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Abstract

This paper introduces a geometrically inspired large-margin classifier that can be

a better alternative to the Support Vector Machines (SVMs) for the classification

problems with limited number of training samples. In contrast to the SVM clas-

sifier, we approximate classes with affine hulls of their class samples rather than

convex hulls. For any pair of classes approximated with affine hulls, we introduce

two solutions to find the best separating hyperplane between them. In the first

proposed formulation, we compute the closest points on the affine hulls of classes

and connect these two points with a line segment. The optimal separating hyper-

plane between the two classes is chosen to be the hyperplane that is orthogonal to

the line segment and bisects the line. The second formulation is derived by mod-

ifying the ν-SVM formulation. Both formulations are extended to the nonlinear

case by using the kernel trick. Based on our findings, we also develop a geometric
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interpretation of the Least Squares SVM classifier and show that it is a special

case of the proposed method. Multi-class classification problems are dealt with

constructing and combining several binary classifiers as in SVM. The experiments

on several databases show that the proposed methods work as good as the SVM

classifier if not any better.

Keywords: Affine hull, classification, convex hull, kernel methods, large margin

classifier, quadratic programming, support vector machines.

1. Introduction1

The Support Vector Machine (SVM) classifier is a successful binary classifica-2

tion method that simultaneously minimizes the empirical classification error and3

maximizes the geometric margin, which is defined as the distance between the4

separating hyperplane and closest samples from the classes [2, 8]. To do so, SVM5

first approximates each class with a convex hull and finds the closest points in6

these convex hulls [1]. Then, these two points are connected with a line segment.7

The hyperplane, orthogonal to the line segment that bisects the line, is chosen to8

be the separating hyperplane. From the geometrical point of view, in the sepa-9

rable case, the two closest points on the convex hulls determine the separating10

hyperplane, and the SVM margin is merely equivalent to the minimum distance11

between the convex hulls that represent classes. However, convex hull approxima-12

tions tend to be unrealistically tight in high-dimensional spaces since the classes13

typically extend beyond the convex hulls of their training samples. For example,14

a convex hull constructed by randomly sampled points from a high-dimensional15

hypersphere can include only a negligible fraction of the volume of the sphere16

even if the chosen samples are well spaced and close to the surface of the sphere17

2



[3]. This situation may also be observed when the low-dimensional data samples18

are mapped to a higher-dimensional feature space through kernel mapping during19

estimation of the nonlinear decision boundaries between classes.20

As opposed to the convex hulls, affine hulls (i.e., spanning linear subspaces21

that have been shifted to pass through the centroids of the classes) give rather22

loose approximations to the class regions, because they do not constrain the po-23

sitions of the training points within the affine subspaces. Therefore, they may24

be better alternatives to convex hulls for some pattern classification problems es-25

pecially when the data samples lie in high-dimensional spaces. In the context26

of classification, affine hulls are first used as global classifiers of isolated word27

and hand-written digits giving good classification performance [11, 14]. In these28

methods, each class is approximated with an affine hull constructed from its train-29

ing samples, and the label of a test sample is determined based on the distance to30

the nearest affine hull. Vincent and Bengio [26] used affine/convex hulls in a local31

sense by constructing them using k-nearest neighbors of a test sample for classi-32

fication problems with complex nonlinear decision boundaries. They report that33

affine hulls usually give higher classification accuracy than convex hulls and that34

using both models for classification significantly improves the k-nearest neighbor35

classification performance [26]. We extended local linear affine/convex hull clas-36

sifiers to the nonlinear case in [4]. More recently, we compared different convex37

class models for high-dimensional classification problems, then found that affine38

hull approximations are typically more accurate than convex hull approximations39

[3]. These results are not surprising due to the fact that high-dimensional ap-40

proximations tend to be simple: For a fixed sample size, the amount of geometric41

details that can be resolved usually decreases rapidly as the dimensionality in-42
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creases. Therefore, affine hulls tend to be better models for high-dimensional data43

approximations.44

Besides the classification, approximations based on affine hulls have also been45

used for dimensionality reduction. Mixtures of Principal Component Analyzers46

[12] use local affine hulls to estimate nonlinear data manifolds. Similarly, Lo-47

cally Linear Embedding [18] approximates the nonlinear structure of the high-48

dimensional data by exploiting local affine hull reconstructions. Verbeek [25]49

combined several locally valid affine hulls to obtain a global nonlinear map-50

ping between the high-dimensional sample space and low-dimensional manifold.51

Many applications of affine hulls in the context of classification and dimension-52

ality reduction can be attributed in part to their simplicity and computational ef-53

ficiency. Finding distances from test samples to affine hulls requires only simple54

linear algebra. On the other hand, computing distances to nonlinear complex mod-55

els can be problematic. Even if the models are restricted to being convex hulls,56

distance computations require the solution of a quadratic optimization problem.57

The classification methods using affine hulls or other convex sets described58

above are “nearest convex model” classifiers and they are instance-based in na-59

ture. In other words, decision boundaries are not explicitly created during a train-60

ing phase. Instead, the decision boundaries remain implicit, and new examples61

are classified online based on the distances to the nearest convex class models.62

This paper investigates an alternative “margin between convex model” strategy63

that is based on explicitly building maximum margin separators between pairs64

of affine hulls. As a first example of the power of this approach, note that the65

SVM itself is the maximum margin separator between the convex hulls of the66

training samples of the two classes. One motivation for replacing nearest-convex-67
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model approaches with margin-based ones is that for all of the above cited nearest-68

convex-model classifiers, the decision boundaries (surfaces equidistant from the69

two convex models) are generically at least quadratic or piecewise quadratic in70

complexity. For example, for affine hulls they are generically hyperboloids. Such71

decision boundaries are more flexible than linear ones, but in high dimensions72

when the training data is scarce this may lead to overfitting, thus damaging gener-73

alization to unseen examples. Linear margin based approaches have fewer degrees74

of freedom, so they are typically less sensitive to the precise arrangement of the75

training samples. For example, for an SVM classifier, motions of the SVM support76

vectors parallel to the SVM decision surface do not alter the margin and hence do77

not invalidate the classifier, whereas they do typically change piece-wise quadratic78

decision surface of the equivalent nearest convex hull classifier. Another motiva-79

tion for studying margin-between-affine hulls approach is their potential flexibility80

and compactness. In linear case, affine models allow each class to be fitted indi-81

vidually and represented compactly, following which the linear separator between82

any two classes can be found quickly by simple linear algebra.83

In our preliminary work [5] we showed how to construct maximum margin84

classifier that separates linear affine hulls. Another study addressing the same85

problem was independently given in [29]. Here we extend the method such that86

it can be used when the class samples lie on nonlinear manifolds that cannot be87

modeled with linear affine hulls. To this end, we map the samples in each class88

into a much higher-dimensional feature space through kernel mapping and then89

construct the linear affine hulls in the mapped space. Since the problem is cast90

in a much higher-dimensional space, it is more likely that class regions can now91

be approximated with linear affine hulls. Although the constructed linear affine92
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hulls in the mapped space corresponds to nonlinear manifolds in the input space,93

finding the maximum separating hyperplane between these nonlinear manifolds is94

still straightforward because of their linear nature in the mapped space. In case95

of outliers, to allow soft margin solutions, we first reduce affine hulls in order96

to alleviate the effects of those outliers and then search for the best separating97

hyperplane between these reduced robust models.98

The rest of the paper is organized as follows: In Section II, we introduce99

the proposed method. Section III describes the experimental results. Concluding100

remarks are given in Section IV.101

2. Method102

Consider a binary classification problem with the training data given in the103

form {xi, yi}, i = 1, ..., n, yi ∈ {−1, +1}, xi ∈ IRd. To separate classes, SVM104

classifier finds a separating hyperplane that maximizes the margin, which is de-105

fined as the distance between the hyperplane and closest samples from the classes.106

To do so, SVM first approximates each class with a convex hull [1]. A convex hull107

consists of all points that can be written as a convex combination of the points in108

the original set, and a convex combination of points is a linear combination of data109

points where all coefficients are nonnegative and sum up to 1. More formally, the110

convex hull of samples {xi}i=1,...,n can be written as111

Hconvex =

{

x =
n

∑

i=1

αixi|
n

∑

i=1

αi = 1, αi ≥ 0

}

. (1)

Convex hulls of two classes are illustrated in Fig. 1. Following this approximation,112

SVM finds the closest points in these convex hulls. Then, these two points are113
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connected with a line segment. The plane, orthogonal to the line segment that114

bisects the line, is selected to be the separating hyperplane as shown in Fig. 1.

Figure 1: Two closest points on the convex hulls determine the separating hyperplane.

115

Figure 2: Comparison of convex and affine hulls of samples.

In contrast to the SVM classifier, the proposed method approximates each116

class (positive and negative classes) with an affine hull of its training samples.117

An affine hull of a class is the smallest affine subspace containing them. This118

is an unbounded, and hence typically rather loose model for each class, thus119

affine hull modeling can be a better choice than convex hull modeling for high-120

dimensional data. Affine and convex hulls of four samples are illustrated in Fig. 2.121

The affine hull of samples {xi}i=1,...,n contains all points of the form
∑n

i=1
αixi122
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with
∑n

i=1
αi = 1. More formally affine hull of a class with samples {xi}i=1,...,n123

can be written as124

Haff =

{

x =
n

∑

i=1

αixi |

n
∑

i=1

αi = 1

}

. (2)

Our goal is to find the maximum margin linear separating hyperplane between125

affine hulls of classes. The points x which lie on the separating hyperplane satisfy126

〈w,x〉 + b = 0, where w is the normal of the separating hyperplane, |b|/||w||127

is the perpendicular distance from the hyperplane to the origin, and ||w|| is the128

Euclidean norm of w. For any separating hyperplane, all points xi in the posi-129

tive class satisfy 〈w,xi〉 + b > 0 and all points xi in the negative class satisfy130

〈w,xi〉 + b < 0 so that yi(〈w,xi〉 + b) > 0 for all training data points. Finding131

the best separating hyperplane between affine hulls can be solved by computing132

the closest points on them. The optimal separating hyperplane will be the one that133

bisects perpendicularly the line segment connecting the closest points as in SVM134

classifier. The offset (also called threshold), b, can be chosen as the distance from135

the origin to the point halfway between the closest points along the normal w.136

Once the best separating hyperplane is determined, a new sample x is classified137

based on the sign of the decision function, f(x) = 〈w,x〉 + b.138

Next, we will first show how to find the best separating hyperlane for linearly139

separable affine hulls and then extend the idea for inseparable case. After that, we140

explain kernelization process. This is followed by introducing a second equivalent141

formulation based on a variation of ν-SVM [20]. Lastly we show the relation142

between the proposed method and the Least Squares SVM (LS-SVM) [24, 23]143

and derive a geometric intuition for LS-SVM.144
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2.1. Linearly Separable Case145

Suppose that affine hulls belonging to the positive and negative classes are146

linearly separable. The affine hulls of two classes do not intersect, i.e., they are147

linearly separable, if the affine combinations of their samples satisfy the rule148

∑

i:yi=+1

αixi 6=
∑

j:yj=−1

αjxj for
∑

i:yi=+1

αi =
∑

j:yj=−1

αj = 1. (3)

It should be noted that linear separability of data points does not necessarily guar-149

antee the separability of corresponding affine hulls of classes. For linearly sepa-150

rable case, it is more convenient to write an affine hull as151

{x = Uv + µ |v ∈ IRl}, (4)

where µ = (1/n)
∑

i xi is the mean of the samples (or any other reference152

point in the hull) and U is an orthonormal basis for the directions spanned by153

the affine subspace. The vector v contains the reduced coordinates of the point154

within the subspace, expressed with respect to the basis U. Numerically, U can155

be found as the U-matrix of the ‘thin’ Singular Value Decomposition (SVD) of156

[x1 − µ, ...,xn − µ]. Here, ‘thin’ indicates that we take only the columns of U157

corresponding to “significantly non-zero” singular values λk; l is the number of158

such non-zero singular values. This subspace estimation process is essentially or-159

thogonal least squares fitting. Discarding near-zero singular values corresponds to160

discarding directions that appear to be predominantly “noise”. As an alternative,161

samples can be fitted with some other more robust subspace estimation processes162

such as L1 norm based subspace fitting procedures described in [10, 13]. But, we163

will consider only the least squares fitting (L2 norm) in this study.164

Now suppose that we have two affine hulls with point sets {U+ v+ +µ+} and

{U− v−+µ
−
}. (These can be estimated with either L2 or L1 fitting and they may
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have different numbers of dimensions l). A closest pair of points between the two

hulls can be found by solving

min
v+,v−

||(U+v+ + µ+) − (U−v− + µ
−
)||2. (5)

Defining U ≡
(

U+ −U−

)

and v ≡ ( v+

v−
), this can be written as the standard

least squares problem

min
v

||Uv − (µ
−
− µ+)||2. (6)

If we take the derivative of the objective function (6) with respect to v and equate165

it to zero, then we obtain166

U
⊤
Uv − U

⊤(µ
−
− µ+) = 0 (7)

Subsequently, we get the solution of the problem as v = (U⊤
U)−1

U
⊤(µ

−
−µ+).167

Taking the decision boundary f(x) = 〈w,x〉 + b,168

w =
1

2
(x+ − x−) =

1

2
(I − P)(µ+ − µ

−
) (8)

where P = U (U⊤
U)−1

U
⊤ is the orthogonal projection onto the joint span of the169

directions contained in the two subspaces, I − P is the corresponding projection170

onto the orthogonal complement of this span1, and x+ and x− denote the closest171

points on the positive and negative classes, respectively. Note that w lies along172

the line segment joining the two closest points and it is half the line segment’s173

size. The offset b of the separating hyperplane is given by174

b = −w
⊤(x+ + x−)/2. (9)

1If the two subspaces share common directions, U
⊤
U is not invertible and the solution for

(v+,v−) and (x+,x−) is non-unique, but the orthogonal complement remains well defined, giv-

ing a unique minimum norm separator w. Numerically all cases can be handled by finding Ũ, the

U matrix of the thin SVD of U, and taking P = Ũ
⊤
Ũ.
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2.2. Inseparable Case175

A problem arises if the affine hulls of classes intersect, i.e., affine hulls are not176

linearly separable. If the affine hulls of classes are close to being linearly separable177

and they overlap because of a few outliers, we can restrict the influence of outlying178

points by reducing affine hulls. Note that ignoring directions corresponding to the179

overly small singular values during affine hulls constructions reduces the effects180

of noise and outliers up to some degree. But, we will use a different approach181

here in order to cope with the outliers. To this end, we use the initial affine hull182

formulation (2) and introduce upper and lower bounds on coefficients αi to reduce183

affine hulls inspired by the idea that is introduced to reduce convex hulls in [1]. It184

should be noted that the reduced affine hulls are not uniformly scaled versions of185

the initial complete affine hulls. One may go further and choose different lower186

and uper bounds, or define a different interval for every sample in the training187

set if a-priori information is available. For instance, if the lower bound is set188

to zero, then the method will be equivalent to the SVM classifier. Finding the189

closest points on the reduced affine hulls can be written as a quadratic optimization190

problem191

min
α

||
∑

i:yi=+1

αixi −
∑

i:yi=−1

αixi||
2

s.t.
∑

i:yi=+1

αi = 1,
∑

i:yi=−1

αi = 1, −τ ≤ αi ≤ τ,
(10)

where τ is the user-chosen bound. This optimization problem (10) can be written192

in a more compact form as193

min
α

∑

ij

αiαjyiyj 〈xi,xj〉

s.t.
∑

i

αiyi = 0,
∑

i

αi = 2, −τ ≤ αi ≤ τ.

(11)
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This is a quadratic programming problem that can be solved using standard opti-194

mization techniques. Note that the Hessian matrix, G = [Gij] = yiyj 〈xi,xj〉, is195

a positive semi-definite matrix, thus the objective function is convex and a global196

minimum exists as in SVM classifier. Moreover, if the Hessian matrix is strictly197

positive definite, the solution is unique and it is guaranteed to be the global mini-198

mum.199

Since the coefficients are bounded between −τ and +τ , the solution is de-200

termined by more points and no extreme point or noisy point can excessively201

influence the solution for well-chosen τ . Once we compute the optimal values202

of coefficients αi, the normal and the offset of the separating hyperplane can be203

computed as in the linearly separable case204

w =
1

2
(

∑

i:yi=+1

αixi −
∑

i:yi=−1

αixi), (12)

205

b = −
1

2
w

⊤(
∑

i:yi=+1

αixi +
∑

i:yi=−1

αixi), (13)

We call this method Large Margin Classifier of Affine Hulls (LMC-AH) since206

it uses affine hulls to approximate class regions and finds the optimal separating207

hyperplane yielding the largest margin between the affine hulls.208

If the underlying geometry of the classes is highly complex and nonlinear, and209

approximating classes with linear affine hulls is not appropriate, we can map the210

data into a higher-dimensional space where the classes can be approximated with211

linear affine hulls. Note that the objective function of (11) is written in terms of212

the dot products of samples, which allows the use of the kernel trick. Thus, by213

using kernel trick, – i.e., replacing 〈xi,xj〉 with the kernel function k(xi,xj) =214

〈φ(xi), φ(xj)〉 where φ : IRd → ℑ is the mapping function from the input space215

to the mapped space ℑ – we can find the best seperating hyperplane parameters216
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in the mapped space. As a result, more complex nonlinear decision boundaries217

between classes can be approximated by using this trick.218

2.3. An Equivalent Formulation Based on Variation of ν-SVM Classifier219

The ν-SVM formulation has been proposed as an alternative to the classical220

SVM formulation [20]. A new parameter ρ′ is introduced in this formulation, and221

error penalty term C that appears in classical SVM formulation is removed. Here,222

we introduce an alternative formulation to find the best separating hyperplane be-223

tween affine hulls based on a variation of ν-SVM formulation. A major advantage224

of new formulation is that one can relate the parameter τ in (11) with the ex-225

pected error bounds and this may help us to find a more sophisticated procedure226

for choosing unknown parameters that appear in both formulations.227

The ν-SVM optimization is formulated as228

min
w

′,b′,ξ′,ρ′

1

2
||w′||2 − νρ′ +

1

n

∑

i

ξ′i

s.t. yi(〈w
′,xi〉 + b′) ≥ ρ′ − ξ′i, ξ′i ≥ 0, ρ′ ≥ 0,

(14)

where w
′ represents the normal of the separating hyperplane, b′ is the offset, ν229

is a user-chosen parameter between 0 and 1, and ξ′i, i = 1, ..., n, are the positive230

slack variables. In this formulation, for linearly separable case, there exist two231

parallel supporting hyperplanes positioned such that all points in the positive class232

satisfy 〈w′,x〉 + b′ ≥ ρ′ and all points in the negative class satisfy 〈w′,x〉 +233

b′ ≤ −ρ′ as shown in Fig. 3. Therefore, classes are separated by the margin234

2ρ′/||w′|| and it is shown that ν acts as an upper bound on the fraction of margin235

errors and a lower bound on the fraction of support vectors [20]. Moreover, the236

decision function produced by ν-SVM can also be produced by classical SVM for237

appropriate choice of error penalty term C.238
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Figure 3: Illustration of the supporting and the best separating hyperplanes in linearly separable

case for ν-SVM classifier.

The ν-SVM formulation can be interpreted as a maximal separation between239

the reduced convex hulls of classes [9]. Since we use affine hulls to model classes,240

we need to revise the optimization problem to accommodate this change. To this241

end, we first divide the objective function by ν2/2, the constraints by ν, and make242

the following substitutions as in [9]243

τ =
2

νn
, w =

w
′

ν
, b =

b′

ν
, ρ =

ρ′

ν
, ξi =

ξ′i
ν

(15)

These modifications yield the equivalent formulation2
244

min
w,b,ξ,ρ

||w||2 − 2ρ + τ
∑

i

ξi

s.t. yi(〈w,xi〉 + b) ≥ ρ − ξi, ξi ≥ 0,

(16)

with the new decision function f(x) ≡ f ′(x)/ν.245

2Crisp and Burges [9] showed that the constraint ρ′ ≥ 0 in (14) is redundant and hence it can

be removed.

14



Figure 4: Optimal separating hyperplane between affine hulls of two classes. Note that affine hulls

lie on the supporting hyperplanes.

Note that two affine hulls are linearly separable if they lie parallel to each other246

in the given input space since affine hulls extend to infinity in all directions. In this247

case, the supporting hyperplanes yielding the largest margin between affine hulls248

will entirely include them so that all affine combinations of samples belonging to249

the positive class satisfy
〈

w,xaff
+

〉

+ b = ρ and all affine combinations of samples250

belonging to the negative class satisfy
〈

w,xaff
−

〉

+ b = −ρ as illustrated in Fig.251

4. Fig. 4 illustrates affine hulls of two classes where the affine hull of the first252

class is a line and the affine hull of the second class is a plane. Note that affine253

hulls are linearly separable if they lie parallel to each other. Therefore, all samples254

of classes and their affine combinations lie on the supporting hyperplanes, which255

yield the largest margin between the affine hulls. In case of outliers, we must256

construct reduced compact affine hulls that will fit the data robustly. Therefore, we257
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should allow errors for outlier samples from all over the input space, not just the258

ones near the decision boundary as illustrated in Fig. 5. To do so, the inequality259

constraints in (16) is replaced with equality constraints yi(〈w,x〉+ b) = ρ− δiξi,260

where δi is a term which takes values +1 or -1 based on the location of outliers261

with respect to the supporting hyperplanes. This leads to the new optimization262

problem263

min
w,b,ξ,ρ

||w||2 − 2ρ + τ
∑

i

ξi

s.t. yi(〈w,xi〉 + b) = ρ − δiξi, ξi ≥ 0.

(17)

To derive the dual, we consider the Lagrangian264

L(w, b, ξ, ρ, α, β) = ||w||2−2ρ+τ
∑

i

ξi−
∑

i

αi [yi(〈w,xi〉 + b) − ρ + δiξi] −
∑

i

βiξi,

(18)

where βi ≥ 0. The Lagrangian L has to be maximized with respect to αi, βi and265

minimized with respect to w, b, ξ, and ρ. The optimality conditions yield266

∂L

∂w
= 0 → w =

1

2

∑

i

αiyixi,

∂L

∂b
= 0 →

∑

i

αiyi = 0,

∂L

∂ρ
= 0 →

∑

i

αi = 2,

∂L

∂ξi

= 0 → αi =
τ − βi

δi

→ −τ ≤ αi ≤ τ.

(19)

Thus, the dual of the optimization problem becomes267

min
α

1

4

∑

ij

αiαjyiyj 〈xi,xj〉

s.t.
∑

i

αiyi = 0,
∑

i

αi = 2, −τ ≤ αi ≤ τ.

(20)
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This optimization is equivalent to the one given in (11) - here 1/4 appears in268

the objective function, but rescaling objective function with a positive constant269

does not change the solution. Therefore, the new formulation based on modified270

ν-SVM is in fact equivalent to finding the best separating hyperplane between271

the reduced affine hulls that represent classes. We call this method ν-LMC-AH.272

Due to the Karush-Kuhn-Tucker (KKT) conditions, slack variables can occur only

Figure 5: To obtain better separating hyperplanes between affine hulls, we should allow errors for

outlier samples from all over the input space.

273

when αi = ±τ . To compute offset b, we use the primal constraints and take equal274

number of samples with coefficients αi 6= ±τ from positive and negative classes.275

Assume that there are l selected samples. By using KKT conditions, we know that276

ξi = 0 for the samples with αi 6= ±τ . Thus, the offset will be277

b = −
1

2l

l
∑

i=1

n
∑

j=1

αjyj 〈xj,xi〉. (21)
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This offset is not necessarily equivalent to the one given in (13). Therefore, using278

geometrically inspired formulation and ν-LMC-AH formulation create separating279

hyperplanes with the same normal, but the positions (perpendicular distances from280

the origin) of these hyperplanes may be different. It is not a-priori evident that281

which offset is the best and one can use other principled methods to determine the282

best b for a given problem, e.g., given w, b can be computed as value yielding the283

smallest classification error on a validation set. As in the previous case, extension284

to the nonlinear case can be done by using the kernel trick.285

2.4. Geometric Interpretation of Least Squares SVM Classifier286

Least Squares Support Vector Machines (LS-SVM) was initially proposed by287

Suykens and Vandewalle [24] for classification and nonlinear function estimation288

and then new variants of this method have been introduced [7, 21, 22]. The basic289

motivation was to simplify the classical SVM formulation without losing much290

generalization performance. To this end, inequality constraints in the SVM clas-291

sification formulation are heuristically replaced with equality constraints3, and292

square of the slack variables are used in the objective function. More formally the293

optimization problem is defined as294

min
w,b,ξ

1

2
||w||2 +

C

2

∑

i

ξ2

i

s.t. yi(〈w,xi〉 + b) = 1 − ξi,

(22)

where C is a user-chosen error penalty term as in classical SVM classifier. It is295

shown that the solution is obtained by solving a set of linear equations rather than296

3In fact, using equality constraints for nonlinear function estimation was introduced earlier in

[19].
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solving a quadratic programming problem [24]. Note that, in this formulation,297

for the linearly separable case, there exist two parallel supporting hyperplanes po-298

sitioned such that all points in the positive class satisfy 〈w,x〉 + b = 1 and all299

points in the negative class satisfy 〈w,x〉 + b = −1 where the margin between300

these hyperplanes is given by 2/||w||. As in ν-LMC-AH formulation, this cor-301

responds to approximating each class with an affine hull instead of a convex hull302

since all samples and their affine combinations are forced to lie on the supporting303

hyperplanes. In LS-SVM, L2 norm (squares) of the slack variables are used in304

the optimization, but using L1 norm of the slack variables in the objective func-305

tion may be more appropriate for some applications since it allows more robust306

fitting of data samples. If we use L1 norm of the slack variables, new optimization307

problem becomes308

min
w,b,ξ

1

2
||w||2 + C

∑

i

ξi

s.t. yi(〈w,xi〉 + b) = 1 − δiξi, ξi ≥ 0,

(23)

where δi is a term which takes values +1 or -1. The Lagrangian will be309

L(w, b, ξ, α, β) =
1

2
||w||2+C

∑

i

ξi−
∑

i

αi [yi(〈w,xi〉 + b) − 1 + δiξi] −
∑

i

βiξi,

(24)

under the constraint βi ≥ 0. The optimality conditions yield310

∂L

∂w
= 0 → w =

1

2

∑

i

αiyixi,

∂L

∂b
= 0 →

∑

i

αiyi = 0,

∂L

∂ξi

= 0 → αi =
C − βi

δi

→ −C ≤ αi ≤ C.

(25)

19



Thus, the dual of the optimization problem becomes311

min
α

1

2

∑

ij

αiαjyiyj 〈xi,xj〉 −
∑

i

αi

s.t.
∑

i

αiyi = 0, −C ≤ αi ≤ C.

(26)

Similar to the previous cases, this is a convex quadratic optimization problem312

with a global minimum. Due to the Karush-Kuhn-Tucker (KKT) conditions, slack313

variables can occur only when αi = ±C. To compute offset b, we use the primal314

constraints and take equal number of samples with coefficients αi 6= ±C from315

positive and negative classes as in ν-LMC-AH. Assume that there are l selected316

samples. By using KKT conditions, we know that ξi = 0 for the samples with317

αi 6= ±C. Thus, the offset will be318

b = −
1

2l

l
∑

i=1

n
∑

j=1

αjyj 〈xj,xi〉. (27)

A new sample is classified based on the sign of the decision function f(x) =319

〈w,x〉 + b. Nonlinearization can be done by replacing the dot products 〈xi,xj〉320

with the kernel function k(xi,xj) = 〈φ(xi), φ(xj)〉. We call this method as C-321

LMC-AH since it uses error penalty term C. It follows from Proposition 6 of [20]322

that for appropriate choices of C, the C-LMC-AH algorithm will yield identical323

results to LMC-AH and ν-LMC-AH classifiers. More precisely, if ν-LMC-AH324

classification leads to ρ ≥ 0, then C-LMC-AH method with C set a priori to325

1/ρ′n (or 1/ρνn), leads to the same decision function as ν-LMC-AH [6, 20].326

2.5. Extension to the Multi-Class Classification Problems327

To use the proposed methods in multi-class classification problems, we can use328

most of the strategies adopted for extending binary SVM classifiers to the multi-329

class cases. Here we will discuss the most popular two strategies: one-against-one330
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(OAO) and one-against-rest (OAR). For a c-class classification problem, the OAR331

strategy trains c binary classifiers, in which each classifier separates one class332

from the remaining c − 1 classes. All classifiers are needed to be trained on the333

entire training set, and the class label of a test sample is determined according to334

the highest output of the classifiers in the ensemble. On the other hand, the OAO335

strategy constructs all possible c(c − 1)/2 binary classifiers out of c classes. The336

decision of the ensemble is decided by max wins algorithm: Each OAO classifier337

casts one vote for its preferred class, and the final decision is the class with the338

most votes. In addition to these we can also use Directed Acyclic Graphs [17] or339

Binary Decision Trees [28] for multi-class classification.340

3. Experiments341

We tested4 the linear and kernelized versions of the proposed methods LMC-342

AH, ν-LMC-AH and C-LMC-AH (L1 norm based LS-SVM) on a number of343

data sets and compared them to the SVM classifier. For the linearly separable344

case, linear separator is determined by using affine subspace estimation formula-345

tion, and subspace dimensions are set by retaining enough leading eigenvectors346

to account for 95-98% of the total energy in the eigen-decomposition. For the347

inseparable and nonlinear cases, we used quadratic programming formulations.348

Both one-against-rest (OAR) and one-against-one (OAO) approaches are used for349

multi-class classification problems and we report the results of whichever yields350

the best.351

We first tested the linear LMC-AH method on multiple and single shot face352

4For software see http://www2.ogu.edu.tr/∼mlcv/softwares.html.

21



recognition problems to demonstrate that affine hull approximations are more ap-353

propriate than convex hull approximations when the dimensionality of the input354

space is high. To assess the generalization performances of kernelized versions of355

the methods, we tested them on seven low-dimensional databases chosen from the356

UCI repository.357

3.1. Experiments on the Honda/UCSD Database358

Honda/UCSD database [15] has been collected for video-based face recogni-359

tion and it consists of 59 video sequences belonging to 20 individuals. Each video360

consists of approximately 300-500 frames. It is a fixed database so that 20 of the361

videos are allocated for training and the remaining 39 for testing. Here, we con-362

sider face recognition based on multiple images. In this scenario, face recognition363

problem is defined as taking a set of face images from an unknown person and364

finding the most similar set among the database of labeled image sets. We used

Figure 6: Some detected face images from videos belonging to two subjects.

365

the cascade face detector of Viola and Jones [27] to detect faces in each video366

sequence and resized the detected face images to the gray images of size 40 × 40367
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Table 1: Classification Rates (%) on the Honda/UCSD Database.

Methods Clean Corrup. Training Corrupted Test Corrup. Training+Test

LMC-AH 97.44 97.44 92.31 87.18

SVM 94.87 92.31 92.31 82.05

followed by histogram equalization. Then, these images are used to construct im-368

age sets of individuals. Some of the detected face images are shown in Fig. 6.369

We used affine hulls and convex hulls to model image sets, and used the distances370

between these models as a similarity measure. In other words, computed margins371

between linear affine hulls and convex hulls are used to determine the label of372

the tested image sets5. We performed several experiments in order to test the ro-373

bustness against outliers. In the first experiment, we computed classification rates374

based on the clean image sets. Then, we systematically corrupted training and test375

sets by adding images from other classes to each set. These images can be seen as376

outliers and the changes in classification rates reflect the robustness of the meth-377

ods against these outliers. The results are given in Table 3.1. As can be seen from378

the table, affine hull approximations yield better results than convex hull approx-379

imations in all cases except for the corrupted test where both models give same380

results. Thus, affine hulls seem better and more robust models for approximating381

image sets.382

5For the affine hull case we simply used the minimum distance between the estimated affine

subspaces using equation (6) whereas soft margin linear SVM algorithm is used to determine the

distances between convex hulls.
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3.2. Experiments on the AR Face Database383

The AR Face data set [16] contains 26 frontal images with different facial ex-384

pressions, illumination conditions and occlusions for each of 126 subjects, recorded385

in two 13-image sessions spaced by 14 days. For this experiment, we randomly386

selected 20 male and 20 female subjects. The images were down-scaled (from387

768 × 576), aligned so that centers of the two eyes fell at fixed coordinates,388

then cropped to size 105 × 78. Some pre-processed images are shown in Fig.389

7. Raw pixel values were used as features. For training we randomly selected390

n = 7, 13, 20 samples for each individual, keeping the remaining 26 − n for test-391

ing. This process was repeated 10 times, with the final classification rate being392

obtained by averaging the 10 results. The results are shown in Table 3.2. Best re-

Figure 7: Aligned images of one subject from the AR Face database.

393

sults are obtained by OAR strategy for both tested methods. The proposed method394

gives better classification rates than soft-margin linear SVM classifier in all cases.395

The performance difference is more apparent for n = 7. These results support our396

claims, suggesting that affine hulls can be better models for representing classes397

in high-dimensional spaces when the number of samples is limited.398
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Table 2: Classification Rates (%) on the AR Face Database.

Methods n = 7 n = 13 n = 20

LMC-AH 95.19±0.6 98.95±0.3 99.62±0.3

SVM 94.54±0.6 98.66±0.2 99.58±0.3

3.3. Experiments on the UCI Databases399

In this group of experiments, we tested the kernelized versions of the methods400

(quadratic programming formulations) on seven lower-dimensional datasets from401

the UCI repository: Ionosphere, Iris, Letter Recognition (LR), Multiple Features402

(MF) - pixel averages, Pima Indian Diabetes (PID), Wine, and Wisconsin Diag-403

nostic Breast Cancer (WDBC). The key parameters of these datasets are summa-404

rized in Table 3.3. We used the Gaussian kernels, and all design parameters are set405

based on random partitions of datasets into training and test sets. OAO strategy406

was used for multi-class problems. Reported classification rates given in Table407

3.3 are computed by 5-fold cross-validation. Although being quite mixed, results408

indicate that generalization performances of LMC-AH and ν-LMC-AH methods409

compare favorably with SVM classifier whereas C-LMC-AH generally yields the410

worst classification accuracy.411

4. Summary and Conclusion412

We investigated the idea of basing large margin classifiers on affine hulls of413

classes as an alternative to the SVM (convex hull large margin classifier). Given414

two affine hull models, their corresponding large margin classifier is easily deter-415

mined by finding a closest pair of points on these two models and bisecting the416
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Table 3: Low-Dimensional Databases Selected from UCI Repository

Databases Number of Classes Data Set Size Dimensionality

Ionosphere 2 351 34

Iris 3 150 4

LR 26 20000 16

MF 10 2000 256

PID 2 768 8

Wine 3 178 13

WDBC 2 569 30

Table 4: Classification Rates (%) on the UCI Datasets.

UCI LMC-AH ν-LMC-AH C-LMC-AH SVM

Ionosphere 93.7±2.9 93.7±2.9 93.4±2.3 92.9±3.2

Iris 94.7±2.9 94.7±2.9 95.3±3.8 95.3±3.8

LR 99.98±0.02 99.98±0.02 99.89±0.13 99.64±0.12

MF 98.4±0.4 98.4±0.4 97.8±0.3 98.0±0.4

PID 99.9±0.3 99.9±0.3 99.9±0.3 99.9±0.3

Wine 98.8±1.6 98.8±1.6 94.8±2.6 98.2±1.6

WDBC 96.0±2.5 96.0±2.5 94.9±3.0 97.6±0.7
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displacement between them. We also investigated another formulation obtained417

by revising the ν-SVM classifier. This formulation yields a separating hyperplane418

with the same normal as in our first formulation, but the offset is not necessarily419

the same. This suggests that for a fixed hyperplane normal w in a specific prob-420

lem, there may be principled procedures to determine the best offset b. To allow421

soft margin solutions, we first reduce affine hulls to alleviate the effects of outliers422

and then find the best separating hyperplanes between these reduced models. Such423

classifiers can also be kernelized, and extension to the multi-class classification is424

straightforward using any of the standard approaches such as OAO or OAR.425

The experimental results provided useful insights on the potential application426

areas of the proposed method. The proposed method is much more efficient than427

SVM classifier in terms of classification accuracy and real-time performance (test-428

ing time) when the dimensionality of the sample space is high and affine hulls are429

linearly separable (in this case solution is easily determined based on subspace es-430

timation which requires simple linear algebra whereas SVM formulation requires431

solving a quadratic programming). For the low-dimensional databases generaliza-432

tion performances of the proposed methods compare favorably with SVM classi-433

fier but SVM is more efficient in terms of testing time. This is because of the434

fact that all training data points contribute to the affine hull models (almost all435

computed αi coefficients are nonzero), thus the proposed quadratic optimization436

solutions lack sparseness, and we need more computations to evaluate decision437

functions. Nevertheless, some pruning techniques can be employed to overcome438

this problem.439
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