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[1] The knowledge of the fraction of an area that is affected by rain (or fractional area) is
of prime interest for hydrologic studies or for rainfall field modeling. Up to now, the
statistical distribution of this parameter has been poorly studied. In the present paper, a
model of the statistical distribution of the fraction of an area affected by rain over a given
rainfall rate is proposed. It takes into account at the same time the size of the area and
the local climatology. The analytic formulation of the distribution is established,
considering that rainfall fields can be obtained from a nonlinear filtering of a Gaussian
random field. As the analytic derivation of the distribution lies on some assumptions, the
model accuracy is first evaluated from numerical simulations. It is then shown that the
model reproduces accurately the distribution of fractional areas derived from radar
observations of rain fields for various rain thresholds, sizes of area, and climatologies.
A generic parameterization is then proposed for areas ranging from 100 � 100 to
300 � 300 km2.

Citation: Jeannin, N., L. Féral, H. Sauvageot, L. Castanet, and J. Lemorton (2008), Statistical distribution of the fractional area

affected by rain, J. Geophys. Res., 113, D21120, doi:10.1029/2008JD009780.

1. Introduction

[2] In a typical general circulation model (GCM), the
spatial resolution of the outputs is generally not sufficient to
describe rain at a scale of interest for hydrologic processes
such as interception and runoff [Pitman, 1991; Thomas and
Henderson-Sellers, 1991]. Therefore a representation of
rainfall spatial variability at a finer scale is necessary. Thus
many models were developed to assess the spatial variabil-
ity of rain at coarser scales, using either fractal approaches
[Lovejoy and Schertzer, 1985; Over and Gupta, 1996],
stochastic approaches [Mejia and Rodriguez-Iturbe, 1974;
Bell, 1987; Lebel et al., 1998] or cellular approaches [Le
Cam, 1961; Capsoni et al., 1987a, 1987b; Goldhirsh 2000;
Féral et al., 2003a, 2003b]. For most of these approaches, a
key parameter that has to be specified is the fraction f of the
simulation area affected by rain, often called lacunarity or
intermittency. Moreover, it was shown that surface hydrol-
ogy exhibits a strong sensitivity to this parameter [Pitman et
al., 1990]. Indeed, if the rain fractional coverage over an
area of interest and for a given rain amount decreases, the
climatology turns from evaporation dominated to runoff
dominated, thus showing the importance of this quantity on
climate simulations.
[3] In other respects, the knowledge of this parameter is

also valuable to evaluate the performances of earth-space
telecommunication systems. Indeed, the attenuation under-

gone by an earth space satellite link operating at a frequency
above 20 GHz is mainly driven by the rainfall rate along the
path of the link [Castanet et al., 2001]. High attenuations
due to rain will result in an unavailability of the satellite link
or will require the use of adaptive fade mitigation techni-
ques [Castanet et al., 2002; Neely et al., 2003]. Considering
a satellite spot beam whose diameter is typically of 300 km,
the knowledge of the fraction of the area affected by a rain
rate over a given threshold gives an estimate of the fraction
of the user-terminals in the satellite spot beam that will
undergo a given level of attenuation. Consequently, this
parameter gives an estimate, considering the link budget,
either of the number of the terminals that will be in outage
or of the additional margin that has to be provided to ensure
a sufficient quality of service.
[4] A convenient way to prescribe the fractional area f

was addressed from the estimation of rainfall from space.
Indeed, Donneaud et al. [1984], Chiu [1988], Braud et al.
[1993], and Oki et al. [1997] observed that the rain
fractional coverage over a preset threshold is tightly corre-
lated with the spatially averaged rain rate over the area of
interest. Particularly, whenever the local probability density
function (PDF) of rain is known, Atlas et al. [1990], Kedem
et al. [1990], and Sauvageot [1994] have shown that the
proportionality coefficient between the fractional area and
the spatially averaged rain rate can be determined from the
rain conditional PDF (i.e., knowing that it is raining).
Invoking an ergodicity assumption of the rainfall process,
Eltahir and Bras [1993] gave a procedure to deduce the
fractional area affected by rain from GCM outputs account-
ing for the GCM spatial and temporal resolutions. Never-
theless, for rain field simulation purposes, either as an input
of the model [Féral et al., 2006] or as a tool to evaluate the
model accuracy [Guillot, 1999; Guillot and Lebel, 1999], it
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could be interesting to have a simple way to get the
statistical distribution of the rain fractional coverage for
various thresholds, while accounting not only for the local
climatology but also for the size of the simulation area.
[5] This was attempted by Onof and Wheater [1996] who

tried, from weather radar observations over Wales, to
approximate the PDF of the fractional area affected by rain
with a parabolic distribution. In other respects, from radar
observations over the French territory, Féral et al. [2006]
approximated the distribution of the fractional area affected
by rain with an exponential law with mean 8.8%. Never-
theless, in both studies, the dependence on the local
climatology and the size of the area are not evaluated.
Moreover, only the rain/no-rain threshold is considered, so
that the results highly depend on the radar sensitivity.
[6] From an analysis of radar data on various climatic

zones and for various sizes of observation area, this paper
proposes an analytical expression of the cumulative distribu-
tion function (CDF) of the fractional area affected by rain
over a preset threshold. The formulation is derived from
properties of rain fields generated using a nonlinear transfor-
mation on stationary Gaussian random fields, a generation
scheme that has already been reported in the literature [Bell,
1987; Guillot, 1999]. This approach has been theoretically
justified by Ferraris et al. [2002]. The latter is based on two
steps. First, a correlated, stationary, homogeneous Gaussian
random field is generated on a lattice. Second, on each grid
point, the Gaussian random variables are turned into rain rate
values R. More specifically, in the studies of Bell [1987] or
Guillot [1999], the random values of the Gaussian field lower
than a valuea driven by the local probability of rain are put to
0 while the random values greater than a are transformed so
that they follow the rain rate local conditional PDF p(R|R > 0).
Nevertheless, as underlined by Guillot [1999], the main
defect of such kind of modeling is that the fraction of area
affected by rain on one realization is not prescribed. Further-
more, Guillot [1999] pointed out that if a long-range depen-
dence is not introduced in the correlation function of the
Gaussian random field, the fraction of the area affected by
rain converges toward the local temporal expectancy to have
rain, as a second-order stationary random field is ergodic.This
means that the variance of the fractional coverage of rain
computed from a large number of simulated fields tends to 0.
However, and as shown by Eltahir and Bras [1993], the
fractional coverage of rain is a highly variable parameter.
Therefore rain fields simulatedwith themethodologydescribed
above must have a long-range dependence to be realistic. This
long-range dependence can be quantified by what Lantuejoul
[1991] called the ‘‘integral range,’’ related to the average value
of the correlation function over the domain of interest.
[7] Section 2 of the present paper precisely addresses the

effect of the long-range dependence on the statistical
properties of the spatial average and spatial variance for
homogeneous stationary Gaussian fields generated on a
finite grid. Particularly, it is shown that, under some
assumptions, the spatial distribution of the samples defining
one realization of a Gaussian field generated on a finite grid
is approximately normal with mean M and variance 1 � s2,
where s2 is the average value of the correlation matrix that
drives the dependencies between all the points of the grid.
Additionally, the spatial mean M is shown to be a random
variable that follows a centered normal distribution with

variance s2. From those considerations, in section 3, an
analytical formulation is proposed to model the CDF of the
fractional area of a stationary Gaussian random field over a
preset threshold a. The model accuracy is first evaluated
numerically from simulated Gaussian random fields. Then,
in section 4, the model is compared with fractional area
CDFs derived from true rain fields observed by weather
radar over various places. A set of parameters is then
proposed in order to reproduce the CDF of the fractional
coverage of rain for various climatic zones and various sizes
of area, ranging from 100 � 100 km2 to 300 � 300 km2.

2. Theoretical Considerations on Stationary
Gaussian Random Fields

[8] As mentioned in the introductive part, the simulation
of rain field using a nonlinear transformation of a Gaussian
field has been already widely studied [Bell, 1987; Guillot,
1999] and was seen to perform satisfactorily in numerous
situations. In those works, a methodology to derive the
correlation function of the underlying Gaussian field from
observed rain fields on a range of a few hundreds of
kilometers was developed. The correlation function of the
Gaussian field computed from rainfall observations (radar,
rain gauges) was found to have a steep decay in the first tens
of kilometers and was then only very slowly decreasing
without reaching 0 at the end of the observation range of
some hundreds of kilometers. Considering rain gauges
spread across Italy, Barbaliscia et al. [1992] and Bertorelli
and Paraboni [2005] identified three scales of evolution for
the correlation of rain fields: (1) below 100 km the corre-
lation was shown to have a steep decay; (2) from 100 to
700 km the correlation was shown to be almost steady or
very slowly decreasing with distance; and (3) after 700 km
the correlation decreases slowly until total decorrelation.
[9] This long-range dependence can be explained by the

non-uniform repartition in space over wide areas of the
rainy structures and of the underlying pressure and humidity
field. This shape of correlation function is bothering because
it implies that the rain fields are stationary over wide areas.
As rain fields display some preferential path due for instance
to the orography or to land sea transitions, this assumption
would probably collapse for some hundreds of kilometers.
The range of validity of this stationarity hypothesis is hardly
assessed as the requirements to apply a formal stationarity
test for spatial stochastic processes as described by Fuentes
[2005] are not matched by rain fields. Consequently, the
areas of side greater than 300 � 300 km2 for which the
stationary hypothesis of the rain fields is likely to be
unrealistic will not be considered in the present paper.
[10] The aim of the rest of this section is to derive from

those models an expression of the distribution of the fraction
of an area f (or fractional area) over a given rain rate threshold
using the properties of the underlying Gaussian field. The
methodology developed in the following strives at finding an
approximation of the spatial distribution of one realization of
a Gaussian field on a finite grid considering that it has a
correlation function of the shape described above. In
section 3, from this spatial distribution, an expression of the
fraction of the area of one realization of a Gaussian field is
first derived. Then, the statistical distribution of the fractional
area considering a large number of independent realizations
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of the Gaussian field is proposed, validated and transposed to
rain fields in section 4.

2.1. Spatial Average M of a Gaussian Random Field

[11] A stationary, homogeneous, standard, and centered
Gaussian random field g generated on a bidimensional grid L
with sizeN�N can be interpreted as a set of standard centered
Gaussian random variables g = (g(s1), g(s2),. . ., g(sN2))
correlated with each other, and indexed by their position si
on the grid. Let S be the N2 � N2 correlation matrix of the
Gaussian random field gwith general termSij = E[g(si)g(sj)],
where E[] is the expectancy operator. The spatial average M
of the random field g over the grid L is defined by:

M ¼ 1

N2

XN 2

i¼1

g sið Þ: ð1Þ

As all the random variables g(si) follow a standard
centered normal distribution, the random variable M is
also normal with an expectation of 0. The variance of M is
defined by:

Var Mð Þ ¼ 1

N4
E

XN2

i¼1

g sið Þ
 !2
2
4

3
5

¼ 1

N4
E
XN
i¼1

XN2

j¼1

g sið Þg sj
� 	" #

¼ 1

N4

XN2

i¼1

XN2

j¼1

Sij ¼ s2: ð2Þ

[12] Equation (2) shows that the variance Var(M) of the
spatial average M is the mean s2 of the terms of the
correlation matrix S. At this stage we demonstrate that
the spatial average M of the field is normally distributed
with mean 0 and variance s2.

2.2. Spatial Variance V of a Gaussian Random field

[13] Similarly, the spatial variance V of the Gaussian
random field g over the grid is given by:

V ¼ 1

N2

XN 2

i¼1

g sið Þ �Mð Þ2: ð3Þ

The spatial variance V is a random variable and its
expectation can be defined as:

E V½ � ¼ 1

N2

XN2

i¼ 1

E g sið Þ �Mð Þ2
h i

¼ 1

N2

XN2

i¼1

E g sið Þ2
h i

� 2E g sið ÞM½ � þ E M2
� �

¼ 1

N2

XN2

i¼1

Var g sið Þ½ � þ Var M½ � � 2

N2

XN 2

j¼1

E g sið Þg sj
� 	� �( )

¼ 1þ Var Mð Þ � 2
1

N4

XN2

i¼1

XN2

j¼1

Sij

¼ 1� Var Mð Þ ¼ 1� s2: ð4Þ

[14] Consequently, the samples {g(si, w)}i=1,. . ..,N2 of one
realization g(w) of the Gaussian random field g are charac-
terized by their spatial mean M(w) and by their spatial
variance V. In compliance with section 2.1, the spatial mean
M(w) is drawn from a normal distribution whose mean is 0
and whose variance s2 is the mean of the correlation
function S. In such conditions, the expectancy E[V] of the
spatial variance V is 1 � s2, as shown by equation (4).
However, the spatial distribution of the N2 random values
{g(si, w)}i=1,. . ..,N2 is still unknown. Nevertheless, if the
correlation function decrease sufficiently fast with regards
to the size of the lattice (i.e., s2 ! 0; see Lantuejoul
[1991]), the distribution of the {g(si, w)}i=1,. . ..,N2 tends to
be normal if the size of the lattice is large enough. As
mentioned in the preliminary part of this section, the
correlation function of the underlying Gaussian field used
to simulate rain fields exhibits a very slow decay with
distance. In that case, considering a lattice on which the
decorrelation of the sample is not reached from one side to
the other, the normality of {g(si, w)}i=1,. . ..,N2 is not ensured
because s2 will not tend to 0. Nevertheless, if between all
the points of the grid there exists a residual positive
correlation denoted by a2, the correlation cg of the stationary
Gaussian field g can be rewritten:

cg k s1 � s2 kð Þ ¼ a2 þ b2c~g k s1 � s2 kð Þ; with a2 þ b2 ¼ 1:

ð5Þ

The random field g can thus be considered as the weighted
sum of a standard centered Gaussian random field ~g whose
correlation is c~g and weight b with a standard centered
Gaussian random variable y and weight a. Consequently, for
each point s of the grid:

g sð Þ ¼ b~g sð Þ þ ay: ð6Þ

If c~g rapidly decreases with regards to the size of the lattice,
the spatial distribution of {~g(si, w)}i=1,. . ..,N2 tends to be
normal. Moreover, as y does not vary in space, the spatial
distribution of {g(si, w)}i=1,. . ..,N2 also tend to be normal.
Considering the correlation functions proposed for rain field
simulation by Barbaliscia et al. [1992] or Guillot and Lebel
[1999], and grid sizes ranging from 100 � 100 to 300 �
300 km2, the steep decay c~g with regards to the size of the
grid is ensured and the normality of {g(si, w)}i=1,. . ..,N2 is a
reasonable assumption. As no means were found to quantify
the derivation from normality of {g(si, w)}i=1, . . ..,N2 due to
the finiteness of the lattice, the effect of this approximation
on the accuracy of the model proposed in section 3.1 is
assessed from simulated Gaussian fields in section 3.2.

3. Model for the CDF of the Fractional
Area Over a Given Threshold

3.1. Analytical Derivation

[15] As discussed in section 2.2, for one realization g(w)
of a stationary standard centered Gaussian random field g
with suitable shape of correlation function, the spatial
distribution of {g(si, w)}i=1,. . ..,N2 tends to be normal if the
size of the grid L is sufficiently large. For the purpose of
this study, the spatial distribution {g(si, w)}i=1,. . ..,N2 is
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considered as a normal distribution with mean M and
variance V = 1 � s2. Besides, as shown in section 2.1,
M is random and follows a centered normal distribution
with variance s2. Therefore considering one realization w of
the homogeneous random field g, the fractional area fa(w) of
g over which the threshold value a is exceeded is given by:

fa wð Þ ¼ 1

2
erfc

a�M wð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� s2ð Þ

p
 !

; ð7Þ

where erfc denotes the complementary error function.
[16] The CDF of the fractional area f exceeding the

threshold a can then be derived considering the CDF of M:

Pa f > f *ð Þ ¼ P
1

2
erfc

a�Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� s2ð Þ

p
" #

> f *

 !

¼ P M > a�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� s2ð Þ

p
erfc�1 2f *ð Þ

� �
: ð8Þ

Recalling that M follows a centered normal law with
variance s2, we have:

P M > xð Þ ¼ 1

2
erfc

xffiffiffi
2

p
s

� �
; ð9Þ

so that:

Pa f > f *ð Þ ¼ 1

2
erfc

a�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� s2ð Þ

p
erfc�1 2f *ð Þffiffiffi

2
p

s

" #
: ð10Þ

Derivation of equation (10) gives the PDF pa( f ) of the
fractional area f above a:

pa fð Þ ¼ exp � erfc�1 2fð Þ
� �2n o ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� s2
p

s

� exp �a� erfc�1 2fð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� s2ð Þ

p
ffiffiffi
2

p
s

" #
: ð11Þ

The analytical formulation of the fractional area average
value hfia is difficult to obtain from equation (11).
Nevertheless, it can be accurately approximated by:

hf ia ¼ P G > að Þ ¼ 1

2
erfc

affiffiffi
2

p
� �

: ð12Þ

equation (12) is obtained by considering that, over several
realizations of the Gaussian random field g, the fraction f of
field g above the threshold value a is simply the overall
number of points above a divided by the overall number of
points. As g is homogeneous, the expectancy to exceed a is
the same everywhere in the lattice so that hfia amounts to
equation (12), i.e., to the probability for a Gaussian centred
standard variable G to exceed a. The numerical computa-
tion of hfia from the PDF (equation (11)) with different
parameterizations complies satisfactorily with equation (12),
i.e., with a maximum error lower than 1%.
[17] In compliance with equations (10) and (11), the

statistical distribution of the fractional area f depends on

2 parameters. The first one, a, is related to the average value
of f by equation (12). The second one, s2, is the average
value of the N2 � N2 Gaussian field correlation matrix S.
Obviously, s2 strongly depends on the size N � N of the
simulation grid. So as to quantitatively assess the model
accuracy and the parameter sensitivity, equation (10) is
compared to the fractional area CDFs derived from Gauss-
ian field simulation.

3.2. Model Accuracy and Parameter Sensitivity

[18] For each configuration detailed hereafter, 6000 sta-
tionary Gaussian fields are generated using the spectral
method described by Bell [1987]. Further details on this
approach can be found in the studies of Shinozuka and Jan
[1972],Mejia and Rodriguez-Iturbe [1974], and Borgman et
al. [1984]. Lattice size varies from N � N = 50 � 50 km2 to
N � N = 200 � 200 km2, in compliance with the typical
coverage of the operational radars considered in section 4.
Moreover, to evaluate the model sensitivity, two analytical
formulations of the correlation function are considered for
the Gaussian field g: cg,1(d) = e�d/30 and cg,2(d) = 0.5 e�d/30 +
0.5 e�d/800, where d is the distance in kilometers. Such
exponential formulations of the correlation function are
commonly accepted to simulate rain fields [Guillot and
Lebel, 1999; Barbaliscia et al., 1992; Féral et al., 2006]. In
such conditions, considering cg,1(d) and equation (2), s
varies from 0.71 to 0.34 when N � N varies from 50 �
50 km2 to N � N = 200 � 200 km2, respectively. Similarly,
considering cg,2(d), s varies from 0.85 to 0.72 when N � N
varies from 50 � 50 km2 to N � N = 200 � 200 km2,
respectively. Six threshold values a are considered succes-
sively to compute the fractional area CDFs from the simu-

Figure 1. CDFs of the fractional area over the threshold a
computed from model (11) (markers) and derived from the
simulation of Gaussian fields (dashed line): size N � N =
200 � 200 km2, correlation function cG(d) = 0.5exp(�d/30)
+ 0.5exp(�d/800).
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lated Gaussian fields, namely a = 0.5, 1, 1.5, 2, 2.5, 3.
The distributions thus obtained are compared with
equation (10). The results are shown for the correlation
function cg,2(d) in Figures 1 and 2. It then appears that,
whatever the configuration, model (10) accurately reprodu-
ces the fractional area CDFs derived from the simulated
fields. As all the realization of the simulated field are
independent the values f obtained for each realization of
the fields are independent and common statistical test can
therefore be applied to test the validity of equation (10).
Particularly, the null hypothesis ‘‘the CDF Pa ( f > f *)
derived from the simulated Gaussian fields is equation (10)’’
is never rejected by a unilateral Smirnov-Kolmogorov test
[Chakravarti et al., 1967] with a confidence level of 0.05.
To conclude, model (10) accurately reproduces the Gaussian
field fractional area CDFs whatever the threshold a, the
lattice size between 50 � 50 and 200 � 200 km2, and the
standard formulations cg,1(d) or cg,2(d) of the correlation
function.

4. Application to Rain Fields

4.1. Model Extension to Rain Field

[19] In the previous section, a mathematical framework to
describe the CDF of the fractional area of a homogeneous
Gaussian field that exceeds a preset threshold a has been
developed. The same methodology applies to rain fields
whenever the latter are derived from a nonlinear transfor-
mation of a stationary homogeneous Gaussian field [Bell,
1987; Guillot, 1999]. Indeed, considering that the rain rate R
conditional PDF is lognormal (mean mR, standard deviation
sR) as it is commonly accepted [Bell, 1987; Sauvageot,
1994; Féral et al., 2006], and assuming that it rains a
fraction P0 of the time, the transformation y that converts
the Gaussian field g into a rain field r is:

r sð Þ ¼ y g sð Þ½ � ¼ 0 if g sð Þ < aP0

r sð Þ ¼ y g sð Þ½ � ¼ exp mR þ
ffiffiffi
2

p
sRerfc

�1
erfc g sð Þ=

ffiffiffi
2

p� 	
P0

 !" #
if g sð Þ � aP0

; ð13Þ

���������
where

aP0
¼

ffiffiffi
2

p
erfc�1 2P0ð Þ: ð14Þ

By construction, the expectation for a Gaussian value to be
converted into rain is exactly P0. Moreover, the computation
of the CDF of the fraction f of a rain field affected by a rain
rate R exceeding the threshold R* amounts to the
computation of the fraction of a standard Gaussian field
exceeding the threshold aR* = y�1(R*). As P[r(s) > R*] =
P[g(s) > aR*], we have:

a
R* ¼

ffiffiffi
2

p
erfc�1 2P r sð Þ > R*½ �f g: ð15Þ

If we assume that the rain field r(s) is homogeneous, the
probability of rain P0 is the same all over the grid and P[r(s) >
R*] does not depend on the location s so that equation (15)
reduces to:

a
R* ¼

ffiffiffi
2

p
erfc�1 2P R > R*ð Þ½ �; ð16Þ

where P(R > R*) is the rain absolute CDF intrinsic to the
simulation area. Equation (16) gives a convenient way to
determine aR from radar data.Finally, the CDF of the
fractional area f of a rain field affected by a rain rate

exceeding the threshold value R* derives from equation
(10):

P
R* f > f *ð Þ ¼ 1

2
erfc

a
R* �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� s2ð Þ

p
erfc�1 2f *ð Þffiffiffi

2
p

s

" #
; ð17Þ

under the hypothesis made to establish equations (10) and
(17), namely the homogeneity of the field (i.e., the pdf of
rainfall rate dos not vary inside the considered area) and a
correlation function with a fast and a slow decay
component with respect to the lattice size as advocated
by Barbaliscia et al. [1992] or Guillot and Lebel [1999].

4.2. Radar Data

[20] Two yearly radar data sets are considered. The first
one was collected in 1996 and comes from the weather radar
of Bordeaux that is part of the French operational radar

Figure 2. CDFs of the fractional area over the threshold a
computed from model (11) (markers) and derived from the
simulation of Gaussian fields (dashed line): size N � N =
50 � 50 km2, correlation function cG(d) = 0.5exp(�d/30)
+ 0.5exp(�d/800).
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network managed by Météo-France. The second one refers
to 2004 and consists of composite radar images from the US
NEXRAD network. For both data sets, the temporal sam-
pling is one observation every 5 min. The data were
projected on a Cartesian grid within a uniform pixel size
of 1 � 1 km2. Images including ground clutter or melting
layer echoes were removed from the data set so that the used
radar data only refer to rainfall fields. Lastly, reflectivity
fields were converted into rain fields using the standard Z-R
relation:

Z ¼ aRb; ð18Þ

where a = 300, b = 1.35, and Z is the radar reflectivity factor
in mm6 m�3 and R the rain rate in mm h�1.
[21] As shown in Figures 3 and 4, areas of interest

offering clearly distinct climatologies have been selected
inside the radar coverage areas. Moreover, for each selected
location, five area sizes are considered successively, namely
100 � 100, 150 � 150, 200 � 200, 250 � 250 and 300 �
300 km2.

4.3. Results

[22] The CDFs of the fractional area affected by rain were
computed for thresholds R* = 0.5, 1, 2.4, 5.7, 13 mm h�1

for the areas of interest over the United States and R* = 1,
1.4, 2.2, 3.5 mm h�1 for the ones over Bordeaux (the
thresholds considered are not exactly the same for both data
sets due to some differences in the quantization steps
between the radar of Bordeaux and the NEXRAD network).
[23] First, the rain rate absolute climatological probabil-

ities P(R > R*) are computed by counting the number of
pixels over R* on the whole data set and by dividing it by
the overall number of pixels. These distributions may
encounter more or less large fluctuations on the same
geographical zone for the different area sizes. This may
be due to some defects in radar measurements (particularly
attenuation with increasing range) or to some climatologic
inhomogeneities of rain processes in squares of some
hundreds of kilometers of side [Onof and Wheater, 1996].
Then, for the successive values of R*, the corresponding aR

is deduced from equation (16). The results are given in
Table 1. For R* = 1 mm h�1 only, model (17)

F(fi, a1, s) = 1
2
erfc

a1�
ffiffiffiffiffiffiffiffiffiffiffiffi
2ð1�s2Þ

p
erfc�1ð2fiÞffiffi

2
p

s

� �
is regressed with

respect to the fractional area CDF P1( f > f *) derived from
radar observations to obtain parameters s reported in Table 3
(first line, area size N � N = 100� 100 km2 located over the
United States and over Bordeaux). The values of s were

Figure 3. Geographical position of the three areas of interest selected over the United States. The
background image is a rain field observation collected by the NEXRAD radar network on 27 August
2004 at 17:00 UTC.
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obtained solving equation (19) using a nonlinear least squares
algorithm:

argmin
s

X
i

F fi;a1; sð Þ � P1 f > fið Þ
P1 f > fið Þ

� �2
; ð19Þ

where a1 is determined from equation (16) and the fi are
regularly sampled from 0.01 to fmax by step of 0.01. fmax is
defined as the 30th largest value of fractional area found on
each radar data set for each considered threshold R*. This

choice of fmax is made in order to ensure a sufficient
statistical reliability to the empirical CDFs especially for the
greatest values of occupation. This regression procedure
allows defining a relative error criterion between the model
(17) and the CDF regressed from radar data:

e ¼ 100� 1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

F fi;aR*; s
� 	

� P
R* f > fið Þ

P
R* f > fið Þ

� �2vuut : ð20Þ

Figure 4. Geographical position of the area of interest over Bordeaux (France). The background
image is an example of rain field observation collected by the ARAMIS radar network on 9 December
2001 at 16:00 UTC.
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Equation (20) quantifies the error made when approximat-
ing the empirical occupation CDF by model (19) in terms of
mean relative RMS error.
[24] The values of s, obtained using this regression

procedure for each data set are used for all the other values
of R* as s should not depend on the threshold whenever
rain fields are stationary and homogeneous. Besides, R* =
1 mm h�1 is the value considered in the regression process

because, first, it is the lowest value common to both data
sets, and second, it complies with Krajewski et al. [1992]
that advocates the use of a relatively low threshold to better
estimate the fractional area from real data.
[25] For the successive threshold valuesR*, Figures 5 and 6

show the fractional area CDFs derived from model (17) and
those derived from the radar observations over Bordeaux

Table 1. Rain Rate Absolute CDFs P(R > R*) Derived From Radar Observations for the Successive Areas of Interest and Associated

Value of aR Computed From Equation (17)

South Dakota

Area size (km2)

R* = 0.5 mm h�1 R* = 1 mm h�1 R* = 2.4 mm h�1 R* = 5.7 mm h�1 R* = 13 mm h�1

P(R > R*) aR* P(R > R*) aR* P(R > R*) aR* P(R > R*) aR* P(R > R*) aR*

100 � 100 0.49% 2.6 0.25% 2.8 0.10% 3.1 0.04% 3.3 0.01% 3.6
200 � 200 0.56% 2.5 0.28% 2.8 0.12% 3 0.05% 3.3 0.02% 3.5
300 � 300 0.65% 2.5 0.33% 2.7 0.15% 3 0.07% 3.2 0.03% 3.4

Mississipi

Area size (km2)

R* = 0.5 mm h�1 R* = 1 mm h�1 R* = 2.4 mm h�1 R* = 5.7 mm h�1 R* = 13 mm h�1

P(R > R*) aR* P(R > R*) aR* P(R > R*) aR* P(R > R*) aR* P(R > R*) aR*

100 � 100 1.8% 2.1 1.1% 2.3 0.63% 2.5 0.29% 2.8 0.12% 3
200 � 200 1.8% 2.1 1.1% 2.3 0.60% 2.5 0.29% 2.8 0.13% 3
300 � 300 1.8% 2.1 1.1% 2.3 0.61% 2.5 0.29% 2.8 0.13% 3

Ohio

Area size (km2)

R* = 0.5 mm h�1 R* = 1 mm h�1 R* = 2.4 mm h�1 R* = 5.7 mm h�1 R* = 13 mm h�1

P(R > R*) aR* P(R > R*) aR* P(R > R*) aR* P(R > R*) aR* P(R > R*) aR*

100 � 100 1.8% 2.1 1.1% 2.3 0.60% 2.5 0.26% 2.8 0.10% 3.1
200 � 200 2.0% 2 1.3% 2.2 0.72% 2.5 0.30% 2.7 0.10% 3.1
300 � 300 2.1% 2 1.4% 2.2 0.73% 2.4 0.28% 2.8 0.09% 3.1

Bordeaux

Area size (km2)

R* = 1 mm h�1 R* = 1.4 mm h�1 R* = 2.2 mm h�1 R* = 3.4 mm h�1

P(R > R*) aR P(R > R*) aR P(R > R*) aR P(R > R*) aR

100 � 100 0.8% 2.4 0.5% 2.6 0.2% 3 0.1% 3.2
200 � 200 1.2% 2.3 0.8% 2.4 0.4% 2.7 0.2% 3

Figure 5. CDFs of the fractional area f affected by rain
over a given threshold R* computed from equation (18)
(markers) and derived from the radar of Bordeaux (dashed
lines) N � N = 100 � 100 km2.

Figure 6. CDFs of the fractional area f affected by rain
over a given threshold R* computed from equation (18)
(markers) and derived from the radar of Bordeaux (dashed
lines) N � N = 200 � 200 km2.
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(France), for area sizes N� N = 100� 100 km2 (s regressed
for R* = 1 mm h�1 is 0.88) and N � N = 200 � 200 km2

(s regressed for R* = 1 mm h�1 is 0.77), respectively.
Similarly, the results obtained for Ohio (USA) are shown in
Figure 7, for N � N = 100 � 100 km2 (s regressed for R* =
1 mm h�1 is 0.9). Lastly, Figures 8 and 9 underline the
fractional area CDF dependence on the geographical loca-

tion and the size of the area, respectively. The impact of the
location on the distribution is mainly driven by the local rain
rate CDF while increasing the area size lowers the average
value s2 of the correlation function.
[26] Nevertheless, in compliance with Figures 5 to 9,

model (17) satisfactorily compares with the fractional area
CDFs derived from radar observations whatever the thresh-
oldR*, the location, or the area sizeN�N ranging 100� 100
to 300 � 300 km2. However, some trends can be noticed
considering the errors computed according to equation (20)
for different areas, rain rate thresholds and locations as shown
in Table 2. Firstly, the larger are the considered areas, the
higher the errors between the two distributions. Secondly, for
threshold values R* � 5 mm h�1 for US radar and R* �
3.4 mm h�1 for Bordeaux, the model tends to overestimate
the probability of having a large fraction of the area affected
by rain.
[27] These two trends question the rain field homogeneity

hypothesis used to derive equations (10) and (17). Indeed,

Figure 7. CDFs of the fractional area f affected by rain
over a given threshold R* computed from equation (18)
(markers) and derived from radar observations over Ohio
(dashed lines) N � N = 100 � 100 km2.

Figure 8. CDFs of the fractional area with a rain rate over
1 mm h�1 from radar data for areas of 100 � 100 km2

located in the four successive geographical places of
interest.

Figure 9. CDF of the fractional area with a rain rate over
1 mm h�1 for areas with sizes 100� 100 and 300� 300 km2

located over Mississippi.

Table 2. Mean Relative RMS Error as Defined by (21) Between

the Model (18) and the Empirical CDF Deduced From Radar

Observations (%) for Different Rain Rate Thresholds and Different

Areas

Rain Rate Threshold 100 � 100 km2 200 � 200 km2 300 � 300 km2

Bordeaux
R = 1 mm h�1 0.54 0.82 1.9
R = 3.4 mm h�1 2.4 2.3 8.4

Ohio
R = 1 mm h�1 1.5 3.2 8.5
R = 5 mm h�1 7.1 14 21

Dakota
R = 1 mm h�1 0.65 1.2 3.9
R = 5 mm h�1 6.7 14 13

Mississippi
R = 1 mm h�1 2.5 4.0 4.6
R = 5 mm h�1 8.1 13 17
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over areas of hundreds of square kilometers, the rain rate
local CDF may differ from one point to the other. In such
conditions, the model no longer holds because the statio-
narity and homogeneity of the field become an unrealistic
assumption. In other respects, the differences observed for
increasing values of R* may be linked to the use of a
constant parameter to describe the average value s2 of the
correlation function. Indeed, high rain rates result from a
convective process. Now the radar observation of convec-
tive rain fields shows clustered structures, whose spatial
extent is clearly lower than that observed for stratiform rain
events. This point is partially confirmed when regressing
model (17) for R* = 5 mm h�1 (US radar) and R* = 3.4 mm
h�1 (Bordeaux) to determine s. Indeed, the results reported
in Table 3 show that, whatever the location, s is slightly
lower than the value obtained for R* = 1 mm h�1, suggest-
ing (as expected) that high rain rates are less correlated in
space than lower rain rates because the average of the
correlation of the underlying Gaussian fields for rain fields
thresholded with high values is lower than the one found for
lower thresholds. This may be due to a faster decay of the
correlation considering rain fields with a more significant
proportion of convective rain.

4.4. Parameterization of the Distribution

[28] The results obtained for the parameter s of the
distribution display an interesting stability as shown in
Figure 10.
[29] Indeed, for different climatic regions, this parameter

seems to have approximately the same behavior with
regards to the evolution of the size of the area. A generic
parameterization of s independent from the location can
hence be regressed and given as an indication for areas
ranging from 100 � 100 to 300 � 300 km2:

s ¼ 0:94� 0:0007L; ð21Þ

where L is the length of the side in kilometers. The relatively
high values found for s argue in favor of the existence of a
long-range correlation confirming the hypothesis made in
the second section of this study. Equation (21) allows to get
for an arbitrary location an approximation of the distribution
of the fraction of an area L � L affected by a rain rate over a
given threshold, whenever the local distribution of rain rates
is known. Indeed, from mR, sR and P0 where mR, sR are the
parameters of the lognormal pdf that characterizes the
conditional distribution of rain rates and P0 is the probability
of rain, the parametera needed to compute the distribution of
the fraction of the area affected by rain can be deduced from
equation (16).
[30] When combined with equation (17), parameters a

and s obtained that way allow to approximate the CDF of
the fraction of an area affected by rain for areas ranging
from 100 � 100 to 300 � 300 km2. The lower bound of this

domain is driven by the requirements on the size of the area
with regards to the alleged underlying correlation function.
The upper bound is set considering the hypothesis of
stationarity of the rain fields and of spatial invariance of
the point rainfall rate distribution across the areas that were
considered to establish the model. It should be noticed that
the data used in this study have been projected on a grid
of 1 � 1 km2. Considering data with a lower spatial
resolution, the parameterization proposed will no longer
hold. First, the standard deviation of the distribution of
rainfall rate that is used to determine the thresholds will
change. Second, the parameter s2 that corresponds to the
spatial average of the correlation is likely to be slightly
higher as the reduction of the resolution will smooth the
data and consequently generates higher correlation.

5. Concluding Remarks and Applications

[31] From considerations on stationary Gaussian random
fields, a model that reproduces the CDF of the fractional
area affected by rain over a preset threshold has been
proposed for areas ranging from 100 � 100 to 300 �
300 km2. It has been developed assuming that rain fields
can be seen as a nonlinear transformation of a stationary
Gaussian random field.
[32] First, the model was shown to match very accurately

the fractional area CDF derived from simulated Gaussian
random fields. Second, when confronted to distributions
obtained from radar observations of rain field, the model
satisfactorily reproduces the CDF of the fractional area
above a rain threshold R*. This model requires two inputs.
The first one a is related to the local distribution of rain
rates, the second one s to the mean of the correlation
function of the underlying Gaussian field. A parameteriza-
tion accounting for the local climatology and for the size of
the area was proposed for this parameter. The optimal value
of s was found to be slightly dependent on the threshold
considered on radar data, questioning the hypothesis of the
stationarity of the field.
[33] The high values found in any case for the parameter

s put forward the long-range dependence that has to be

Table 3. Regressed Value of s for 2 Rain Rate Thresholds R* and

for a 100 � 100 km2 Area of Interest

Dakota Mississipi Ohio Bordeaux

R* = 1 mm h�1 0.86 0.90 0.92 0.88
R* = 5 mm h�1 0.83 0.87 0.90 0.85 (R* = 3.4 mm h�1)

Figure 10. Dependence of the parameter s on the size of
the considered area for various locations.
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introduced in the correlation function of the Gaussian field
when generating rainfall fields. Important conclusions can
be drawn from those results for simulation purposes. For
models such as those described by Bell [1987] or Guillot
and Lebel [1999], the use of a correlation function that has a
mean value of s2 allows, when generating a large collection
of simulated fields, to reproduce the local distribution of
rain rates and the distribution of the fraction of the area
affected by rain over a given threshold. Additionally, the
distribution of the fraction of the area affected by rain is
required by rainfall field generators such as the one de-
scribed by Féral et al. [2006]. The methodology presented
here provides a convenient mean to approximate this
distribution without computing it from radar data.
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