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Abstract

We introduce a novel method for face recognition from

image sets. In our setting each test and training example

is a set of images of an individual’s face, not just a single

image, so recognition decisions need to be based on com-

parisons of image sets. Methods for this have two main

aspects: the models used to represent the individual image

sets; and the similarity metric used to compare the mod-

els. Here, we represent images as points in a linear or

affine feature space and characterize each image set by a

convex geometric region (the affine or convex hull) spanned

by its feature points. Set dissimilarity is measured by ge-

ometric distances (distances of closest approach) between

convex models. To reduce the influence of outliers we use

robust methods to discard input points that are far from the

fitted model. The kernel trick allows the approach to be ex-

tended to implicit feature mappings, thus handling complex

and nonlinear manifolds of face images. Experiments on

two public face datasets show that our proposed methods

outperform a number of existing state-of-the-art ones.

1. Introduction

Face recognition has traditionally been posed as the

problem of identifying a face from a single image, and many

methods assume that images are taken in controlled envi-

ronments. However facial appearance changes dramatically

under variations in pose, illumination, expression, etc., and

images captured under controlled conditions may not suf-

fice for reliable recognition under the more varied condi-

tions that occur in real surveillance and video retrieval ap-

plications.

Recently there has been growing interest in face recogni-

tion from sets of images [11,27,9,22,10,26,2]. Here, rather

than supplying a single query image, the user supplies a set

of images of the same unknown individual. In general the
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gallery also contains a set of images for each known individ-

ual, so the system must recover the individual whose gallery

set is the best match for the given query set. The query

and gallery sets may contain large variations in pose, illu-

mination, and scale. For example, even if the images were

taken on the same occasion they may come from different

viewpoints or from face tracking in surveillance video over

several minutes.

Methods based on image sets are expected to give bet-

ter performance than ones based on individual images both

because they incorporate information about the variability

of the individual’s appearance and because they allow the

decision process to be based on comparisons of the most

similar pairs of query and gallery images – or on local mod-

els based on these. In many applications (e.g. surveillance

systems incorporating tracking or correspondence between

different cameras), image sets are also the most natural form

of input to the system.

In this paper we develop a general geometric approach to

set based face recognition that is particularly suited to cases

where the sets contain a relatively wide range of images

(e.g. ones collected over an extended period of time or under

many different conditions). We represent each image as a

feature vector in some linear or affine feature space, then

for each image set we build a simple convex approximation

to the region of feature space that is occupied by the set’s

feature vectors. Many convex models are possible but here

we give results for the affine hull (affine subspace) and the

convex hull of the set’s feature space points.

To compare different sets, we use the geometric dis-

tances (distances of closest approach) between their convex

models. This is a reasonable strategy because although sets

from the same individual taken under different conditions

are unlikely to overlap everywhere, they are more likely to

lie close to one another at at least some points. Indeed, to

the extent that it is permissible to synthesize new examples

within each set by arbitrary linear or convex combinations

of feature vectors, finding the distance between the sets cor-

responds to synthesizing the closest pair of examples, one

from each set, then finding the distance between them. This



can be viewed as an approximate method of handling dif-

ferences in lighting, viewpoint, scale, etc.

Classification methods based on convex models of sets of

feature vectors have been used in a number of other contexts

(e.g. [5,6]). Even though they only provide coarse geomet-

ric bounds for their underlying point sets – insensitive, e.g.,

to details of the distribution of the points within the con-

vex set – this is still a reasonable strategy for classification

with high-dimensional descriptors because in any case fine

details of geometry or distribution can not be resolved with

practical numbers of samples in high dimensions [14,16].

C.f . the successes of affine methods such as linear SVM

in many high-dimensional vision problems. Secondly, like

SVM, the kernel trick can be used to extend such methods

to nonlinear ones capable of handling, e.g. nonlinear mani-

folds of facial appearances. Finally, to reduce the influence

of outliers and noise, robust methods can be used to esti-

mate the convex models.

1.1. Related Work

Existing classification methods using image sets differ

in the ways in which they model the sets and compute dis-

tances between them. Fitzgibbon and Zisserman [10] (see

also [3]) use image sets to recognize the principal charac-

ters in movies. They model faces detected in contiguous

frames as affine subspaces in feature space, use Joint Man-

ifold Distance (JMD) to measure distances between these,

then apply a JMD-based clustering algorithm to discover

the principal cast of the movie. Another approach [22,2] is

to fit a parametric distribution function to each image set,

then use Kullback-Leibler divergence to measure the simi-

larity between the distributions. However as noted in [26],

these methods must solve a difficult parameter estimation

problem, they are not very robust when the test sets have

only weak statistical relationships to the training ones, and

large set sizes may be needed to approximate the distribu-

tion functions accurately.

Yamaguchi et al. [27] developed a mutual subspace

based method in which image sets are modeled using lin-

ear subspaces and similarities between subspaces are mea-

sured using the canonical angles between them. Fukui and

Yamaguchi [11] extended this approach to include a prior

projection onto a more discriminative subspace. A basic

limitation of these methods is that they incorporate only rel-

atively weak information (linear subspace angles) about the

locations of the samples in input space: for many feature

sets, models based on affine subspaces are more discrimi-

native than linear subspace based ones.

The above methods approximate image sets with linear

or affine subspaces. There are also many methods that seek

to build nonlinear approximations of the manifold of face

appearances, typically embedding local linearity within a

globally nonlinear model. This idea has been used widely in

both descriptor dimensionality reduction and single-image

face recognition [21,15,18]. Recently, [9,26] used ap-

proaches of this kind for image set based face recognition.

Fan and Yeung [9] use hierarchical clustering to discover

local structures, approximate each local structure with a lin-

ear (not affine) subspace, quantify similarities between sub-

spaces using canonical angles, and finally measure similari-

ties between face image sets by combining these local simi-

larities using majority voting. Wang et al. [26] follow a sim-

ilar approach, using nearest neighbor clustering to find the

local structures forming the nonlinear manifold. They again

use linear (not affine) subspaces and canonical angles, but

also incorporate distances between the centers of the clus-

ters into the similarity metric between local structures. Both

of the above works were inspired by the nonlinear manifold

modelling approach of Roweis and Saul [21], but they re-

place the locally affine / distance-based models used in [21]

with locally linear / angle-based ones. For many feature

sets, we believe that this reduces discrimination. Hadid and

Pietikainen [13] also use local linearity to approximate non-

linear face manifolds. They reduce the dimensionality using

Locally Linear Embedding, apply k-means clustering, rep-

resent the local patches using the resulting cluster centers as

exemplars, and measure similarities between image sets by

combining the pairwise distances between their exemplars.

In contrast to the above methods, we approximate each

image set with a simple convex model – the affine or con-

vex hull of the feature vectors of the set’s images. Both ap-

proaches can be seen as enhancements of nearest neighbor

classification [24,20,5] that attempt to reduce its sensitiv-

ity to random variations in sample placement by “filling in

the gaps” around the examples. Although still based on the

closest-point idea, they replace point-to-point or point-to-

model comparisons with training-model to test-model ones.

As we will see below, they have a number of attractive prop-

erties: the model for each individual can be fitted indepen-

dently; computing distances between models is straightfor-

ward due to convexity; resistance to outliers can be incor-

porated by using robust fitting to estimate the convex mod-

els; and if desired they can be kernelized to produce more

local nonlinear models. Moreover, as the experiments be-

low show and despite their intrinsic simplicity, they pro-

vide more accurate classification than state-of-the-art meth-

ods that build nonlinear approximations to face manifolds

by combining local linear models.

2. Method

Let the face image samples be xci ∈ IRd where c =
1, . . . , C indexes the C image sets (individuals) and i =
1, . . . , nc indexes the nc samples of image set c. Our

method approximates each gallery and test image set with a

convex model – either an affine or a convex hull – then uses

distances between such models to assign class labels. A test



individual is assigned to the gallery member whose image

set’s model is closest to the test individual’s one.

Given convex sets H and H ′, the distance between them

is the infimum of the distances between any point in H and

any point in H ′ :

D(H,H ′) = min
x∈H, y∈H′

||x − y||. (1)

To implement this we need to introduce parametric forms

for the points in H and H ′ and explicitly minimize the inter-

point distance using mathematical programming.

2.1. Affine Hull Method

First consider the case where image sets are approxi-

mated by the affine hulls of their training samples, i.e., the

smallest affine subspaces containing them:

Haff
c =

{

x =

nc
∑

k=1

αckxck

∣

∣

∣

∣

∣

nc
∑

k=1

αck = 1

}

, c = 1, . . . , C.

(2)

The affine model implicitly treats any affine combination of

a person’s face descriptor vectors as a valid face descriptor

for him. This typically gives a rather loose approximation

to the data, and one that is insensitive to the positions of the

samples within the affine subspace.

To parametrize the affine hull, we can choose any point

µc on it as a reference (e.g. one of the samples xck, or their

mean 1

nc

∑nc

k=1
xck), and rewrite the hull as

Haff
c =

{

x = µc + Ucvc

∣

∣

∣
vc ∈ IRl

}

. (3)

Here, Uc is an orthonormal basis for the directions spanned

by the affine subspace and vc is a vector of free parameters

that provides reduced coordinates for the points within the

subspace, expressed with respect to the basis Uc. Numer-

ically, Uc is obtained by applying the thin Singular Value

Decomposition (SVD) to [xc1 − µc, . . . ,xcnc
− µc]. We

discard directions corresponding to near-zero singular val-

ues in order to remove spurious noise dimensions within

data. The effective dimension of Uc and the hull is the num-

ber of significantly non-zero singular values.

L2 norm based fitting procedures such as SVD are sen-

sitive to outliers. Hulls can also be estimated using robust

procedures such as the L1 norm based estimators of [8,17].

However we used SVD in the experiments below because it

proved adequate for the data sets studied there.

Given two non-intersecting affine hulls {Uivi + µi}
and

{

Ujvj + µj

}

, the closest points on them can be found

by solving the following optimization problem

min
vi,vj

||(Uivi + µi) − (Ujvj + µj)||
2. (4)

Defining U ≡
(

Ui −Uj

)

and v ≡ ( vi
vj ), this can be

written as a standard least squares problem

min
v

||Uv − (µj − µi)||
2, (5)

whose solution is v = (U⊤U)−1U⊤(µj − µi). It follows

that the distance between the hulls can be written as

D(Haff
i , Haff

j ) = ||(I − P)(µi − µj)|| (6)

where P = U(U⊤U)−1U⊤ is the orthogonal projection

onto the joint span of the directions contained in the two

subspaces and I − P is the corresponding projection onto

the orthogonal complement of this span. If the matrix U⊤U

is not invertible, P can be computed as Ũ Ũ⊤, where Ũ is

an orthonormal basis for U obtained using thin SVD.

2.2. Reduced Affine Hull Method

The above formulation fails if several gallery hulls in-

tersect the given test one, because the test class will have

distance zero to each of the corresponding gallery classes.

This can occur for several reasons. Firstly, if there are out-

liers (incorrect or very poor images) in any of the image

sets, the corresponding affine hulls may be over-large. The

solution in this case is to use a more robust hull fitting pro-

cedure or some other form of outlier removal. Secondly, if

the feature set is too weak, the features may not suffice to

linearly separate the candidates. In this case one can either

use more discriminative features, or possibly kernelize the

method to make the corresponding decision rules more lo-

cal and nonlinear. Thirdly, if the affine hulls overlap but the

underlying image sets do not, affine approximations may be

too loose to give good discrimination and it may be prefer-

able to use a tighter convex approximation. The convex hull

of the samples is the tightest convex model containing the

samples, but unless the number of samples is exponential

in their effective dimension it is typically a significant un-

derestimate of the region spanned by the class. Here we

develop a parametric family that includes both affine and

convex hulls and many models intermediate between them.

The approach is based on constraining the coefficients that

can be used to form affine combinations – c.f . the reduced

convex hulls of [4].

To produce our reduced affine hulls we introduce lower

and upper bounds L, U on the allowable α coefficients in

(2) to control the looseness of the convex approximation:

H raff
c =

{

x =

nc
∑

k=1

αckxck

∣

∣

∣

∣

∣

nc
∑

k=1

αck = 1, L ≤ αck ≤ U

}

(7)

In the full affine case the bounds are inactive, (L, U) =
(−∞,∞). In the convex hull case, L = 0 and U ≥ 1 is

irrelevant. If L = 0 and U < 1, several samples need to be



active to ensure
∑

k αck = 1, giving a convex approxima-

tion that lies strictly inside the convex hull of the samples.

Similarly, if −∞ < L < 0, U ≥ 1, the region is larger than

the convex hull, but smaller than the affine one.

We can write the points of H raff
c more compactly in the

form {x = Xc αc} where Xc is a matrix whose columns

are the feature vectors of set c and αc is a vector containing

the corresponding αck coefficients. H raff
c is convex because

any convex sum of its points, i.e. of αc vectors satisfying the

sum 1 and L, U constraints, still satisfies these constraints.

For simplicity we apply the same L, U constraints to each

αck coefficient, although this is not strictly necessary.

Given two such reduced affine hulls, the distance be-

tween them can be found by solving the following con-

strained convex optimization problem

(α∗

i ,α
∗

j ) = arg min
αi, αj

||Xi αi − Xj αj ||
2

ni
∑

k=1

αik = 1 =

nj
∑

k′=1

αjk′ , L ≤ αik, αjk′ ≤ U
(8)

and taking D(H raff
i , H raff

j ) = ||Xi α
∗

i − Xj α
∗

j ||. As be-

fore we can write this as a constrained least squares problem

min ‖Xα‖2 in terms of X =
(

Xi −Xj

)

and α = ( αi
αj ),

but the constraints are now nonstandard.

The individual examples (feature vectors) xck only ap-

pear in the quadratic term of (8) so it is easy to kernelize

the method by rewriting the quadratic in terms of dot prod-

ucts x⊤

ckxc′k′ and replacing these with kernel evaluations

k(xck,xc′k′). In the general case there is no reason to ex-

pect sparsity so all of the gallery and test points need to be

retained in their respective models (although for each given

pair of convex models, the corresponding closest point solu-

tion is usually sparse). However the size of the computation

typically remains modest because each class (individual) is

fitted separately.

2.3. Convex Hull Approximation

Taking L=0, U ≥ 1 in (7) approximates the examples

with their convex hull (the smallest convex set containing

them). As mentioned above, this is much tighter than the

affine approximation, but – particularly for small numbers

of samples in high dimensions – it can seriously underes-

timate the true extent of the underlying class, which some-

times leads to false rejections of candidates.

Distances between convex hulls can be found using (8)

with L=0 and no U constraint. This problem is closely re-

lated to the classical hard margin SVM, which finds a sep-

arating hyperplane between the two convex hulls based on

exactly the same pair of closest points, but scales its so-

lution differently. Thus – at the cost of SVM training for

small problems at run time – one can also find convex hull

distances by training an SVM that separates the given test

set from the given gallery one, and taking the inter-hull dis-

tance to be 2/‖w‖ where w is the SVM weight vector.

Similarly, to handle outliers we can produce an even

more restrictive inner approximation by setting U < 1, and

the resulting problem can be related to the classical soft-

margin SVM and the ν-SVM [4].

3. Experiments

We tested1 the linear and kernelized versions of the pro-

posed methods, AHISD (Affine Hull based Image Set Dis-

tance) and CHISD (Convex Hull based Image Set Distance),

on two public face recognition data sets: Honda/UCSD [19]

and CMU MoBo [12]. These contain several video se-

quences each from a number of different individuals. Im-

age sets for training and test were constructed by detect-

ing faces in each video sequence using a Viola-Jones face

detector [25]. To allow comparison with the literature we

followed the simple protocol of [26]: the detected face im-

ages were histogram equalized but no further preprocessing

such as alignment or background removal was performed on

them, and the image features were simple pixel (gray level)

values. For CMU MoBo we also tested a Local Binary Pat-

tern (LBP) [1] feature set. For the linear AHISD method,

the best separating hyperplane is determined by using affine

subspace estimation formulation, and subspace dimensions

are set by retaining enough leading eigenvectors to account

for 98% of the overall energy in the eigen-decomposition.

For the nonlinear AHISD method, we set the bounds as

−L = U = τ , where the value of τ is chosen between

1 and 5. The upper bound of nonlinear CHISD method is

set to U = 0.7 for the Honda/UCSD database, but we used

SVM algorithm to compute the distances between convex

hulls for CMU MoBo because of speed issues. We set the

error penalty term of SVM to C = 100 for gray values and

to C = 50 for LBP features. For all kernelized methods we

used the Gaussian kernels.

We compared the proposed linear methods to the Mu-

tual Subspace Method (MSM) [11,27] and the kernelized

ones to manifold learning methods that use patchwise local

representations [9,13]. Representative examples and linear

subspaces were used to model local patches as in [9,13],

but instead of Locally Linear Embedding and Isomap based

clustering, we used Spectral Clustering to determine sam-

ples forming the local patches. In addition to testing lo-

cally constant (exemplar) and locally linear subspace (LS)

patchwise models, we also tested locally affine (AH) ones

to illustrate that the latter are often superior. We used a

Gaussian kernel based similarity function for edge weight-

ing during Spectral Clustering and set the number of local

patches to 6 for each manifold learning algorithm. To com-

bine the decisions of the local models regarding the label of

1For software see http://www2.ogu.edu.tr/∼mlcv/softwares.html.



Figure 1. Some detected face images from videos of two subjects

from the Honda/UCSD data set.

the test manifold, the majority voting scheme of [9,13] was

used.

3.1. Experiments on the Honda/UCSD Data Set

The Honda/UCSD data set was collected for video-based

face recognition. It consists of 59 video sequences involv-

ing 20 individuals. Each sequence contains approximately

300–500 frames. Twenty sequences were set aside for train-

ing, leaving the remaining 39 for testing. The detected faces

were resized to 40×40 gray-scale images and histogram

equalized, and the resulting pixel values were used as fea-

ture vectors. Some examples are shown in Fig. 1.

Linear Methods Clean Noisy G. Noisy T. Noisy G+T.

Linear AHISD 97.4 97.4 92.3 87.2

Linear CHISD 94.9 92.3 92.3 82.1

MSM 97.4 97.4 87.2 76.9

Nonlinear Methods

Kernel AHISD 97.4 97.4 92.3 92.3

Kernel CHISD 100 97.4 92.3 82.1

Spec Clus + Exemp. 94.9 89.7 84.6 79.5

Spec Clus + LS 97.4 97.4 89.7 79.5

Spec Clus + AH 97.4 94.9 92.3 82.1

Table 1. Classification Rates (%) on the Honda/UCSD data set,

respectively for the clean data, the data with noisy gallery sets but

clean test ones, the data with clean gallery sets and noisy test ones,

and the data with noise in both gallery and test sets.

The results are summarized in Table 1. For outlier free

image sets (first column), classification is relatively easy

and all of the methods tested yielded high recognition rates.

To demonstrate the different methods’ resistance to outliers,

we ran three more experiments in which the training and/or

the test sets were systematically corrupted by adding one

image from all other classes.

Among the linear methods tested, our AHISD one per-

formed the best in all cases. MSM does well on clean im-

age sets but its performance drops significantly for the cor-

Figure 2. Some detected face images from videos of two subjects

from the MoBo data set.

rupted ones, especially when both the training and the test

sets are corrupted. Among the nonlinear methods tested,

our kernelized AHISD and CHISD ones outperformed the

manifold learning ones in most of the cases tested. The ker-

nelized methods also outperform their linear counterparts,

especially on the corrupted image sets. Among the mani-

fold learning methods, the one based on exemplars yields

the worst accuracies but there is not a clear winner between

the locally linear and locally affine subspace based ones.

Overall our proposed methods seem to be the best perform-

ers, winning in most of the cases tested, particularly on the

more corrupted data sets.

3.2. Experiments on the MoBo Data Set

The MoBo (Motion of Body) data set contains 96 image

sequences of 24 individuals walking on a treadmill. The

images were collected from multiple cameras under four

different walking situations: slow walking, fast walking, in-

cline walking, and carrying a ball. Thus, there are 4 im-

age sets for each individual. Each image set includes both

frontal and profile views of the subject’s faces. Some exam-

ples of the detected faces are shown in Fig. 2. As before,

the detected faces were converted to 40×40 gray-scale im-

ages and histogram equalized, with the resulting pixel val-

ues used as features. We also tested a Local Binary Pattern

feature set in which each 40×40 image is partitioned into

25 8×8-pixel squares, with a uniform LBP histogram us-

ing circular (8,1) neighborhoods being extracted from each

square and the resulting histograms being concatenated to

produce the final feature vector.

We randomly selected one image set from each class (in-

dividual) for the gallery and used the remaining 3 for test-

ing. This was repeated 10 times and we report averages and

standard deviations of the resulting classification rate over

the 10 runs. Fig. 3 shows the classification rates of each run

for the gray level features, and the overall results are shown

in Table 2. The asterisks indicate performance differences



Linear Methods Gray Level LBP

Linear AHISD 92.7
∗

± 3.3 94.6
∗

± 2.3

Linear CHISD 94.2 ± 2.7 98.1 ± 0.9

MSM 92.0
∗

± 3.0 92.4
∗

± 1.9

Nonlinear Methods

Kernel AHISD 93.8 ± 2.8 97.6 ± 1.8

Kernel CHISD 95.3 ± 2.2 98.0 ± 1.1

Spec. Clus. + Exemplar 85.5
∗

± 4.4 91.6
∗

± 3.0

Spec. Clus. + LS 88.2
∗

± 4.5 93.0
∗

± 2.8

Spec. Clus. + AH 89.5
∗

± 5.0 92.8
∗

± 2.2

Table 2. Mean classification rates (%) and their standard devia-

tions across the 10 trials on the MoBo data set, for gray level pixel

features and LBP features.

that are statistically significant at the 5% level between the

given method and the best method for that feature set (indi-

cated in bold).

For the gray level features, our kernelized CHISD

method either matches or outperforms all of the others

tested in each trial, and overall it significantly outperforms

the others. Our linear CHISD method is second best, fol-

lowed by kernelized AHISD. Among the manifold learn-

ing methods, the one based on exemplar images performs

the worst, as before, while the locally affine method outper-

forms the locally linear one. Our methods are significantly

more consistent than the manifold learning ones across the

different trials. Similar conclusions hold for the LBP fea-

tures, with the linear and kernelized CHISD methods lead-

ing the table and exemplar based manifold learning trailing

it as before. Replacing gray level features with LBP ones

improves the performance for all methods tested, and these

improvements are significant most of the time. Overall, our

methods significantly outperform the existing state-of-the-

art.

4. Discussion and Conclusions

In this work we developed methods for face recognition

from sets of images (rather than from individual images).

Our methods characterize each image set (individual) from

the gallery and the test set in terms of a convex region in fea-

ture space – the affine hull or the convex hull of the feature

vectors of its images. Recognition is performed by finding

the gallery region (individual) that is closest to the given

test region (individual) in the sense of minimum distance

between convex sets. The methods can be made resistant

to outliers by using robust fitting procedures, and they can

easily be kernelized because they are based on Euclidean

geometry in feature space. Each class is handled separately

so the size of the resulting kernel matrices remains modest.

In experiments on two publicly available face video data

sets, we tested our linear and kernelized methods against

one (MSM) based on fitting global linear subspaces to the

image sets and using canonical angles between subspaces as

a similarity measure, and against several others designed to

model nonlinear face manifolds [9,26,13] by fitting patch-

wise constant (exemplar), patchwise linear or patchwise

affine models to the samples. Our methods performed best

overall. Both MSM and the manifold models had lower

overall performance and were less consistent over trials and

more sensitive to outliers in the data. In part this variability

is due to the nonconvex optimization problem that must be

solved for the manifold based methods, whereas our meth-

ods lead to convex problems. On the data sets tested, the

accuracy of our linear methods was only slightly worse than

that of the corresponding kernelized ones, although the lat-

ter were also slightly stabler on the whole.

Our methods are not limited to face images. They can

also be used in other visual recognition problems where

each example is represented by a set of images, and more

generally in machine learning problems where the classes

and test examples are represented by sets of feature vec-

tors. One machine learning use of this kind is to supplement

each input example with a set of virtual examples generated

using known invariances of the problem. For example, in

hand written digit recognition, virtual examples can be cre-

ated by applying small spatial transformations, changes in

thickness of the pen strokes, etc., to the input data [23,7].

In such cases, the problem becomes one of set matching.

Traditional approaches such as DeCoste and Schölkopf’s

kernel jittering use pairwise distances between the gener-

ated examples for matching. However as demonstrated in

our experiments, if the number of such exemplars is lim-

ited, methods that interpolate a dense set (convex model)

between the exemplars often do better than ones based on

the exemplars alone.
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