZ I fl12.
Step 2: Now having in mind that we want to prove tHat|# f € L? and knowing thagy € L2, we
note that
oWt +v.Vf =G=—-|Dy¥f+g.

Therefore applying Proposition 1.1 of Bouchut (with thegmaetera there replaced byg), it
follows that

2 1 2
IDX™2 f[| < IDJP f]|7% || - IDP f + gl| ™

1

1 B
< [IDVP £/ F2 [[IIDY £ + [IDI? £ 7% .||gl| =% ].
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Thus

28 1 28
(3.5) IIDXITZ £l < D% £l + [IIDWI 1|57 ||gl 7.
Step 3: Now apply|DX|ﬁ on (1.3), multiply by|DX|ﬁ f and integrate to get

B T
(3.6) IV DA™ f]| < [IIDX T2 f12]ig]I2.

Step 4. This step is dferent from Bouchut’s arguments, in that we choose anothéiplieu,
taking into account the control for large frequency vamadsociated with.

Considering (1.3), multiply it by|D,J? + |Dx|ﬁf)ﬁ f (see the remark below for the choice of this
multiplier) and integrate to get

f (IDy? + IDTZ Y f D ¥ f =

~Re((ID? + DA TF Y V., f) + Re(IDy2 + DTV f.g) = | + 11
Using Fourier transformation for example, it follows that
2B
11 < (DY £l + DI =2 fI])lIgll.
With the previous steps, we get

1 2B
1< IDJZ gl + 1DV f1| 57 igl* =2
On the other hand, using Parseval relation

| = ~Re((IDyI2 + DB Y V.V, ) = —Re(((i12 + [KT5 ) T, ki

= R0, [(1€2 + K FTY] £, kF) + Re((Il? + K T2 P, , k).
Thus

| = BRe(E (2 + I TT Y1 kf) = Re f Fl(ER) R + T y?
f Flglkiel ks < f PTG T7 f

< IIIDvI'BIDxll*Z‘f fII-IIIDxll*Z‘f fll.
Using the previous steps, it follows that

-

3 1 3_1 3 P
| < IDVF112]1glIZ + [IIDyI% f1|2 T g|| 277 2.
Step 5: In conclusion, we get

2 41
1+

3
212372

| < DV 1319l + 11D 1255 g
and ) y
Il < IDJ#fIlllgll + 1Dy 1|52 ||gII** =2
Using Holder inequality, we get for example, for smal 0
IIDV# fllllgll < 2DV £1I? + Ccligl?
1
DU 121012 < £3]IDyZ 112 + Colall®
DY 175 Jjgl T < 22Dy 2 12 + C,lgli?
and therefore, it follows that

IDJ# Il < Celigll.
We get also from Step 2 that
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2
IIDxI =% £ < [lgll.

Remark 3.1. (1) To get also the same result for the derivative w.rt. t, weeatghe above

arguments, but with the muItipIie{tDtlﬁf +|Dyl? + |Dxlﬁ)ﬁ. As well we could have done
the computations from the beginning with this multiplier.
(2) We choose a mutiplier which is somehow singular near nullevalf the frequency variables.

It would have been better to chooge+ |Dy|? + |Dx|ﬁ)ﬁ, for a smalls. Nothing is changed,
except that now the upper bound involyég. In fact an even better choice would have been

to choos€d + |Dy|*+ < Dy >ﬁﬂ)ﬁ, whose symbol is smooth.
(3) For the initial value problem, it might be interesting to iter the above multiplier by also

(6 + [tDyP2+ < tDy >TH )5,

4. PROOF OF THE SECOND PART OF |HEOREM 1.2: THE NON CONSTANT COEFFICIENT CASE

We now consider the model problem (1.1). As it should be atear, the main issue is the estima-

tion of the commutator of any smooth function with the opergt D, > + < Dy >ﬁﬂ)ﬁ, see the
remarks in the previous section for the choice of this migipRecall that we assume

a=b’?+a

with b > 0 smooth ang > 0 compactly supported, and that we do not assume any loweidbarub.
Then, we write

f(< Dy >2 + < Dy >TF)f.a|D P f

= f(< Dy >2 + < Dy >%ﬁ)ﬁf_.a_.|DV|2"3f + f(< Dy >2 + < Dy >ﬁ)ﬁf_.b2)(2.|DV|2"3f

=1 +1l.

The first terml is nice since it will give a lower bound as we wish. So we needeal withll to
make appear a positive term and commutators terms:

We write belowP = (< Dy >? + < Dy >%ﬁ)ﬁ andQ = |Dy|%. Then
I = f(|DV|2 + IDJEEY f b2 2 D% f = bePf.bXQf_
=fmnmnpmﬂmmpn+qmm

= f[b)(, PIf.[by, QI + [by, P f.Q(bx f) + P(bx f).[by, QI f + P(by f)Q(bx f)

The last term is positive. So we need to consider the firsetteams, and in particular to study the
commutator.
The easiest commutator ilgyf, Q], Indeed, we note that

Lemma4.1. For g < 1, one has
lIlby, QI Il < coll Il
and forg > 1, one has
by, QI Il < colllIDF Y2 £l + 1 £I]
where the constant,nly depends on a finite number of derivatives of b.
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Proof. This is a well know result, so we just sketch the main arguse@ne possibility is to write
(see for example Stein [17]), for some constant

Qf = ¢, fh [F(v+ h) — F()]/M2

Then
beQf = ciby [ [f(v+ )~ (1™
h
=Gy f [oy f (v + h) — by f(W)] /™2 + f [y (v) — by (v + )] f (v + h)/ A2
h h
Therefore:
[by, QI f = fh [ox (V) — by (v + )] f (v + h)/[n[™2
= f [[by(v) — by(21f(@)/Iz— V™2 = f K(v, 2 f(2dz
Note that:

K(v.2)| < lz= V™t and|K(v, 9| < 1/jz— vi™*

Thus ifg < % we can apply Shur's Lemma to see thatQ] is a L? bounded operator. For larger
values of3 we need to use the symetrized version of the integral expres$ Q. In fact another
method is the following: writéD,[%* = [|Dy[**— < Dy >%]+ < Dy >%*. The first factor is clearly
bounded in_? while the second one is dealt with the same method as the Lgusnbelow for the
commutator withP.

|

Lemma4.2. For§ < 1, one has
Ilby, Pl < coll fl
and forg > 1, one has
by Pl < colllIDyf Y2 £1| + [ £1]
where the constant,nly depends on a finite number of derivatives of b.
Proof. SetP = p(Dy, Dy) = (IDy? + IDxT# )8, with p(k.&) = (< £ > + < k >T#). Letb = by.
Then [P, bju = P(bu) — b(Pu). Therefore

[P, Blu (k&) = P(bu) - B(PU) = p(k, £)b Ok, £) - b * [pil]

= fk éy[|0(k, &) - P, &bk — K, & - £)a(K, &)

Set
K(k.&K.&) =[pk &) - pK.&NbK-K,&-&) = Ky + Kz
with .
K1 =[pk &) - pk,&)]b(k-K,&-¢)
and

Kz = [p(k.&) - p(k,&)]b(k — K, & - ¢
li is immediately seen that the second therm gives rise tariaekdéor which we can apply Schur
Lemma. That is we see thigt;| < [b(k — K, & — &)|lk — K|, and then (for any smadi)

f <k>|’6|(k,§)s[f<(k,f) > 2240 B2)3,
k&
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Thus, going back to the inverse Fourier transform, we havepmnatorlzl such that|Ky || < [If]l.
For the part related t&,, suppose first tha@ < 1/2. Then using Taylor’s formulae, it follows that

f Ka(k&.K. )] < f - &lbk-K.6 - &) <[ f < (k&) >2% B2
k¢ ké k¢

Schur Lemma applies and yields that it isabounded operator. ff > % we have a upper bound on

Ko aslallc—¢&|[< & P12 + < ¢ >P~12, Then, it's enough to use Petree’s inequality to conclude.

Remark 4.3. The bound above depends on the normyolsHR, with m= n+ 1+ ¢ for smallé > 0.
It is likely not optimal. When a does not depend on variablene can obtain better bounds.

Putting together the two previous Lemma, we can concludpribaf of the second part of Theorem
1.2.
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