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Abstract In case of insufficient data samples in high-
dimensional classification problems, sparse scatters of
samples tend to have many ‘holes’—regions that have
few or no nearby training samples from the class. When
such regions lie close to inter-class boundaries, the nearest
neighbors of a query may lie in the wrong class, thus
leading to errors in the Nearest Neighbor classification rule.
The K-local hyperplane distance nearest neighbor (HKNN)
algorithm tackles this problem by approximating each class
with a smooth nonlinear manifold, which is considered to
be locally linear. The method takes advantage of the local
linearity assumption by using the distances from a query
sample to the affine hulls of query’s nearest neighbors for

decision making. However, HKNN is limited to using the
Euclidean distance metric, which is a significant limitation
in practice. In this paper we reformulate HKNN in terms of
subspaces, and propose a variant, the Local Discriminative
Common Vector (LDCV) method, that is more suitable for
classification tasks where the classes have similar intra-class
variations. We then extend both methods to the nonlinear
case by mapping the nearest neighbors into a higher-
dimensional space where the linear manifolds are con-
structed. This procedure allows us to use a wide variety of
distance functions in the process, while computing distances
between the query sample and the nonlinear manifolds
remains straightforward owing to the linear nature of the
manifolds in the mapped space. We tested the proposed
methods on several classification tasks, obtaining better
results than both the Support Vector Machines (SVMs) and
their local counterpart SVM-KNN on the USPS and Image
segmentation databases, and outperforming the local SVM-
KNN on the Caltech visual recognition database.

Keywords Affine hull . Common vector . Convex hull .

Distance learning . Image categorization . Local classifier .
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1 Introduction

Despite its age and simplicity, the Nearest Neighbor (NN)
classification rule—assigning the query sample to the class
with the closest training sample—is among the most
successful and robust methods for many classification prob-
lems. Various distance functions can be used to measure the
proximity including the Euclidean and Mahalanobis distan-
ces. It has been shown theoretically that NN classification has
good asymptotic performance committing at most twice as
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many errors as the optimal Bayes rule classifier. Empirically,
NN classifiers with well-chosen distance metrics outperform
more sophisticated classifiers in many situations [1–3].

Unfortunately, the NN algorithm does not have good
generalization ability when there are only a limited number
of examples in high-dimensional spaces: Hole artifacts
occur in the decision surface owing to random variations in
sampling density, and this reduces the generalization
performance [2–4]. Various methods have been proposed
in the literature to overcome this pitfall [2–6]. In [3], the
authors perform a local linear discriminant analysis on the
nearest neighbors to deform the Euclidean distance.
However, this method is not suitable for high-dimensional
classification tasks as there are not enough nearest
neighbors for a linear discriminant analysis. Peng et al.
[7] proposed the Adaptive Quasiconformal Kernel Nearest
Neighbors algorithm which warps the input space based on
the local posterior probability estimates and weighted
Mahalanobis distance. However, the class covariance
matrices become rank deficient in high-dimensional spaces
when there is a limited amount of data. As a result, the
Mahalanobis distance cannot be computed in these sit-
uations, which in turn limits application areas of the
method. In [8], the authors introduced the ADAMENN
algorithm, in which the Euclidean distance is deformed in a
neighborhood of the query points by means of a local
feature relevance factor. However, the method requires
tuning six parameters which can be confusing. Domeniconi
and Gunopulos [5] train a global SVM classifier on the
entire data and use it to deform the distances locally. In
most applications of SVMs, the number of extracted
support vectors is small compared to the training set size,
but in high-dimensional applications most of the training
examples become support vectors. As the method proposed
in [5] requires online kernel evaluations for each support
vector, it becomes inefficient for real-time high-dimensional
classification applications. Furthermore, derivations are
done for 2 classes and the method is not generalized for
multi-class case, which limits its practical applicability. In
[2], Peng et al. train local linear SVMs, rather than a single
global nonlinear one, using the nearest samples, and weigh
the distance metric based on the linear separating hyper-
planes obtained from these classifiers. As before, the
method is not designed for the multi-class tasks. Further-
more, besides the number of nearest neighbors, it contains
two extra parameters that need to be fixed empirically and it
assumes the classes to be locally linearly separable, which
is not always true in practice. Similarly, Zhang et al.
proposed a local classifier for the high-dimensional case,
called SVM-KNN [6], without deforming the distance
metric. This method trains SVMs on the nearest samples
using various distance functions and uses them to classify
the query sample. While using various distance metrics may

seem appealing, decreasing the available nearest neighbors
through SVM is undesirable since the extracted support
vectors may not model the local decision boundaries
correctly. Furthermore, the local decision boundaries are
not constructed with respect to the query sample, which
may yield unreasonable assignments. Another local method,
HKNN, was proposed for high-dimensional data and has
been shown to work well in several classification tasks [4, 9].
In this method, each class is modeled as a smooth low-
dimensional manifold embedded in the high-dimensional
space. In this setting it is reasonable to assume that the
manifolds are locally linear. If the training data is limited,
new points can be fantasized to approximate each manifold
locally: given a query sample, the nearest neighbors in each
class are used to construct a local linear manifold for the
class. The query sample is classified based on its distances to
these local linear manifolds. This reduces the negative effects
of the sparse training data giving significant improvements in
recognition accuracies.

Linearity assumptions for local regions are also widely
used for nonlinear dimensionality reduction [10–12].
Hinton et al. [10] introduced Mixtures of Principal
Component Analyzers to approximate the underlying
nonlinear data manifolds for classification of handwritten
digits. Roweis and Saul [11] proposed Locally Linear
Embedding, in which nonlinear structure of the high-
dimensional data is approximated by exploiting the linear
reconstructions. Similarly, Verbeek [12] combined several
locally valid linear manifolds to obtain a global nonlinear
mapping between the high-dimensional sample space and
the low-dimensional manifold. Another application for the
local linear manifolds is the identification and matching of
faces. Cevikalp et al. [13] projected face images onto a
linear manifold removing the within-class variations in the
process. Kim and Kittler [14] used K-means clustering to
partition each face class into several disjoint sets, following
which linear basis vectors are extracted by treating each set
as a linear manifold. Finally, locally linear manifolds are
used to approximate the nonlinear global structure of each
class. Fitzgibbon and Zisserman [15] used linear manifolds
in the context of face matching to discover the principal
cast of a movie. The many applications of linear manifolds
in the context of classification can be attributed in part to
their simplicity and computational efficiency. Finding
distances from query samples to linear manifolds requires
only simple linear algebra. On the other hand, computing
distances to nonlinear manifolds can be problematic. Even if
the manifolds are restricted to being convex hulls, distance
computations require the solution of quadratic optimization
problems. As the structure becomes more complex, com-
puting distances to these structures becomes more difficult.

Recently, the development of specialized distance func-
tions for classification tasks and dimensionality reduction has
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emerged as a fruitful line of research. Significant improve-
ments have been achieved using task specific distance metrics
[6, 16, 17]. For instance, for Euclidean distance, HKNN
achieved the best recognition rate among all of the methods
discussed in [6], but it was outperformed by SVM-KNN
trained using alternative distance metrics. Zhang et al. [16]
reported that the Chi-square and Earth Mover’s distances
show significant improvements over linear kernels for image
classification tasks using histogram based features. In [17],
Tenenbaum proposed the Isomap method, in which geodesic
distances are used for nonlinear dimensionality reduction.
All of these results support the hypothesis that it is important
to choose a distance metric that is well-adapted to the given
application.

In this paper we propose a useful nonlinearization
process that extends HKNN allowing it to use a wide
variety of distances. The main idea is to map the nearest
neighbor samples nonlinearly into a higher-dimensional
space using a suitable distance function and then construct
linear manifolds in this new space. The nearest neighbors
are thus transformed into a more discriminative feature
space, which in turn improves the recognition accuracy.
Moreover, since the classification problem is cast in a
higher-dimensional space, the classes are typically linearly
separable. Thus, the local linearity assumption of class
manifolds around the query point is more likely to be
satisfied. The nonlinearization process also allows us to
apply HKNN to new classification tasks for which direct
application was not feasible. Although the constructed
manifolds correspond to nonlinear structures in the original
sample space, finding distances to them is still straightforward
owing to their linear nature in the mapped space. In this study,
we also introduce a variation of HKNN, called the Local
Discriminative Common Vector (LDCV) method, which is
better suited for classifications tasks where the classes have
similar local intra-class variations. Then, we extend the LDCV
to the nonlinear case using the same nonlinearization process.

The remainder of the paper is organized as follows: In
Section 2 we reformulate HKNN in terms of subspaces and
generalize it to the nonlinear case using the kernel trick. We
also briefly review a related method, K-local convex
distance nearest neighbor (CKNN). In Section 3, the LDCV
method is introduced and kernelized. Section 4 describes
the data sets and experimental results. Finally, we draw
conclusions in Section 5.

2 The Nonlinearization of the HKNN Method

We first formulate HKNN in terms of subspaces, then
extend it to the nonlinear case using subspace concepts and
the kernel trick.

2.1 Formulation of the HKNN Method in Terms
of Subspaces

In HKNN, given a query sample, the first step is to find
for each class the K training points nearest to the query.
These neighbors are then used to construct a local linear
manifold for each class in the training set. Finally the
query sample is assigned to the class associated with the
closest manifold. We now formulate this process using
subspaces.

Suppose there are C classes in the training set. Let
VK
i xq
� � ¼ xi1; x

i
2; . . . ; x

i
K

� �
denote the set of the K-nearest

samples of the query sample xq∈ℜd in the training set,
belonging to the i-th class. Here we suppose that the
dimension d of the sample space is larger than or equal to
K, or more generally that the affine hull of the nearest
neighbors from each class is a proper subset of ℜd of
dimension less than d. The local affine hull of class i is
defined in terms of the K-nearest neighbors as

LHK
i xq
� � ¼ pjp ¼

XK
m¼1

ai
mx

i
m; ai

m 2 <;
XK
m¼1

ai
m ¼ 1

( )
;

i ¼ 1; ::;C:

ð1Þ
Note that this is the lowest-dimensional linear manifold

that passes through all points of VK
i xq
� �

. We can get rid of

the constraint
PK
m¼1

ai
m ¼ 1, by choosing any reference point

from VK
i xq
� �

, e.g., the mean mi ¼ 1=Kð Þ PK
m¼1

xim, and rewrite
Eq. 1 as:

LHK
i xq
� � ¼ pjp ¼ mi þ

Pli
m¼1

bimz
i
m; bim 2 <

� �
;

i ¼ 1; ::;C;
ð2Þ

where the set zi1; z
i
2; . . . ; z

i
li

n o
is any linear basis of the

difference subspace [18] spanned by the difference vectors
xi1 � mi; x

i
2 � mi; . . . ; x

i
K � mi

� �
, and li � K � 1 is the di-

mension of the basis. Note that there is no constraint on the
sum of the new coefficients bim. The difference subspace is
also the range space of the covariance matrix of the samples
in VK

i xq
� �

[13].
In order to classify a query point xq, the minimum

distances between the query and the local linear manifolds
must be computed. Then the query is assigned to the class
whose manifold is closest to xq. The minimum distance
between xq and the i-th linear manifold is computed by:

d xq;LHK
i xq
� �� �¼ min

p2LHK
i xqð Þ

xq � p
�� ��

¼ min
b ið Þ2<li

xq � mi � Z ið Þb ið Þ�� ��; i ¼ 1; . . . ;C;

ð3Þ
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where Z(i) is a matrix whose columns are the independent
difference vectors and β(i) is a column vector containing the
coefficients bim [4]. Here �k k denotes the Euclidean norm.
Minimization of the above equation leads to:

b ið Þ ¼ Z ið ÞTZ ið Þ
	 
�1

Z ið ÞT xq � mi

� �
: ð4Þ

Note that the matrix P ið Þ ¼ Z ið Þ Z ið ÞTZi
� ��1

Z ið ÞT defines
an orthogonal projection operator. In our case, it is the
orthogonal projection operator onto the difference subspace
of VK

i xð Þ. Thus, we can rewrite Eq. 3 as:

d xq;LHK
i xq
� �� � ¼ xq � mi � P ið Þ xq � mi

� ��� ��
¼ I � P ið Þ� �

xq � mi

� ��� ��; ð5Þ

where I is the identity matrix and P(i) is the orthogonal
projection operator onto the difference subspace of the i-th
class. The matrix P ið Þ

NS ¼ I � P ið Þ� �
is called the orthogonal

projection operator onto the indifference subspace (the null
space of the covariance matrix) of VK

i xq
� �

[13]. Notice that
the difference and indifference subspaces are orthogonal
complements of each other. All points xiaff 2 LHK

i xq
� �

project to a unique vector:

xicom ¼ P ið Þ
NSx

i
aff ; i ¼ 1; . . . ;C; ð6Þ

that characterizes the manifold. The minimum distance of
the query vector to each manifold can be written as the
standard Euclidean distance between the projected vectors:

d xq;LH
K
i xq
� �� � ¼ PðiÞ

NSxq � xicom

��� ���; i ¼ 1; ::;C: ð7Þ

Thus the problem can be seen as a subspace problem
where each local subspace is modeled with the associated

indifference subspace of the nearest neighbors in the
vicinity of the query sample. It is clear that each class is
represented with a unique vector obtained removing intra-
class variations among the local nearest samples in this
setting. This is complementary to the Mahalanobis distance
in the sense that it gives a natural distance associated with
the null space of the covariance matrix, not the span. The
final decision function for a given query xq can be written
as:

g xq
� � ¼ argmin

i¼1;...;C
P ið Þ
NSxq � xicom

��� ���	 


¼ argmin
i¼1;...;C

P ið Þ
NS xq � mi

� ���� ���	 

: ð8Þ

Since the projection matrices are idempotent, i.e.,
ðP ið Þ

NSÞ2¼ P ið Þ
NS, the above classification rule yields quadratic

decision boundaries around the query sample.
For computational efficiency in high dimensions, the

projection operators can be represented implicitly by P ið Þ ¼
QiQT

i and P ið Þ
NS ¼ I � QiQT

i where Qi is the ‘Q’ matrix of
the QR decomposition of the matrix of difference vectors.

2.2 The K-Local Convex Distance Nearest Neighbor
(CKNN) Method

Rather than using distances to affine hulls as in HKNN, we
can also use distances to convex hulls—the convex spans of
the K-nearest neighbors. This corresponds to adding the
constraints ai

m � 0, m ¼ 1; . . . ;K, i ¼ 1; . . . ;C to Eq. 1.
The resulting method is called as K-Local Convex Distance
Nearest Neighbor (CKNN) [4]. In Fig. 1, we give an
illustrative example comparing HKNN and CKNN methods
on a two-class problem with K=2.

Figure 1 Comparison of NN,
CKNN and HKNN methods.
The closest distance from a
query to an affine/convex hull is
the norm of displacement from
the query to the closest point
on the hull. Observe how the
distances change by each
method.
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In general, finding the distance between the query point
and a convex hull requires the solution of the following
quadratic programming problem:

min
a ið Þ

1

2
xq � Xia

ið Þ�� ��2

s:t:
XK
m¼1

ai
m ¼ 1; ai

m � 0 ;m ¼ 1; . . . ;K;
ð9Þ

where Xi is the matrix whose columns are the nearest
neighbors in VK

i xq
� �

[19]. Once the optimal coefficient
vector a ið Þ* is found, xq � Xia ið Þ*

�� �� determines the
distance from xq to the local convex hull of the class i.
This is repeated for each class and the query is assigned to
the class whose convex hull distance is the closest. In case of
affinely independent samples (i.e., corresponding difference
vectors are independent, so the convex hull is a simplex), a
simple intuitive method based on successive affine projections
can also be applied to compute the convex distance:
repeatedly compute the affine projection weights using
Eq. 4, compute α(i) from β(i) and discard the basis point
with the most negative ai

m until all weights are positive.

2.3 Kernelization Process

Before introducing the kernelization of the HKNN algo-
rithm, we need the following definitions. The local scatter
matrix SKi of the nearest neighbors belonging to the i-th
class is defined as:

SKi ¼
XK
m¼1

xim � mi

� �
xim � mi

� �T
; i ¼ 1; . . . ;C: ð10Þ

HKNN algorithm uses projections onto the null spaces
of these matrices to classify the query sample. Similarly, the
local total scatter matrix SKT of all nearest neighbors in the
vicinity of the query sample is defined as:

SKT ¼
XC
i¼1

XK
m¼1

xim � m
� �

xim � m
� �T

; ð11Þ

where μ is the mean of all nearest neighbors.
The kernel trick can be used to map the data into a

higher-dimensional space as in the Kernel Principal
Component Analysis (Kernel PCA) [20] approach, but the
HKNN algorithm uses the null spaces of the local
covariance matrices not range spaces. Therefore, we need
to modify HKNN to work in terms of dot products of the
mapped samples in =.

First it should be noted that—so long as we are only
interested in differences of distances to various classes—it
suffices to work within the span of the local total scatter

matrix. The orthogonal space—the null space of the local
total scatter—is a common null subspace of each of the
individual-class local scatters, so the projection along this
subspace is the same for all classes: only projections within
the span of the local total scatter differ among classes [21].
The total squared distance from a query to a class is the
sum of the squared distance to the span of the local total
scatter (a constant for all classes) and of the squared
distance to the span of the local class scatter within the
range of total scatter subspace as illustrated in Fig. 2.
Hence, we first project the query onto the range of the local
total scatter matrix SKT using PCA, and then compute
distances from the projection to each manifold in the
projected space. This translates into using the projection
matrices P ið Þ

int, i ¼ 1; . . . ;C, of the intersections of the null
space of the local scatter matrices N SKi

� �
with the range of

the total scatter matrix R SKT
� �

, to compute distances. If we
let P represent the projection matrix onto R SKT

� �
, then the

projection matrix P ið Þ
int of the intersection N SKi

� � \ R SKT
� �

for each class can be found as:

P ið Þ
int ¼ P ið Þ

NSP ¼ PP ið Þ
NS ; i ¼ 1; . . . ;C; ð12Þ

since the projection matrices of N SKi
� �

and R SKT
� �

commute as shown in Theorem 1 given in the Appendix.
Notice that, in general, the projection matrix of any
intersection cannot be obtained using Eq. 12 if the
projection matrices of the associated subspaces do not
commute [22].

Using intersection subspaces does not change the
assignment of a query sample. In other words, the decision
boundaries around the query sample xq obtained by P ið Þ

int and
P ið Þ
NS, i ¼ 1; . . . ;C, yield same label for xq. This is also

formally proved in Theorem 2 given in the Appendix.

Figure 2 The modified HKNN approach employs the distances
between the query sample and each manifold in the PCA projected
space. These computed distances give rise to same assignment for the
query sample as in the original HKNN method.
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Notice that, it may not be possible to compute the distances
directly between the query sample and the constructed
linear manifolds in the nonlinearly mapped space since the
dimensionality can be infinite. However, since we are only
interested in assignment of the query to the nearest
manifold, the same goal can be accomplished using the
relative distances in the lower-dimensional PCA projected
space as illustrated in Fig. 2.

2.4 Nonlinear HKNN (NHKNN) Method

The above procedure is convenient because it allows one to
construct the projection onto the total span using dot
products of samples and thus it can be used to extend the
HKNN method to the nonlinear case. Let Φ ¼ Φ 1ð Þ; Φ 2ð Þ;

�
. . . ;Φ Cð Þ� represent the matrix whose columns are the
mapped nearest neighbors in the implicit high-dimensional
feature space, =, where Φ ið Þ ¼ f xi1

� �
; f xi2
� �

; . . . ; f xiK
� �� �

is
the matrix whose columns are the nearest neighbors in
VK
i xq
� �

. Suppose M=CK is the total number of nearest
neighbors around the query sample. The local scatter matrix
S Φ
i of each class and the scatter matrix SΦ

T of the pooled
neighbors in = are given by:

S Φ
i ¼ PK

m¼1
f xim
� �� mΦ

i

� �
f xim
� �� mΦ

i

� �T

¼ Φ ið Þ � Φ ið Þ1K
� �

Φ ið Þ � Φ ið Þ1K
� �T

; i ¼ 1; . . . ;C;

ð13Þ

S Φ
T ¼ PC

i¼1

PK
m¼1

f xim
� �� mΦ

� �
f xim
� �� mΦ

� �T

¼ Φ� Φ1Mð Þ Φ� Φ1Mð ÞT ;
ð14Þ

where mΦ
i is the mean of mapped nearest neighbors in

VK
i xq
� �

, mΦ is the mean of all mapped nearest neighbors in
the vicinity of the query sample. Here 1K 2 <K�K is a
matrix whose elements are all 1/K and 1M 2 <M�M is a
matrix with entries 1/M. The kernel matrix of the mapped
data is given as G ¼ ΦT Φ ¼ Gijð Þ i ¼ 1; . . . ;C

j ¼ 1; . . . ;C

, where the

submatrices Gij 2 <K�K are defined as:

Gij ¼ kijmn
� �

m ¼ 1; . . . ;K

n ¼ 1; . . . ;K

¼< f xim
� �

; f xjn
� �

>

¼ k xim; x
j
n

� �
m ¼ 1; . . . ;K

n ¼ 1; . . . ;K
:

ð15Þ

In the above equation k(.,.) represents the kernel
function, and one can easily create different decision

boundaries around the query sample by simply using
various distance metrics in the kernel function evaluations.

Our aim is to find the basis vectors for the intersection
subspaces N S Φ

i

� � \ R SΦ
T

� �
, i ¼ 1; . . . ;C, for each class.

Then these basis vectors are employed for computation of
the relative distances which are then used for labeling xq.
To find the basis vectors, we follow the previously
mentioned steps; we first transform all nearest neighbors
onto R S Φ

T

� �
using Kernel PCA, then find the null spaces of

class scatters in the transformed space.
The algorithm for NHKNNmethod can thus be summarized

as follows:

Step 1: For each class, find the K-nearest neighbors to the
query xq using the selected distance metric.

Step 2: Transform all nearest neighbors onto R SΦ
T

� �
using

Kernel PCA. Let eG be the kernel matrix of the
centered mapped samples [20]. If we apply eigen-
decomposition to eG, we obtain:

eG ¼ G� 1MG� G1M þ 1MG1M

¼ UΛUT 2 <M�M ; ð16Þ

where Λ 2 <r�r is the diagonal matrix of nonzero
eigenvalues (r � M � 1) and U is the matrix of
normalized eigenvectors associated with Λ. The
orthogonal matrix that projects centered neighbors
onto R S Φ

T

� �
is Λ�1=2UT Φ� Φ1Mð ÞT .

Step 3: Compute the local scatter matrix of each class in
the transformed space. The new scatter matrixeSΦ
i 2 <r�r for each class in the reduced space

becomes:

eS Φ
i ¼ Φ� Φ1Mð ÞUΛ�1=2

	 
T eS Φ
i Φ� Φ1Mð ÞUΛ�1=2

¼ Λ�1=2UT eG ið ÞeG ið ÞTUΛ�1=2 i ¼ 1; :::;C:

ð17Þ
Here, the matrix eG ið Þ 2 <M�K is written as:

eG ið Þ ¼ G ið Þ � G ið Þ1K � 1MG ið Þ þ 1MG ið Þ1K

¼ G ið Þ � 1MG ið Þ� �
I � 1Kð Þ;

ð18Þ
where the matrix G ið Þ 2 <M�K is given by G ið Þ ¼
ΦT Φ ið Þ ¼ G ið Þj� �

j ¼ 1;:::;C, and each submatrix
G ið Þj 2 <K�K is defined as:

G ið Þj ¼ k ið Þj
mn

� �
m ¼ 1; ::;K
n ¼ 1; . . . ;K

¼< f xjm
� �

; f xin
� �

>

¼ k xjm; x
i
n

� �
m ¼ 1; . . . ;K
n ¼ 1; . . . ;K

:

ð19Þ
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Step 4: For each class, find an orthonormal basis for the
null space of eS Φ

i . Let Q(i) be a matrix whose
columns are the computed basis vectors such that:

Q ið ÞTeS Φ
i Q

ið Þ ¼ 0; i ¼ 1; :::;C ð20Þ

Step 5: The final matrix of basis vectors W(i), whose
columns span the intersection subspace of the i-th
class, is:

W ið Þ ¼ Φ� Φ1Mð ÞUΛ�1=2Q ið Þ;
i ¼ 1; . . . ;C:

ð21Þ

The number of basis vectors spanning the intersection
subspaces is determined by the dimensionality of N eS Φ

i

	 

for each class. After performing the projection, all samples
in VK

i ðxqÞ give rise to the local common vector of that class,
given as:

Ω ið Þ
com ¼ W ið ÞTf xim

� �
¼ Q ið ÞTΛ�1=2UTelim; i ¼ 1; :::;C; m ¼ 1; :::;K;

ð22Þ
where elim ¼ lim � 1Mlim

� � 2 <M and lim 2 <M is a vector
with entries k xjn; x

i
m

� �
j ¼ 1; . . . ;C
n ¼ 1; . . . ;K

. Note that the common

vector given in Eq. 22 is independent of the sample index
m, and hence one can choose any sample from VK

i xq
� �

to
obtain the corresponding local common vector. To recognize
a given query sample, we compute the projection of the
query sample by:

Ω ið Þ
query ¼ W ið ÞTf xq

� �
¼ Q ið ÞTΛ�1=2UTelq ; i ¼ 1; :::;C; ð23Þ

where elq ¼ lq � 1Mlq
� � 2 <M and lq 2 <M is a vector with

entries k xim; xq
� �

i ¼ 1; . . . ;C
m ¼ 1; . . . ;K

. Finally, we assign the query to

the class with the closest local common vector.
The linearly constructed manifolds in the nonlinearly

mapped higher-dimensional space correspond to nonlinear
manifolds with complex structures in the original sample
space. However, computing the distances between the
query sample and these nonlinear manifolds is still
straightforward in the sense described above, which makes
the proposed technique very attractive.

In a similar manner, the CKNN method can be
generalized to the nonlinear case by employing convex
hulls rather than affine hulls in the Kernel PCA transformed
space. The computations are as detailed in Section 2.2, but
with an initial projection onto the Kernel PCA space. We
call this method nonlinear CKNN (NCKNN) method.

3 The LDCV Method and its Nonlinear Counterpart

A variation of the HKNN method is obtained when the
local difference subspace of each class is constructed using
the combined linearly independent difference vectors of all
nearest neighbors. This approach assumes that all classes
have similar local variations since they are represented by
the same subspace around each query point. As a result,
linear decision boundaries are obtained around the query
points in contrast to the quadratic decision boundaries of
HKNN. This approach is similar to the method proposed in
[3] in the sense that a linear discriminant analysis is used to
deform the local metric based on linear manifolds. But, as
in HKNN, this approach uses the null space of the involved
covariance matrix, not the span. The method is also similar
to Kim and Kittler’s method [14], in which the global
nonlinear structure of each face class is approximated by
combining local linear manifolds. However, it should be
noticed that the method proposed in [14] has separate
training and test phases whereas our proposed scheme has
no separate training phase—it is entirely instance-based by
nature.

As the local difference subspace of each class is equal to
the range of the scatter matrix SKi of samples coming
from VK

i xq
� �

, the new combined difference subspace is
equal to the range of the combined within-class scatter

matrix SKW ¼ PC
i¼1

SKi of the nearest neighbors in the vicinity

of the query sample. As a consequence, the new indifference
subspace is the null space of the within-class scatter matrix
of selected neighbors. When these neighbors are projected
onto the null space of the within-class scatter matrix, they
give rise to unique common vectors representing the classes
as in HKNN method. So, the decision function for a given
query can be written as:

g xq
� � ¼ argmin

i¼1;...;C
PW
NS xq � mi

� ��� ��� �
; ð24Þ

where PW
NS is the orthogonal projection operator onto the null

space of the combined within-class scatter matrix. It should
be noticed that PW

NS is the projection matrix onto the
intersection of the null spaces of local class scatter matrices,
i.e., PW

NS ¼ P 1ð Þ
NS \ P 2ð Þ

NS \ . . . \ P Cð Þ
NS [13].

This approach has been applied to the face recognition
problem globally, where it is called the Discriminative
Common Vector method [13]. Thus, we call the new local
approach the Local Discriminative Common Vector
(LDCV) method. The LDCV method can be extended to
the nonlinear case using the kernel trick in the same way as
NHKNN. Details of the kernelization of the global DCV
method can be found in [21]. For the nonlinear LDCV
(NLDCV) approach, one simply needs to use nearest
neighbors instead of all available training data.
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4 Experiments

In order to assess the performance of the methods, we test
them on three data sets. We compare the proposed methods
to NN, ADAMENN, HKNN, CKNN, SVM, and its local
counterpart SVM-KNN. In all experiments, the one-
against-all procedure is used to extend the two-class SVM
to the multi-class classification. Cross-validation is used to
estimate the kernel parameters and the number of nearest
neighbors K unless a fixed validation set is not available.
We search the range of values between 2 and 20 for K in
the methods employing affine and convex hulls, and
between 10 and 100 for SVM-KNN except for the
Caltech101 database [23] where K is respectively set to
300 and 200 for the linear and nonlinear kernel functions.

4.1 Experiments on the United States Postal Service
(USPS) Database

The USPS [24] database contains 9,298 16×16 gray-scale
images of handwritten digits where 7,291 images are
allocated for training+validation and the remaining 2007
for testing. Some samples are shown in Fig. 3. Since the
training, validation, and test sets are fixed, the design
parameters are set by using allocated validation set. After
fixing parameters, the validation set is added to the training
set, and the classification accuracies are assessed on the
allocated test set.

Tangent distance has been shown to work well for the
classification of hand-written digits [1, 25]. It improves the
classification rate by compensating for small spatial affine
transformations and changes in the thickness of the pen
stroke. We use both the two-sided tangent distance and the
Euclidean distance in our experiments as in [6]. We
compute the tangent distances using C code downloaded
from [26]. To incorporate tangent distances into the
nonlinear approaches, we use a generalized Gaussian kernel
k x; yð Þ ¼ exp �TD x; yð Þ=qð Þ where TD(x, y) denotes the
two-sided tangent distance between two image vectors x
and y. This kernel function does not satisfy the Mercer
conditions, thus the kernel matrix is not necessarily positive
semi-definite. There are several ways to handle this
situation [27]—here we compute the most negative eigen-

value and add its absolute value to the diagonal of the
kernel matrix to make the kernel matrix positive semi-
definite. The resulting classification rates are given in
Table 1.

The best recognition rate of 97.56% is achieved by our
NHKNN method using the tangent distances. Note that this
is better than the human performance of 97.50% reported in
[1]. Among the methods using Euclidean distances, CKNN
gives the best results. ADAMENN also works well yielding
97.36% classification accuracy. Note that the classification
rate of HKNN is different from the one reported in [4]. It is
because we use direct distances between the query samples
and the linear manifolds whereas [4] used a weight decay
penalized solution for computing distances. All nonlinear
approaches based on tangent distances show an improvement
over their classical counterparts employing the Euclidean
distances, which justifies the need for task specific distance
metrics.

4.2 Experiments on the Image Segmentation Database

The UCI Image Segmentation Database [28] consists of
samples drawn randomly from a database of seven outdoor
images. The images are hand segmented to create a
classification for every pixel. Each sample has a 3×3
region and 19 attributes. There are seven classes each
having 330 samples. In our experiments, the attributes are
normalized to lie in the interval [−1,1] and tenfold cross
validation procedure is used to assess the generalization
performance of the methods. We test both linear and
nonlinear SVM classifiers. We use Gaussian kernels for
all nonlinear approaches. The recognition rates and standard
deviations are given in Table 2.

The best recognition rate is obtained by CKNN.
Although NCKNN does not provide any improvement overFigure 3 Some samples from the USPS database.

Table 1 Classification rates of methods on the USPS database.

Methods Classification
rates (%)

NN 95.02
ADAMENN 97.36
HKNN, K=10 95.87
CKNN, K=20 96.02
LDCV, K=5 94.81
Linear SVM-KNN, K=10 95.97
Linear SVM 93.68
NN (TD) 96.97
Nonlinear SVM NA
NHKNN, K=15, q=4e+5 97.56
NCKNN, K=15, q=4e+5 97.46
NLDCV, K=7, q=4e+5 97.07
SVM-KNN (TD), K=8, (Zhang et al. [6]) 97.41
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its linear counterpart, both nonlinear manifold based
classifiers, NHKNN and NLDCV, outperform their linear
counterparts. As discussed in Section 2, to apply HKNN
method, the dimensionality of the sample space must be
larger than the number of nearest neighbors (K) while for
LDCV it must be larger than the number of total nearest
neighbors (CK). Here, the dimensionality of the sample
space is 19 and the number of classes is C=7. Therefore,
we cannot use more than two neighbors for LDCV and 19
neighbors for HKNN. These methods typically perform
best when the dimensionality is large compared to the
number of data samples, i.e., d >> K [13, 21]. So it is no
surprise that LDCV performs worse than NN. On the other
hand, this limitation does not apply to the nonlinear
approaches since the prototype samples are mapped into a
higher-dimensional feature space allowing the use of more
nearest neighbors, which improves the recognition rates.

When the dimensionality of the sample space and the
number of nearest neighbors are comparable, the affine or
convex hulls of classes may overlap. If the query sample
lies in these overlapping regions, the distance from the
query to the corresponding classes is zero and the query
cannot be labeled properly. Again, this problem is reduced
in the proposed nonlinear approaches because the nearest
neighbors are mapped into a higher-dimensional space. In
particular, if the kernel ensures the strict positive definite-
ness of the kernel matrix, there is no overlap among the
affine or convex hulls [21].

4.3 Experiments on the Caltech101 Database

The Caltech101 database [23] includes images of objects
belonging to 101 visual categories. There are typically 40–
800 images per category. The size of each image is roughly
300×200 pixels. Each class includes highly variable object
poses under different lighting conditions and large intra-

class variations. For our experiments we chose 40 classes
from the database. The selected categories are shown in
Fig. 4.

We represent the image samples using the “bag of
features” representation. Introduced by Csurka et al. [29],
such representations have been widely applied for both
object classification and localization. In our approach,
salient image patches are chosen at different positions and
scales using a multi-scale Harris Laplace detector. Then, the
chosen patches are described by using the scale invariant
feature transform (SIFT) descriptors [30]. Following this
process, all descriptors extracted from images are clustered
by k-means clustering method and cluster means are
considered as visual words forming the visual vocabulary.
The size of the visual vocabulary is set to 2,000. To build
image representation, each extracted descriptor is compared
to the visual words and associated to the closest word.
Based on these assignments, we build histograms, which
are then used for classification of images.

In nonlinear approaches we use the generalized Gaussian
kernel k x; yð Þ ¼ exp �CSD x; yð Þ=qð Þ based on chi-square
(χ2) distances between histograms where the χ2 distance
between two histograms I1 ¼ u1; . . . ; udð Þ and I2 ¼ v1; . . . ; vdð Þ
is CSD I1; I2ð Þ ¼ 1

2

Pd
m¼1

um � vmð Þ2
.

um þ vmð Þ
h i

. This func-

tion satisfies the Mercer’s conditions [31], so we do not need
to perturb the kernel matrix. The nearest neighbors around the
query points are also found using χ2 distance for all nonlinear
local approaches.

To assess the recognition accuracy of the methods, we
used the leave-one-out strategy since some object classes
have few samples. The recognition rates are given in
Table 3. Among all tested methods, the best recognition
accuracy was achieved by global SVM classifiers. ADA-
MENN yielded the worst classification accuracy. Linear
SVM-KNN method gave rise to inferior recognition accura-
cies compared to the linear manifold based approaches. All
nonlinear local approaches outperformed their linear counter-
parts again showing the advantage of χ2 distance, but the
local approaches were not as good as the global SVM
classifiers. It should be noted that there are around 50
samples with large intra-class variations for most of the
selected categories and the input dimensionality is high
(2,000). Thus the local neighborhoods are mostly empty.
Consequently, local approaches yield poor recognition
accuracies for small K, and the SVM classifier (which is
equal to SVM-KNN when K is equal to the total number of
samples in the training set) gave rise to the best recognition
accuracies. ADAMENN’s poor generalization performance
can also be explained by the insufficient training samples.
ADAMENN uses local posterior probability estimates to
weigh each feature axis. Posterior probability estimates are
not reliable in this case since the dimensionality is too high

Table 2 Recognition rates of methods on the image segmentation
database.

Methods Recognition
rates (%)

Standard
deviations (σ)

NN 96.36 0.92
ADAMENN 95.85 0.87
HKNN, K=2 96.88 0.81
CKNN, K=15 97.31 1.02
LDCV, K=2 95.67 0.98
Linear SVM-KNN, K=75 96.49 0.95
Linear SVM 95.50 1.18
Nonlinear SVM, q=0.75 97.01 1.03
NHKNN, K=15, q=0.15 97.23 1.17
NCKNN, K=15, q=0.20 97.18 1.01
NLDCV, K=7, q=0.25 96.71 1.15
SVM-KNN, K=75, q=0.5 97.10 1.15
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and there are limited samples per class, which in turn
degrades the classification performance.

4.4 Discussion

HKNN, CKNN, and LDCV methods differ from the local
SVM-KNN in the way that their decision boundaries are
constructed. HKNN locally fits a linear (affine) manifold to
each class and uses quadratic distances to these manifolds.
CKNN uses quadratic distances to the convex hulls of the
training points in each class, and SVM-KNN learns a single
linear separator that maximizes the gap between the classes.
The decision boundaries of HKNN are quadratic while
those of CKNN are piecewise linear and quadratic and
contain the SVM-KNN boundary as some piecewise facet.
In all linear and nonlinear manifold based approaches, the
decision boundaries are constructed with respect to the
query samples whereas they are built with completely
ignoring query samples in SVM-KNN. This may cause
unreliable assignments sometimes and the poor recognition
rate of linear SVM-KNN on the Caltech database may be
due to this phenomenon.

A closer look at the relation between recognition rates
and ratio of the number of samples to the dimensionality of
original sample space reveals interesting results and
provides insights concerning suitable environments for the
application of discussed local approaches. The assumption
behind the local approaches is that class samples lie in
some lower-dimensional smooth nonlinear manifold em-
bedded in the original sample space, and this manifold can
be approximated by locally linear structures such as affine

or convex hulls. However this requires the manifold to be
well sampled for modeling local structures correctly. As
reported in [32], manifolds can be considered as well
sampled if each sample in a class has on the order of 2l
neighbors where l is the dimensionality of the underlying
manifold of the class. The local approaches yielded good
recognition rates for both the USPS and Image Segmenta-
tion data sets. Examining the ratio of the number of samples
to the dimensionality of the original sample space shows
that the above assumption is reasonable. On the other hand
the local approaches are outperformed by the nonlinear
SVMs for object categorization problem. Note that for most
of the classes there are around 50 images with large intra-

Figure 4 The selected classes from the Caltech101 database.

Table 3 Recognition rates of methods on the Caltech101 database.

Methods Recognition rates (%)

NN 31.90
ADAMENN 24.21
HKNN, K=20 66.78
CKNN, K=20 67.08
LDCV, K=15 57.28
Linear SVM-KNN, K=300 52.63
Linear SVM 70.23
NN (CSD) 56.95
Nonlinear SVM, q=1 70.23
NHKNN, K=20, q=0.20 69.05
NCKNN, K=20, q=0.20 68.06
NLDCV, K=15, q=0.25 67.07
SVM-KNN (CSD), K=200, q=1 67.69
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class variance per class in the Caltech database, and this
indicates that the class specific manifolds are not well
sampled. Therefore, one has to check whether the underlying
manifold is well sampled or not, before a possible
application of local classifiers. There are various techniques
to estimate the intrinsic dimensionality of manifolds [33–35],
and these techniques could perhaps be used to test whether
the local approaches would be suitable for a given
classification task. In the light of our experimental study, it
can be inferred that the proposed local approaches are good
choices for recognizing hand-written digits.

All of the local approaches discussed in this paper share
the advantages and disadvantages of prototype based
classifiers: no prior training is required, which ideal for
fast adaptation, multi-class problems are handled naturally.
However, the classification is slow since a nearest neighbor
search must run over the whole training set. For large
training points, the computations required for finding
distances to local affine/convex hulls are typically negligi-
ble compared to the cost of finding nearest neighbors. So
the efficiency of the proposed methods depends on the
training set size. In [4], the authors use a smaller but
representative subset of the training data to speed up the
HKNN algorithm. In particular, they employed support
vectors obtained using an SVM classifier with a Gaussian
kernel, and reported little loss of accuracy. Another idea for
improving the efficiency is to create the local decision
boundaries off-line during training. This scheme would
compute the distance from each training sample to the
affine or convex hulls of other rival classes. As we showed
in the paper, computing the distances is straightforward by
employing subspace concepts. Then, we choose local
decision boundaries that maximize the average distance,
thus combining local information with maximum margin
concepts. We are currently working on this approach.

5 Conclusion

In this paper we first showed that the HKNN classifier can
be formulated using subspaces. Then, based on the
subspace formulation, the HKNN method has been extend-
ed to the nonlinear case using the kernel trick. However, the
nonlinearization of the method is not trivial. The HKNN
method needs to be modified before the nonlinearization. In
addition, we introduced a variant of HKNN method, LDCV,
which is better suited for classification problems with
classes having similar variations. The LDCV method has
also been extended to the nonlinear case using the same
nonlinearization process. We tested the proposed nonlinear
methods on three data sets. Experimental results demon-
strate that the nonlinearization of the discussed local
manifold based classifiers introduces improvements over

their linear counterparts. Thus the proposed methods can
find broad applications in classification areas where the
Euclidean distances are not compatible.

Appendix

Theorem 1: Let P and P ið Þ
NS be the projection matrices of the

subspaces R SKT
� �

and N SKi
� �

, i ¼ 1; . . . ;C,

respectively. Then P and P ið Þ
NS commute, i.e.:

P ið Þ
NSP ¼ PP ið Þ

NS; i ¼ 1; :::;C:

Proof of the theorem is omitted since it can be derived as
in the proof of Theorem 1 in [21].

Theorem 2: Assume that there are C classes in the training

set. For a query xq P ið Þ
NS xq � mi

� ���� ��� �
P jð Þ
NS xq � mj

	 
��� ��� implies that P ið Þ
int xq � mi

� ���� ���
� P jð Þ

int xq � mj

	 
��� ��� for i; j ¼ 1; . . . ;C, and
i 6¼ j.

Proof: We first recall several facts from [13] (see Lemma
1 of [13]). For each i ¼ 1; . . . ;C; it holds N SKT

� � � N SKi
� �

,
where N(A) denotes the null space of a matrix A.
Consequently, N SKT

� �
and R SKi

� �
are orthogonal, where

R SKi
� �

is the range of SKi . This implies the identity
I � Pð Þ I � P ið Þ

NS

	 

¼ 0 or I � Pð Þ ¼ I � Pð ÞP ið Þ

NS.
Thus, we can write:

P ið Þ
NS xq � mi

� ���� ��� ¼ PP ið Þ
NS xq � mi

� �þ I � Pð ÞP ið Þ
NS xq � mi

� ���� ���
¼ PP ið Þ

NS xq � mi

� ���� ���þ I � Pð ÞP ið Þ
NS xq � mi

� ���� ���
¼ PP ið Þ

NS xq � mi

� ���� ���þ I � Pð Þ xq � mi

� ��� ��:
ð25Þ

We now note that the vector I � Pð Þ xq � mi

� �
is the

same for each class (i.e., it does not depend on the class
index i) since we have shown in [21] that (I−P)μi is a so-
called common vector for the class consisting of all samples
in V ¼ xim

� �K;C

m¼1;i¼1
and that in fact (I−P)x is the same

vector for all x in the affine hull of V.
Thus, we have shown that:

P ið Þ
NS xq � mi

� ���� ��� ¼ PP ið Þ
NS xq � mi

� ���� ���þ vk k; ð26Þ

for some vector v independent of the class index i. The
assertion of Theorem 2 now immediately follows from this
fact. □
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