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FRACTIONAL ORDER KINETIC EQUATIONS AND HYPOELLIPTICITY

R. ALEXANDRE

Abstract. We give simple proofs of hypoelliptic estimates for some models of kinetic equations with
a diffusion part. The proofs are based on energy estimates together with F. Bouchut and B. Perthame
previous ideas.

1. Introduction

Recently, after the study initiated by Morimoto and Xu [15],the paper of Lerner and all [14] was
concerned with hypoelliptic effects related to a kinetic equation similar to the following one:

(1.1) ∂t f (t, x, v, ) + v.∇x f (t, x, v) + a(t, x, v)|Dv|
2β f = g

Here we assume that (t, x, v) ∈ R1+n+n for some integern ≥ 1, thatg ∈ L2, whereL2 = L2(R1+2n).
We denote by‖.‖ the associated norm. The usual interpretation from kinetictheory is thatt plays the
role of a time variable,x the position andv the velocity. The coefficient a is assumed for example
to be smooth and strictly positive, see below for precise hypothesis. The parameterβ is assumed to
satisfy 0< β ≤ 1.

As regards Fourier transformation, we shall denote byτ, k andξ the Fourier variables dual tot,
x andv respectively. Other notations used in (1.1) are standard, see for example [13, 17]. Let us
note immediately that the third (elliptic) term on the l.h.s. of (1.1) is not exactly similar to the one
considered in [14, 15] in that the behavior therein was takenasa|ξ|2 for small frequency variablesξ,
but this is not an important point from the point of view ofL2 theory. In the rest of the paper, we shall
always assume that all functions such as f , g are smooth.

Forβ = 1, (1.1) is a well known model of Fokker Planck or Kolmogorov equation, for which one
can find numerous methods for proving hypoellipticity, see for example [13, 9, 14, 15, 16] and the
references therein.

We refer for example to [19] for physical motivations for this type of kinetic equations. Another
motivation is linked with the study of the spatially inhomogeneous Boltzmann equation with cutoff,
see for example [2, 18, 1, 3, 7, 5, 6, 11], see also recent results of [8] and references therein .

As far as we know, the study of hypoelliptic effects for problem (1.1) was initiated by Morimoto
and Xu [15] and they derive therein a partial and non optimal result. This study was then completed

with optimal results by Lerner and all [14], where they proved typically that |Dx|
β

1+2β f ∈ L2 and a
similar estimate w.r.t. time variable. In both works, the authors usedL2 type methods.

While still working with an energy method, we want to show that a slight modification of the
computations of Bouchut [9] can lead to the same results as Lerner and all [14], and therefore in
comparison, we provide a very simple proof. One advantage isthat it is very simple to keep track
of the different constants depending on the given coefficientsa, and furthermore, we avoid using any
deep pseudo differential calculus. However, in order to study the model problem (1.1), we do use
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2 R. ALEXANDRE

one result, namely Proposition 1.1 from Bouchut [9], whose proof is also elementary as it relies on
averaging regularity type arguments. Bouchut’s result is given by

Proposition 1.1. [Proposition 1.1 of[9]] Assume f∈ L2, g ∈ L2, |Dv f |α f ∈ L2 for someα ≥ 0 and

(1.2) ∂t + v.∇x f = g,

Then
‖|Dx|

α
1+α f ‖ . ‖g‖

α
1+α ‖|Dv|

α f ‖
1

1+α

The proof done in [9] uses both Fourier transform w.r.t. timeand space variables (t, x), and argu-
ments introduced in [10]. It might be plausible to only use Fourier transform w.r.t. variablex and
using again the arguments of [10]. For completeness, we giveyet another proof which was used
in Alexandre [1] following arguments introduced by Perthame [16] in his study of higher moments
estimates. Our proof is also elementary, but uses this time both space and velocity variables Fourier
transform. However, we do not use Fourier transform w.r.t. time variable, and therefore we can also
deal with the Cauchy initial value problem associated with model problem (1.2). We refer also to [4]
for another proof involving Fourier transform w.r.t. time and space variables and a certain kind of
uncertainty principle.

Once given Proposition 1.1, we can proceed to study hypoelliptic effects connected with (1.1). As
an even more simple model problem, we shall also begin to study the case of constanta, say 1, that is
we shall also study

(1.3) ∂t f (t, x, v, ) + v.∇x f (t, x, v) + |Dv|
2β f = g

Our main result is given by

Theorem 1.2. (1) Let f satisfy(1.3). Then one has

‖|Dv|
2β f ‖ + ‖|Dx|

2β
1+2β f ‖ . ‖g‖.

(2) Let f satisfy(1.3). Assume that a= b2χ + a− for some strictly positive constant a0, a smooth
positive function b and a compactly supported and positive functionχ. Then one has

‖|Dv|
2β f ‖ + ‖|Dx|

2β
1+2β f ‖ . Ca[‖g‖ + ‖ f ‖].

As it will appear clearly in the proof, similar estimate w.r.t. space variable also holds for time
variable. Furthermore, the proofs given below can also takeinto account the initial value problem.
Finally, the assumption ona might appear strange, but this is one possible choice among many others.
We mention that ifa is assumed to be only locally bounded from below, then all proofs adapt up to
introducing cutoff functions. Finally, the proof also shows that it is not necessary to have a diffusion
term as above. One might consider instead an equation such as

∂t + v.∇x f +
∫

Rn

K(t, x, v)

|h|n+2β
[ f (v+ h) − f (v)]dh= g

with good assumptions on the kernelK. This example is more closer to a linear version of Boltzmann
operator. Details are left to the interested reader.

2. The free transport equation: proof of Proposition 1.1

We are interested in the transport equation (1.2), under theassumptions of Proposition 1.1.
It is shown by Bouchut that we obtain|Dx|

α
1+α f ∈ L2. The method of proof was based on velocity

arguments, see [9, 10] and references therein. In fact another proof is also provided in [4] using
a kind of uncertainty principle, but which is more complex. Finally, another argument based on
Perthame method [16] is also possible, see for example Alexandre [1]. As mentioned by Bouchut, the
commutator method seems to require more derivatives w.r.t.variablev, but in that case, the proof is
very easy (see the proof in [9]).
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We shall apply Perthame’s argument for the usual Fokker Planck case below, following [1]. Note
that this a Fourier method, using characteristics associated on the Fourier side which is also somehow
used in the paper by Lerner and all [14].

If .̂ denotes the Fourier transform with respect to the variables(x, v) and (k, ξ) the dual variables,
one has

∂t f̂ − k.∇ξ f̂ = ĝ.

Multiplying by f̄ , and taking the complex conjugate also, we obtain:

∂t| f̂ |
2 − k.∇ξ | f̂ |

2 = 2Re(ĝ, ¯̂f ) . |ĝ|| f̂ |.

Then

| f̂ (t, k, ξ) |2.
∫ t

−∞

(| f̂ ĝ | (k, ξ + sk, t − s)ds.

Fix r ≥ 0 andD ≥ 0, andk. Then
∫ ∞

−∞

dt
∫

ξ

|k|r | f̂ (t, k, ξ) |2

=

∫ ∞

−∞

dt
∫

|ξ|≥D
|k|r | f̂ (t, k, ξ) |2 +

∫ ∞

−∞

dt
∫

|ξ|≤D
|k|r | f̂ (t, k, ξ) |2= A+ B.

For B, one has:

B .
∫ ∞

−∞

dt
∫

|ξ|≤D
|k|r
∫ t

−∞

(| f̂ ĝ | (k, ξ + sk, t − s)ds.

Changing variable inξ, this gives

B .
∫ ∞

−∞

dt
∫

dξ|k|r
∫ ∞

−∞

1s≤t1|ξ−sk|≤D(| f̂ ĝ | (k, ξ, t − s)ds

Change variables int (for fixed s) to get

B .
∫ ∞

0
dt
∫

dξ|k|r
∫ ∞

−∞

1|ξ−sk|≤D(| f̂ ĝ | (k, ξ, t)ds

Since|ξ − sk| ≥ ||ξ| − s|k||, it follows that

B .
∫ ∞

0
dt
∫

dξ|k|r−1D(| f̂ ĝ | (k, ξ, t)

. ε

∫ ∞

0
dt
∫

dξ|k|2(r−1)D2 | f̂ |2(k, ξ, t) +Cε

∫ ∞

0
dt|ĝ |2 (k, ξ, t)

for anyε > 0.
Now for A, we get directly

A .
∫ ∞

−∞

dt
∫

dξ|ξ‖mD−m|k|r | f̂ (t, k, ξ) |2 .

ChooseD = |k|
r
m . Then

A .
∫ ∞

−∞

dt
∫

dξ|ξ‖m | f̂ (t, k, ξ) |2 .

Then note that|k|2(r−1)D2 = |k|2(r−1)+2 r
m = |k|r , if we choose the value ofr such thatr = 2m

m+2. We
choosem = 2α. Thereforer = 2α

1+α . In conclusion with all these choices, we get, for fixedk, by
absorbing the right hand side with the left hand side:

∫ ∞

−∞

dt
∫

ξ

|k|
2α

1+α | f̂ (t, k, ξ) |2.
∫ ∞

−∞

dt
∫

dξ|ξ‖2α | f̂ (t, k, ξ) |2 +Cε

∫ ∞

0
dt|ĝ |2 (k, ξ, t)
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and therefore
‖D

α
1+α f ‖ . ‖Dα f ‖ + ‖g‖.

It should be observed that we do not have the same scaling as inBouchut. But this can fixed easily
as follows. We proceed as above, replacingD by λD but use instead Cauchy Schwarz inequality for
B, with the same choice of parameters:

B . λ
∫ ∞

0
dt
∫

dξ|k|r−1D(| f̂ ĝ | (k, ξ, t) . λ{
∫ ∞

0
dt
∫

dξ|k|r | f̂ |2(k, ξ, t)}
1
2 {

∫ ∞

0
dt|ĝ |2 (k, ξ, t)}

1
2

while

A . λ−m
∫ ∞

−∞

dt
∫

dξ|ξ‖m | f̂ (t, k, ξ) |2 .

The we get an inequality such as:

C . λC
1
2 D

1
2 + λ−mE.

If we chooseλ such that the two terms on the r.h.s. coincide then we get, after some computations

C . D
m

m+2 E
2

m+2 .

Now integrate w.r.t.k and use Holder inequality with exponentp = m/(m+ 2) to get
∫

C . [
∫

D]
m

m+2 [
∫

E]
2

m+2

Recalling thatm= 2α, we get exactly

‖D
α

1+α
x f ‖ . ‖g‖

α
1+α ‖Dα f ‖

1
1+α .

Remark 2.1. The same proof also works, if we consider the transport equation (1.2) for say positive
time and a given initial value at time0, f0.

3. Proof of the first part of Theorem 1.2: the constant coefficient case

Here we shall prove the first part of Theorem 1.2 related tof satisfying (1.3). We shall again adapt
the ideas of Bouchut, except for a modification of the test multiplier in Step 4 below.

Step 1: We multiply (1.3) by f̄ and integrate over all variables. Taking into account usualsymme-
try cancellation, we get

(3.4) |||Dv|
β f || . ||g||

1
2 || f ||

1
2 .

Step 2: Now having in mind that we want to prove that|Dv|
2β f ∈ L2 and knowing thatg ∈ L2, we

note that
∂t f + v.∇x f = G ≡ −|Dv|

2β f + g.

Therefore applying Proposition 1.1 of Bouchut (with the parameterα there replaced by 2β), it
follows that

||Dx|
2β

1+2β f || . |||Dv|
2β f ||

1
1+2β .|| − |Dv|

2β f + g||
2β

1+2β

. |||Dv|
2β f ||

1
1+2β [|||Dv|

2β f || + |||Dv|
2β f ||

1
1+2β .||g||

2β
1+2β ].

Thus

(3.5) |||Dx|
2β

1+2β f || . |||Dv|
2β f || + |||Dv|

2β f ||
1

1+2β .||g||
2β

1+2β .

Step 3: Now apply|Dx|
β

1+2β on (1.3), multiply by|Dx|
β

1+2β f̄ and integrate to get

(3.6) ‖|DV |
β|Dx|

β

1+2β f ‖ . ‖|Dx|
2β

1+2β f ‖
1
2 ‖g‖

1
2 .
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Step 4: This step is different from Bouchut’s arguments, in that we choose another mutiplier,
taking into account the control for large frequency variable associated withx.

Considering (1.3), multiply it by (|Dv|
2 + |Dx|

2
1+2β )β f̄ and integrate to get

∫
(|Dv|

2 + |Dx|
2

1+2β )β f̄ .|Dv|
2β f =

−Re((|Dv|
2 + |Dx|

2
1+2β )β f̄ , v.∇x f ) + Re((|Dv|

2 + |Dx|
2

1+2β )β f̄ , g) = I + II

Using Fourier transformation for example, it follows that

II . (‖|Dv|
2β f ‖ + ‖|Dx|

2β
1+2β f ‖)‖g‖.

Using the previous steps, we get

II . ‖|Dv|
2β f ‖‖g‖ + |||Dv|

2β f ||
1

1+2β .||g||1+
2β

1+2β

On the other hand, using Parseval relation

I = −Re((|Dv|
2 + |Dx|

2
1+2β )β f̄ , v.∇x f ) = −Re(((|ξ|2 + |k|

2
1+2β )β ¯̂f , k j∂ξ j f̂

= Re(∂ξ j [(|ξ|
2 + |k|

2
1+2β )β] ¯̂f , k f̂ ) + Re((|ξ|2 + |k|

2
1+2β )β∂ξ j

¯̂f , k f̂ ).

Thus

I = βRe(ξ j(|ξ|
2 + |k|

2
1+2β )β−1 ¯̂f , k f̂ ) = Re

∫
¯̂f f̂ (ξ.k)(|ξ|2 + |k|

2
1+2β )β−1

.

∫
¯̂f f̂ |ξ||k||ξ|β−1|k|

β−1
1+2β .

∫
|ξ|β|k|

β

1+2β ¯̂f .|k|
2β

1+2β f̂

. ‖|DV |
β|Dx|

β

1+2β f ‖.‖|Dx|
2β

1+2β f ‖.

Using the previous steps, it follows that

I . ‖|Dv|
2β f ‖

3
2 ‖g‖

1
2 + ‖|Dv|

2β f ‖
3
2

1
1+2β ‖g‖

3
2

2β
1+2β+

1
2 .

Step 5: In conclusion, we get

I . ‖|Dv|
2β f ‖

3
2 ‖g‖

1
2 + ‖|Dv|

2β f ‖
3
2

1
1+2β ‖g‖

3
2

2β
1+2β+

1
2

and

II . ‖|Dv|
2β f ‖‖g‖ + |||Dv|

2β f ||
1

1+2β .||g||1+
2β

1+2β

Using Holder inequality, we get for example, for smallε > 0

‖|Dv|
2β f ‖‖g‖ . ε2‖|Dv|

2β f ‖2 +Cε‖g‖
2

‖|Dv|
2β f ‖

3
2 ‖g‖

1
2 . ε

4
3 ‖|Dv|

2β f ‖2 +Cε‖g‖
2

|||Dv|
2β f ||

1
1+2β .||g||1+

2β
1+2β . ε2(1+2β)|||Dv|

2β f ||2 +Cε||g||
2

and therefore, it follows that
‖|Dv|

2β f ‖ . Cε‖g‖.

We get also from Step 2 that

‖|Dx|
2β

1+2β f ‖ . ‖g‖.

Remark 3.1. (1) To get also the same result for the derivative w.r.t. t, we repeat the above

arguments, but with the multiplier(|Dt |
2

1+2β + |Dv|
2 + |Dx|

2
1+2β )β. As well we could have done

the computations from the beginning with this multiplier.
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(2) We choose a mutiplier which is somehow singular near null value of the frequency variables.

It would have been better to choose(δ + |Dv|
2 + |Dx|

2
1+2β )β, for a smallδ. Nothing is changed,

except that now the upper bound involves‖ f ‖. In fact an even better choice would have been

to choose< δ + |Dv|
2+ < Dx >

2
1+2β )β, whose symbol is smooth.

4. Proof of the second part of Theorem 1.2: the non constant coefficient case

We now consider the model problem (1.1). As it should be clearnow, the main issue is the estima-

tion of the commutator of any smooth functionb with the operator (< Dv >
2 + < Dx >

2
1+2β )β, see the

remarks in the previous section for the choice of this mutiplier. Recall that we assume

a = b2χ2 + a−

with b ≥ 0 smooth andχ ≥ 0 compactly supported. Note that we do not assume any lower bound on
b.

Then, we write ∫
(|Dv|

2 + |Dx|
2

1+2β )β f̄ .a.|Dv|
2β f

=

∫
(|Dv|

2 + |Dx|
2

1+2β )β f̄ .a−.|Dv|
2β f +

∫
(|Dv|

2 + |Dx|
2

1+2β )β f̄ .b2χ2.|Dv|
2β f

= I + II .

The first termI is nice since it will give a lower bound as we wish. So we need todeal withII to
make appear a positive term and commutators terms:

We write belowP = (< Dv >
2 + < Dx >

2
1+2β )β andQ = |Dv|

2β. Then

II =
∫

(|Dv|
2 + |Dx|

2
1+2β )β f̄ .b2χ2.|Dv|

2β f =
∫

bχP f.bχQf̄

=

∫
{[bχ,P] f + P(bχ f )}{[bχ,Q] f + Q(bχ f )}

=

∫
[bχ,P] f .[bχ,Q] f + [bχ,P] f .Q(bχ f ) + P(bχ f ).[bχ,Q] f + P(bχ f )Q(bχ f )

The last term is positive. So we need to consider the first three terms, and in particular to study the
commutator.

The easiest commutator is [bχ,Q], Indeed, we note that

Lemma 4.1. For β ≤ 1
2, one has

‖[bχ,Q] f ‖ . cb‖ f ‖

and forβ ≥ 1
2, one has

‖[bχ,Q] f ‖ . cb[‖|Dv|
β−1/2 f ‖ + ‖ f ‖]

where the constant cb only depends on a finite number of derivatives of b.

Proof. This is a well know result, so we just sketch the main arguments. One possibility is to write
(see for example Stein [17]), for some constantcn

Q f = cn

∫

h
[ f (v+ h) − f (v)]/|h|n+2α.

Then

bχQ f = cnbχ
∫

h
[ f (v+ h) − f (v)]/|h|n+2α

= cn

∫

h
[bχ f (v+ h) − bχ f (v)]/|h|n+2α +

∫

h
[bχ(v) − bχ(v+ h)] f (v+ h)/|h|n+2α.
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Therefore:

[bχ,Q] f =
∫

h
[bχ(v) − bχ(v+ h)] f (v+ h)/|h|n+2α

=

∫

z
[[bχ(v) − bχ(z)] f (z)/|z− v|n+2α =

∫

z
K(v, z) f (z)dz

Note that:
|K(v, z)| . |z− v|n+2α−1 and|K(v, z)| . 1/|z− v|n+2α

Thsymetrizedus ifβ < 1
2, we can apply Shur’s Lemma to see that [χ,Q] is a L2 bounded operator.

For larger values ofβ we need to use the symetrized version of the integral expression of Q. In fact
another method is the following: write|Dv|

2α = [|Dv|
2α− < Dv >

2α]+ < Dv >
2α. The first factor is

clearly bounded inL2 while the second one is dealt with the same method as the Lemmajust below
for the commutator withP.

�

Lemma 4.2. For β ≤ 1
2, one has

‖[bχ,P] f ‖ . cb‖ f ‖

and forβ ≥ 1
2, one has

‖[bχ,P] f ‖ . cb[‖|Dv|
β−1/2 f ‖ + ‖ f ‖]

where the constant cb only depends on a finite number of derivatives of b.

Proof. SetP = p(Dx,Dv) = (|Dv|
2 + |Dx|

2
1+2β )β, with p(k, ξ) = (< ξ >2 + < k >

2
1+2β )β. Let b̃ = bχ.

Then [P, b̃]u = P(b̃u) − b̃(Pu). Therefore

̂[P, b̃]u (k, ξ) = ̂P(b̃u) − ˜̂b(Pu) = p(k, ξ)̂b̃ ∗ û(k, ξ) − ̂̃b ∗ [pû]

=

∫

k′,ξ′
[p(k, ξ) − p(k′, ξ′)]̂b̃(k − k′, ξ − ξ′)û(k′, ξ′)

Set
K(k, ξ, k′, ξ′) = [p(k, ξ) − p(k′, ξ′)]̂b̃(k − k′, ξ − ξ′) = K1 + K2

with
K1 = [p(k, ξ′) − p(k′, ξ′)]̂b̃(k − k′, ξ − ξ′)

and
K2 = [p(k, ξ) − p(k, ξ′)]̂b̃(k− k′, ξ − ξ′)

Ii is immediately seen that the second therm gives rise to a kernel for which we can apply Schur

Lemma. That is we see that|K1| . |̂b̃(k− k′, ξ − ξ′)||k − k′|, and then (for any smallδ)∫

k,ξ
< k > |̂b̃|(k, ξ) . [

∫
< (k, ξ) >2n+2+δ |̂b̃|2]

1
2 .

Thus, going back to the inverse Fourier transform, we have anoperatorK̃1 such that‖K̃1 f ‖ . ‖ f ‖.
For the part related toK2, suppose first thatβ ≤ 1/2. Then using Taylor’s formulae, it follows that∫

k,ξ
|K2(k, ξ, k′, ξ′)| .

∫

k,ξ
|ξ − ξ′||̂b̃(k− k′, ξ − ξ′)| . [

∫

k,ξ
< (k, ξ) >2n+2δ |̂b̃|2]

1
2

Schur Lemma applies and yields that it is aL2 bounded operator. Ifβ ≥ 1
2, we have a upper bound on

K2 as|â||ξ−ξ′|[< ξ >β−1/2 + < ξ′ >β−1/2. Then, it’s enough to use Petree’s inequality to conclude.�

Remark 4.3. The bound above depends on the norm of bχ is Hm
x,v with m= n+ 1+ δ for smallδ > 0.

For the remaining case of

Putting together the two previous Lemma, we can conclude theproof of the second part of Theorem
1.2.
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