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Abstract

In this paper we derive explicit expressions for the probability of ruin in a re-
newal risk model with dependence described-by/incorporated-in the real-valued
random variable Zk = −cτk +Xk, namely the loss between the (k − 1)–th and
the k–th claim. Here c represents the constant premium rate, τk the inter-arrival
time between the (k − 1)–th and the k–th claim and Xk is the size of the k–th
claim. The dependence structure among (Zk)k>0 is given/driven by a Markov
chain with a transition kernel satisfying an ordinary differential equation with
constant coefficients.

Keywords: Ruin probability, dependence, Markov chain, random walk, ratio-
nal Laplace transform, density satisfying ODE with constant coefficients.

1. Introduction

Since the classical discrete time risk model (seen as a random walk) due to
de Finetti (1957), the ruin probability is an established attempt to evaluate the
solvency of an insurance company. In this context, we are interested in provid-
ing explicit expressions for the probability of ruin.

While most classical models assume independence between inter-arrival times
and claim amounts, we consider a special dependence between the positive ran-
dom variable τk representing the k−th inter-arrival time and the subsequent
claim size denoted by the positive random variable Xk. More specifically, we
consider a random walk like structure of the real-valued random variable

Zk = Xk − cτk, k = 1, 2, . . . (1)

where c represents the premium rate and E{Z} < 0. The sum of increments
(random walk if independent increments)

Wn =

n
∑

k=1

Zk
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represents the loss of the company after n claims. For an initial capital amount
u > 0, the company is considered to be insolvent if Wn > u, and the proba-
bility ψ(u) of this event is called the ruin probability. W.l.o.g., in this paper
P(Z = 0) = 0.

By characterizing the dependence in renewal risk models via the series of iden-
tical distributed losses (Zk)k>0, one has two possible scenarios:

S1. Z1, Z2, . . . are independent (random walk structure)

S2. Z1, Z2, . . . are not independent (with multiple possible dependence struc-
tures among Zks).

Since in risk theory literature several cases preserving (Zk)k>0 independent
(scenario S1) have already been addressed (see Albrecher and Teugels (2006),
Ambagaspitiya (2009) or Badescu et al. (2009)), we will concentrate on a case
pertaining to the second scenario. For a recent and more exhaustive sur-
vey of other dependence structures in risk theory see Asmussen and Albrecher
(2010)[Chapter XIII].

The challenging part of choosing (Zk)k>0 to be dependent is the impossibility
of relying on standard random walk theory. However, we show that one can still
use the decomposition into positive-negative parts

Z = IZ+ + (1 − I)Z−, I ∼ Bernoulli(p), (2)

with Z+ = {Z | Z > 0} and Z− = {Z | Z < 0}, introduced in the random walk
treatment, to find closed form solutions for the probability of ruin ψ(u). Simi-
larly to Albrecher et al. (2010), we derive the exact forms via solving ordinary
differential equations. The difference is that while in Albrecher et al. (2010)
one exploits the independence of, and between τk and Xk, here one focuses on
the dependence structure of the losses Zk, whereas the pair τk, Xk can have
any dependent structure (even independence). Thus the necessary conditions
to be imposed for calculating exactly the ruin probability are no longer on the
densities of τ and X as in Albrecher et al. (2010), but on densities pertinent to
Z or Z+/Z−.

More specifically, in this paper we consider a dependence structure for the depen-
dent losses (Zk)k>0 given by a Markov chain with a transition kernel pk(x, y)
(starting at x, jumps from state x to state y at time k with probability pk)
that can be written as a product of two functions on each quadrant. The
condition needed is that combinations of these functions further satisfy cer-
tain ODEs with constant coefficients (see Assumption 1). This condition is not
intuitively evident. However, besides the mathematical amenability, the moti-
vation/interpretation of such a choice of dependent model is the following. The
weight p = P(Z > 0) not being constant over time, but dependent on the previ-
ous step in a deterministic way, influences the tendency of the future behavior
of the steps Z. Thus, by the choice of the mechanism to determine the next
p, we can generate models where if one period was bad (we earn less than we
spend i.e. Z > 0) it is more likely than in the independent case that the next
period will also be bad.
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To justify further our Markov chain structure choice, we present as a particular/
limiting case of it the case of independent (Zk)k>0, with densities of Z+ and
Z− satisfying ODEs with constant coefficients. A further particular case of it is
the case present in risk theory literature, of the density of Z satisfying an ODE
with constant coefficients, as in Albrecher and Teugels (2006); Ambagaspitiya
(2009); Badescu et al. (2009).

Similarly to Albrecher et al. (2010), where one transforms an integral equa-
tion for the probability of ruin into an ordinary differential equation, here we
transform a system of integral equations into a system of ordinary differential
equations that one can solve explicitly. This way we show that even under this
dependence scenario, the probability of ruin has still a rational Laplace trans-
form.

Thus, the classes of distributions for which one can identify the probability of
ruin as having a rational Laplace transform are the following:

A. In the dependent case: Markov chain structure on Zk with a kernel satisfying
certain ODE conditions, as in Propositions 1, 2, and 3.

B. In the independent case: the classical result in random-walk theory of Z+

with a rational Laplace transform, as in Proposition 4.

C. In the independent case: the classical case in ruin theory literature of Z with
rational moment generating function as in Proposition 5.

Note that for the distribution class C one can always find a dependence struc-
ture where the marginal distributions of τ and X have rational Laplace transform
(see Lemma 1 in Appendix A). Equally natural once can identify a dependence
structure with marginals (of τ and X) not having a rational Laplace transform.
For instance, one can have τ = Y1 + Y3 and X = Y2 + Y3, where Y1, Y2 and
Y3 are independent, Y1 and Y2 have a rational Laplace transform, but Y3 has
not. Actually, Y3 can have any positive distribution function, even heavy-tailed.

While the classes B and C are present in the applied probability literature, this
paper brings forth class A and shows that as in the other two classes of distri-
butions, the probability of ruin can be derived by means of ODEs with constant
coefficients.

The paper is organized as follows. In Section 2 we introduce a renewal risk
model via a random walk with real-valued steps Zk, and define the probability
of ruin in this context. In Section 3, we analyze a risk model where the steps
Zk are dependent via an order one Markov chain. We consider a Markov chain
structure with a transition kernel expressed-through/described-by some ODE
with constant coefficients and show that the ruin probability has a rational
Laplace transform. In Section 4, we present the case of independent steps Zk

as a particular, limiting case of the Markov chain dependence from Section 3.
We reiterate/reformulate in our ODE language well-known results from random
walk and risk literature. In Section 5, we look at a Markov chain dependent
case with a transition kernel expressed through exponential densities, and for a
numerical example we compare the values of probability of ruin under a Markov
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chain dependence structure with the independent increments one. After the
conclusions from Section 6, in the Appendix we present some additional lem-
mas and some deferred proofs.

Note regarding notation and terminology. Depending on relevance and
purpose, we will switch back and forth between the following equivalent con-
cepts:

• the density function fX of the random variable X satisfies an ODE with
constant coefficients

• the moment generating function (mgf) MX(s) of the random variable X
is rational; or, equivalently, X has a rational Laplace transform.

These are both equivalent to matrix exponentials (Bladt and Nielsen, 2010).

2. Generic random variable Z

Consider the collective risk model

U(t) = u+ ct−

Nt
∑

k=1

Xk, (3)

where Xk is the k-th claim amount and Nt is the number of claims that occurred
up to time t. The ruin can occur only at the time of a claim. Immediately after
the k-th claim, for u ≥ 0, the reserve is

U(Tk) = u+ cTk −

k
∑

i=1

Xi = u+ c

k
∑

i=1

τi −

k
∑

i=1

Xi = u−

k
∑

i=1

Zi.

The probability of ruin in infinite time is defined as

ψ(u) = P(sup
k≥1

k
∑

i=1

Zi > u).

3. (Zk)k≥1 dependent

In this section we study the case where (Zk)k≥0 are dependent and assume
to have an order one Markov chain structure. For a given Z0(= x), we define
the probability of ruin by

ψ(u, x) = P

(

sup
k≥1

k
∑

i=1

Zi > u | Z0 = x

)

. (4)

We denote the transition density of Z by

p(x, y)dx := P(Zi+1 ∈ dy|Zi = x) = P (Zi+1 ∈ dy|Zi = x, Zi−1 = x, . . .) .
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For u ≥ 0, by conditioning on Z1 one has

ψ(u, x) = P (Z1 > u | Z0 = x) + P

(

Z1 ≤ u, sup
k≥1

k
∑

i=2

Zi > u− Z1 | Z0 = x

)

= P(Z1 > u | Z0 = x) +

∫ u

−∞

P

(

sup
k≥1

k
∑

i=2

Zi > u− Z1 | Z0 = x, Z1 = y

)

p(x, y) dy

= P(Z1 > u | Z0 = x) +

∫ u

−∞

P

(

sup
k≥1

k
∑

i=2

Zi > u− Z1 | Z1 = y

)

p(x, y) dy

=

∫ ∞

u

p(x, y) dy +

∫ u

−∞

ψ(u− y, y)p(x, y) dy. (5)

To obtain a system of ODEs for the ruin probability we will assume a rather
special structure for the transition density, namely:

Assumption 1. Let

p(x, y) =



















g1(x)h1(y), (x, y) ∈ I1

g2(x)h2(y), (x, y) ∈ I2

g3(x)h3(y), (x, y) ∈ I3

g4(x)h4(y), (x, y) ∈ I4,

(6)

where Ik denotes the k−th quadrant of the cartesian plane. Further let g1(x) >
0, g4(x) > 0 for x > 0, g1(x) = g4(x) = 0 for x < 0, g1(x), g4(x) are linearly
independent and g1(x) + g4(x) = 1. Similarly g2(x) > 0, g3(x) > 0 for x <
0, g2(x) = g3(x) = 0 for x > 0, g2(x), g3(x) are linearly independent and
g2(x) + g3(x) = 1. Further assume that for

(k,m) ∈ {(1, 1), (1, 2), (4, 1), (4, 2), (2, 3), (2, 4), (3, 3), (3, 4)}

there exists polynomials qk,m(x) :=
∑n

i=0 q
k,m
i xi with

qk,m

(

d

du

)

gk(u)hm(u) = 0 u 6= 0

An interpretation of this kind of dependence is given in Section 5.

Remark 1. One can easily extend the results of this paper to a transition density
of the form

p(x, y) =



















∑n1

i=1 g
1
i (x)h1

i (y), (x, y) ∈ I1
∑n2

i=1 g
2
i (x)h2

i (y), (x, y) ∈ I2
∑n3

i=1 g
3
i (x)h3

i (y), (x, y) ∈ I3
∑n4

i=1 g
4
i (x)h4

i (y), (x, y) ∈ I4

(7)

with the obvious extension of the conditions to g1
i (x) and h1

i (y). Nevertheless
note that this generalization is straight-forward (one needs to replace all matrices
by corresponding block matrices). Hence, for ease of notation we consider only
the case n = 1.
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In order to evaluate the ruin probability we first need to check that for a given
set of parameters the process tends to −∞. Therefore one needs to evaluate
the invariant distribution fZ(x) of p(x, y) (see Lemma 4 in the Appendix),
although this is not needed further for the derivation of the ruin probability. To
find explicit expressions for ψ(u, x) a key observation is:

Proposition 1. If Assumption 1 is fulfilled, then the probability of ruin has the
form

ψ(u, x) =

{

g1(x)ψ1(u) + g4(x)ψ4(u), x > 0

g2(x)ψ2(u) + g3(x)ψ3(u), x < 0,
(8)

where ψi =
∫∞

u hi(y)dy+
∫ u

0 ψ(u−y, y)hi(y)dy, for i = 1, 3 and ψi =
∫ 0

−∞ ψ(u−

y, y)h4(y)dy, for i = 2, 4. Further, for i = 1, . . . , 4,

lim
u→∞

ψi(u) = 0.

Remark 2. Note that for x > 0, ψ1(u) is the probability of ruin given that the
first step (jump) is positive and ψ4(u) is the ruin probability given that the first
step is negative. Similarly, for x < 0, ψ2(u) is the probability of ruin given that
the first step is positive and ψ3(u) is the ruin probability given that the first step
is negative.

Next we provide a system of ODEs for the functions ψi.

Proposition 2. If Assumption 1 is fulfilled, then ψi(u), i = 1, . . . , 4 are a
solution of the system of ODEs

Aψ̃ = 0,

where ψ̃ = (ψ1, ψ2, ψ3, ψ4)T ,

A =













(r1,1−q1,1)q4,1

gcd(q1,1,q4,1) 0 0 q1,1r4,1

gcd(q1,1,q4,1)
r1,2q4,2

gcd(q1,2,q4,2) − q1,2q4,2

gcd(q1,2,q4,2) 0 q1,2r4,2

gcd(q1,2,q4,2)

0 r2,3q3,3

gcd(q2,3,q3,3)
(r3,3−q3,3)q2,3

gcd(q2,3,q3,3) 0

0 r2,4q3,4

gcd(q2,4,q3,4)
q2,4r3,4

gcd(q2,4,q3,4) − q2,4q3,4

gcd(q2,4,q3,4)













,

gcd(a, b) denotes the greatest common divisor of the polynomials a and b and
rk,m is defined by

Mk,m(−s) := Mgkhm(−s) :=

∫ ∞

−∞

e−sxgk(x)hm(x)dx =
rk,m(s)

qk,m(s)
. (9)

Further if h1(x) = h2(x) then ψ1(u) = ψ2(u) and if h3(x) = h4(x) then ψ3(u) =
ψ4(u).

Proof. Substituting (8) into the last two lines of the matrix A leads to

g1(x)

(∫ ∞

u

h1(y)dy +

∫ u

0

(

ψ1(u − y)g1(y) + ψ4(u− y)g4(y)
)

h1(y)dy

)

+ g4(x)

∫ 0

−∞

(

ψ2(u− y)g2(y) + ψ3(u− y)g3(y)
)

h4(y)dy

= g1(x)ψ1(u) + g4(x)ψ4(u)
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Since g1(x) and g4(x) are linearly independent we get the equations

{

ψ1(u) −
∫ u

0

(

ψ1(u− y)g1(y) + ψ4(u − y)g4(y)
)

h1(y)dy =
∫∞

u h1(y)dy

ψ4(u) −
∫ 0

−∞

(

ψ2(u− y)g2(y) + ψ3(u− y)g3(y)
)

h4(y)dy = 0

Analogously, using the linear independence of g2(x) and g3(x) from the last two
lines of equation (.3) one has the system

{

ψ2(u) −
∫ u

0

(

ψ1(u− y)g1(y) + ψ4(u − y)g4(y)
)

h2(y)dy =
∫∞

u
h2(y)dy

ψ3(u) −
∫ 0

−∞

(

ψ2(u− y)g2(y) + ψ3(u− y)g3(y)
)

h3(y)dy = 0

In order to write this system of equations in matrix form, we introduce the
operators

K l,m
+ ψ :=

∫ u

0

ψ(u−y)gl(y)hm(y)dy and K l,m
− ψ :=

∫ 0

−∞

ψ(u−y)gl(y)hm(y)dy

(note that gl, hm vanish either on the positive or negative half-line). Further,
denoting by 1 the identity operator, the above system of equations can be written
as









K1,1
+ − 1 0 0 K4,1

+

K1,2
+ −1 0 K4,2

+

0 K2,3
− K3,3

− − 1 0

0 K2,4
− K3,4

− −1

















ψ1

ψ2

ψ3

ψ4









=









−
∫∞

u
h1(y)dy

−
∫∞

u
h2(y)dy
0
0









. (10)

If h1(x) = h2(x) then K1,1
+ = K1,2

+ and K4,1
+ = K4,2

+ , hence it follows by
subtracting the second line from the first line that ψ1(u) = ψ2(u). Similarly if
h3(x) = h4(x), then we get by subtracting the fourth line from the third line
that ψ3(u) = ψ4(u), Hence the second part of the proposition follows.
For the first part we want to reduce this system of IDEs to a system of ODEs
that one can solve. It is enough to act on the integral system with a matrix of
the form













q1,1q4,1

gcd(q1,1,q4,1) 0 0 0

0 q1,2q4,2

gcd(q1,2,q4,2) 0 0

0 0 q2,3q3,3

gcd(q2,3,q3,3) 0

0 0 0 q2,4q3,4

gcd(q2,4,q3,4)













formed by operators of the type qk,m
(

d
du

)

that annihilate each Kk,m
± . Apply-

ing this matrix to the right-hand side of the equation leads to a homogeneous
system, since the left-hand side becomes zero after differentiation. More specif-
ically, for i = 1, 2,

∫ ∞

u

hi(y)dy =

∫ ∞

u

g1(y)hi(y)dy +

∫ ∞

u

g4(y)hi(y)dy

=

∫ ∞

0

g1(u+ y)hi(u+ y)dy +

∫ ∞

0

g4(u + y)hi(u+ y)dy.
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Each term in the sum is annihilated by the corresponding operator,

q1,i(
d

du
)

∫ ∞

0

g1(u + y)hi(u+ y)dy = 0,

respectively

q4,i(
d

du
)

∫ ∞

0

g4(u + y)hi(u+ y)dy = 0.

Now the result follows from Lemma 2 and 3 in the Appendix.

From Proposition 2 we get that ψi(u) is a solution of a system of linear
ODEs. The following theorem gives the explicit form of ψ. Its proof is given in
the Appendix.

Proposition 3. If Assumption 1 is fulfilled, then

ψi(u) =
n
∑

j=1

m
∑

k=0

cij,ku
ke−λju,

where −λj are either the negative roots of the polynomial

q1,1q1,2q2,3q2,4q3,3q3,4q4,1q4,2

gcd(q1,1, q4,1)gcd(q1,2, q4,2)gcd(q2,3, q3,3)gcd(q2,4, q3,4)

or the roots of

1 = −M1,1(−s)M3,3(−s) −M1,1(−s) −M3,3(−s)

−M2,3(−s)M3,4(−s)M4,2(−s) (M1,1(−s) − 1)

+M1,2(−s)M2,3(−s)M3,4(−s)M4,1(−s)

+M2,4(−s)M4,2 (M1,1(−s)M3,3(−s) −M1,1(−s) −M3,3(−s) + 1)

−M1,2(−s)M2,4(−s)M4,1(−s) (M3,3(−s) − 1) ,

with Mk,m are defined as in (9).

Note that for a fixed j, cij,k are linearly dependent. To get the cij,k we can plug

ψi(u) into Equation (10), which finally results in a linear system of equations
for cij,k. Further note that by setting u = 0 in the first two lines of Equation
(10) we get the conditions

ψ1(0) =

∫ ∞

0

h1(y)dy = 1 and ψ2(0) =

∫ ∞

0

h1(y)dy = 1.

An intuitive meaning of these expressions is that given that we have a positive
jump at zero, if u = 0 then ruin is certain.

4. The connection with (Zk)k≥1 independent

If we set h1(x) = h2(x) as the density of Z+ satisfying an ODE with constant
coefficients (e.g. phase-type distributions), h3(x) = h4(x) as the density of Z−,
g1(x) = g2(x) = P(Z > 0) and g3(x) = g4(x) = P(Z < 0), then our model
corresponds to the independent (Zk)k≥1 case. However, note that in this case
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Assumptions 1 are not fullfilled, since g1(x) and g4(x) are now not independent.
A way around this problem is to set

g1(x) = g2(x) = P(Z > 0)e−θx and g3(x) = g4(x) = 1 − g1(x).

Thus, letting θ → 0 one recovers the independent case.
Moreover, taking θ → 0 in (10) and then applying the appropriate differential

operator (to eliminate the integrals on the right-hand side), one obtains a new
(simpler) system of ODEs

(

pr+ − q+ pr+
(1 − p)r− (1 − p)r− − q−

)(

ψ1

ψ4

)

=

(

0
0

)

,

where p = P(Z > 0). Let ∗ stand for either + or −. Then, here q∗ is polynomial
(as in characteristic equation) describing the ODE with constant coefficients
that the densities of Z∗, whether r∗ is defined through the rational moment
generating functions of Z∗,

MZ∗(−s) =
r∗(s)

q∗(s)
.

Standard ordinary differential equation theory says that ψ1(u), ψ4(u) and im-
plicitely ψ(u), are a linear combination of exponential functions, where the
exponents are solutions of the polynomial equations

(pr+ − q+)((1 − p)r− − q−) − p(1 − p)r+r−

= q+q− − (1 − p)r−q+ − pr+q− = 0. (11)

Equation (11) is equivalent to MZ(s) = 1, further equivalent to ψ(u) hav-
ing a rational Laplace transform, which coincides with the result of Asmussen
(1992)[Corollary 5.1.] for Z+ phase-type distributed. In the following proposi-
tion, we (re)state a slight extension of this corollary (from phase-type to rational
Laplace transform class). Using our notations, we make further connections with
other existing results from the (Zk)k≥1 i.i.d. literature.

Proposition 4 (Corollary 5.1, Asmussen (1992)). Assume that the density
function of Z+ satisfies an ODE with constant coefficients described by the
polynomial q+(x) = q0 + q1x+ · · ·+ qnx

n, with non-homogeneous boundary con-
ditions, and denote by MZ−(s) the moment generating function of Z−. Define
r+(s) through

MZ+(−s) =
r+(s)

q+(s)
,

and assume that for x0 with q+(x0) = 0 we have r+(x0) 6= 0. Then

ψ(u) =

n
∑

i=1

Ciu
mie−λiu, (12)

where Ci, and λi ∈ C, are the solutions of the Lundberg equation

MZ−(s) =
q+(−s) − pr+(−s)

(1 − p)q+(−s)
or equivalently MZ(s) = 1. (13)

Further, mi ∈ {0, . . . n} is the multiplicity of the root λi minus 1.
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Thus, for the slightly less general case, namely when Z itself has a rational
moment generating function, one has the following result (see e.g page 270 in
Asmussen and Albrecher (2010)).

Proposition 5. Assume that the moment generating function of Z is rational
and

MZ(−s) =
r(s)

q(s)

and also assume that for x0 with q(x0) = 0 we have r(x0) 6= 0. Then the
probability of ruin is a solution of the ODE

(

q

(

d

du

)

− r

(

d

du

))

ψ(u) = 0.

Namely it has form (12), where λi are the solutions of the characteristic equation

q(s) − r(s) = 0, (14)

with multiplicity mi plus 1. This is equivalent to saying that ψ has a rational
Laplace transform,

ψ̂(s) =
((q − r)+(s) − dq+(s))

s(q − r)+(s)
(15)

where (q − r)+(s) is the polynomial that has as only roots the positive roots of
the characteristic equation (14) and d = (q − r)+(0)/q+(0).

Remark 3. After partial fractions decomposition and inversion of the Laplace
transform, one obtains the explicit form of the probability of ruin this time down
to constants, not only up to constants as in the theorem.

As examples of the Z-rational-mgf scenario, one can revisit all the models
considered by Ambagaspitiya (2009) and derive exact expressions for the ruin
probability. For exemplification, we consider in the following the Kibble and
Moran’s bivariate Gamma joint density for τ and X , defined through

MZ(s) = E(esZ) = E(e−cτ+X) = Mτ,X(s) =
1

(

(1 + cs
β1

)(1 − s
β2

) + ρ cs2

β1β2

)m ,

where ρ ≥ 0 is the correlation coefficient between τ and X .

Example 1 (Kibble and Moran’s bivariate Gamma joint density). According
to Proposition 5 one needs to solve first the Lundberg equation

MZ(s) = 1 or equivalentely

(

(1 +
cs

β1
)(1 −

s

β2
) + ρ

cs2

β1β2

)m

= 1.

Assuming that cβ2 > β1, we get the roots (compare Ambagaspitiya (2009))

λi
± =

cβ2 − β1 ±
√

(cβ2 − β1)2 + 4c(1 − ρ)β1β2(1 − e4πk/m)

2c(1 − ρ)
,

where Re(λi
+) > 0 and Re(λi

−) ≤ 0. Hence ψ satisfies the ODE

((

(

1 −
c

β1

d

du

)(

1 +
1

β2

d

du

)

+ ρ
c2

β1β2

(

d

du

)2
)m

− 1

)

ψ(u) = 0,

10



with solution

ψ(u) =

m
∑

i=1

cie
−λi

+u.

Further, note that for i = 1, . . . ,m− 1,

ci =
s+ λi

s

(q − r)+(s) − dq+(s)

(q − r)+(s)

∣

∣

∣

∣

∣

s=−λi

.

5. (Zk)k≥1 dependent with exponential steps/densities

In this section we return to the dependent case endowed with a Markov
chain structure and provide an example for the results derived. We are again in
the set-up of gi(x), i = 1, . . . 4 being non-constant functions of the initial step
Z0 = x. Let



















g1(x) = 1 − g4(x) = 1 − e−θx (I)

g2(x) = 1 − g3(x) = 1 − eηx (1 − I)

h1(y) = λ1e
−λ1y, h2(y) = λ2e

−λ2y (Z+)

h3(y) = λ3e
λ3y, h4(y) = λ4e

λ4y (Z−).

More precisely we will further assume that λ1 = λ2 and λ3 = λ4. The interpre-
tation of such a model is the following: The size of the jumps are exponentially
distributed, having different parameters for positive and negative jumps. Thus,
the functions h1, h2 and respectively h3, h4 play the same role as the densities
of Z+ and Z− of (2) in the independent random-walk case of Asmussen (1992).
The parameters θ or η control the probability of going up or down in the next
step of the random walk. Functions g1, g4 (reps. g2, g3) correspond to 1 − I, I
for x > 0 (respectively x < 0) as in the decomposition (2). If θ is large, then it
is more likely that a positive jump is followed by another positive jump. On the
contrary, if η is close to zero then it is more likely that a negative jump is fol-
lowed by another negative jump (see Figure 1 compare the graph to paths when
sampled from the invariant distribution in Figure 2). Since the lucky events are
when the random walk goes to −∞, choosing a large θ one would emphasize the
bad tendencies. On the other hand, choosing a η close to zero would emphasize
the good tendencies. Also, remark that choosing a small θ would lead to some
counter-cyclical, tamed behavior (see Figure 4 the invariant distribution is the
same as the one of the model in Figure 1).

Next we give a numerical example. We use the parameters λ1 = λ2 = 1,
λ3 = λ4 = 4/5, θ = 2 and η = 0.4 (see Figure 3 for a plot of some paths of
this process). Using Lemma 4 from the Appendix we derive the density of the
invariant distribution,

fZ(x) =

{

1
2e

−x x ≥ 0
1
2

4
5e

4
5

x x < 0.

With plots 1 and 4 we emphasize the difference in the behavior of the paths
when θ and η have different values, even though they have the same invariant

11



distribution. Since ψ1(u) = ψ2(u) and ψ3(u) = ψ4(u), to calculate ψi(u) one
needs to solve the system of ODEs

A

(

ψ1

ψ4

)

=

(

0
0

)

.

In this case, the matrix A is

A =

(

(r1,1−q1,1)q4,1

gcd(q1,1,q4,1)
q1,1r4,1

gcd(q1,1,q4,1)
r2,3q3,3

gcd(q2,3,q3,3)
(r3,3−q3,3)q2,3

gcd(q2,3,q3,3)

)

,

with the determinant

det(A) = s

(

s3 +
14s2

5
−

87s

25
−

6

25

)

.

Given the infinity condition, one needs to consider only the negative roots of
the polynomial det(A) = 0. Thus, the solution of the system of ODEs has the
form

ψi(u) = ci2e
−3.7185u + ci2e

−0.0655856u,

which once plugged back into Equation (10) leads to

ψ1(u) = ψ2(u) = 0.0488089e−3.7185u + 0.951191e−0.0655856u

ψ3(u) = ψ4(u) = 0.000839295e−3.7185u + 0.75528e−0.0655856u

and thus

ψ(u, x) =

{

(1 − e−2x)ψ1(u) + e−2xψ3(u) x > 0

(1 − e
4
10

x)ψ1(u) + e−
4
10

xψ3(u) x < 0.

Further, if we assume that Z0 is distributed according to the invariant distribu-
tion, then

ψ(u) = 0.0248241e−3.7185u + 0.853236e−0.0655856u.

We compare this to the ruin probability of a process with iid increments, which
follows the same invariant distribution,

ψindep(u) =
9

10
e−

u
10 .

Numerical values of these ruin probabilities are plotted in Figures 5 and 6. One
can clearly see that, in this case, dependence causes an increase of the risk of
ruin.

6. Conclusions

One of the fundamental problems in random walk theory is the computation
of the ladder height distributions. More specifically, for a random walk

Wn =

n
∑

k=1

Zk,

12
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Figure 1: Paths of the risk process when λ1 = λ2 = 1, λ3 = λ4 = 4/5, θ = 100 and η = 0.008
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Figure 2: Paths of the risk process when the claims are iid distributed with the invariant
distribution of a process with λ1 = λ2 = 1, λ3 = λ4 = 4/5, θ = 100 and η = 0.008
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Figure 3: Paths of the risk process when λ1 = λ2 = 1, λ3 = λ4 = 4/5, θ = 2 and η = 0.4
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Figure 4: Paths of the risk process when λ1 = λ2 = 1, λ3 = λ4 = 4/5, θ = 100−1 and η = 80
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Figure 5: Comparison of the ruin probability (absolute values) of the Markov chain with
λ1 = λ2 = 1, λ3 = λ4 = 4/5, θ = 2 and η = 0.4, and the corresponding process of independent
Z with the invariant distribution.
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Figure 6: Comparison of the ruin probability (− log10 of the values) of the Markov chain with
λ1 = λ2 = 1, λ3 = λ4 = 4/5, θ = 2 and η = 0.4, and the corresponding process of independent
Z with the invariant distribution.
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with increments having the distribution FZ and ladder epochs defined as τ− =
inf{n ≥ 1|Wn ≥ 0} respectively τ+ = inf{n ≥ 1|Wn > 0}, the ladder height
distributions are G−(u) = P(Zτ−

≤ u) and G+(u) = P(Zτ+
≤ u). These quan-

tities are relevant in sequential, queuing and risk theory. Results have been
derived for increments having a structure Z = pZ1 + (1− p)Z2 (Feller, 1971) or
a difference structure Z = τ −X (Asmussen, 1992).

Focusing on a risk theory model, one could analyze the probability of ruin
in this setting. In this paper we base our analysis on the real-valued random
variable Zk = −cτk + Xk describing the difference between the inter-arrival
time τk and its consecutive claim size Xk. In the classical model, τ and X are
assumed to be independent. If regardless of the dependence structure of τ and
X , Zk are independent, we are in the random walk setting. A natural condition
for Z in order to be able to derive explicit forms of the ruin probability is that
its mgf is rational. Or, the weaker/more general version of it, that only the mgf
of Z+ = {Z | Z > 0} is rational.

Once we step away from the independence of Zk, there are a multitude of de-
pendence structures possible. We introduced a Markov chain dependence which
still permits the exact calculation of the probability of ruin. A motivation for
such a model, besides the mathematical amenability, consists in the fact that
one can implement a counter-cyclic behavior of the sample paths. Although a
step away from the classical random walk setting, the model and the method
can be presented as an immediate alteration/extension of it.

Acknowledgments. This work has been partially supported by the French
Research National Agency (ANR) under the reference ANR-08-BLAN-0314-01
and the Swiss National Science Foundation Project 200021-124635/1.

Lemma 1.

1. If the joint moment generating function Mτ,X(t, s) of the vector (τ,X) is
rational, then the moment generating functions of Z+ and Z−, MZ+ and
respectively MZ− are also rational.

2. If MZ+ and MZ− are rational, then there exists a vector (τ,X) such that
Mτ,X(t, s) is rational.

Proof. Ad 1. Since Mτ,X(t, s) is rational, the density FZ of Z = X − cτ =
IZ+ + (1 − I)Z− has a rational Fourier transform, implying

fZ(x) =
n
∑

i=1

cix
mie−λix1{sign(Re(λi))[0,∞]}(x).

Now 1 follows from

pfZ+(x) =

n
∑

i=1,Re(λi)>0

cix
mie−λix1{(0,∞)}(x)

and

(1 − p)fZ−(x) =
n
∑

i=1,Re(λi)<0

cix
mie−λix1{(−∞,0)}(x).
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Ad 2. We have

MZ(s) = pMZ+(s) + (1 − p)MZ−(s) =
p

1 − s+ s
MZ+(s) +

1 − p

1 − s+ s
MZ−(s).

We use

Mτ,X(t, s) = p
1

1 − t− s
MZ+(s) + (1 − p)

1

1 − t− s
MZ−(−t).

To show that this is the moment generating function of a random vector, let I
be Bernoulli(p) and Y be Exp(1). Then the random vector

(τ,X) := P
(

Y, Y + Z+
)

+ (1 − P )
(

Y − Z−, Y
)

has Mτ,X(t, s) as moment generating function.

Lemma 2. Let g(y) and ψ(y) be two functions that are sufficiently often dif-
ferentiable and bounded for y > 0. Assume that there exists a polynomial
q(x) = q0 + q1x+ · · · + qnx

n with

q

(

d

dy

)

g(y) = 0, y > 0.

Further define the polynomial

r(x) =

n−1
∑

l=0

n
∑

i=l+1

qig
(i−l−1)(0)xl.

Then the Laplace transform of g

∫ ∞

0

e−syg(y)dy =
r(s)

q(s)
,

and

q

(

d

du

)∫ u

0

ψ(u− y)g(y)dy = r

(

d

du

)

ψ(u).

Proof. Note that for s > 0, using integration be parts

∫ ∞

0

e−syg(y)dy =

l
∑

k=1

1

sk
g(k−1)(0) +

∫ ∞

0

1

sl
e−sxg(l)(x)dx.

Multiplying with q(s) leads to

q(s)

∫ ∞

0

e−syg(y)dy =
n
∑

l=0

(

ql

l
∑

k=1

sl−kg(k−1)(0) +

∫ ∞

0

e−sxqlg
(l)(x)dx

)

=

n−1
∑

k=0

n
∑

l=k+1

qlg
(l−k−1)(0)sk +

∫ ∞

0

e−sxq

(

d

dx

)

g(x)dx

= r(s).
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For the second part of the lemma note that by induction

(

d

du

)n ∫ u

0

ψ(u− y)g(y)dy =

(

d

du

)n ∫ u

0

ψ(y)g(u− y)dy

=

n−1
∑

k=0

ψ(k)(u)g(n−k−1)(0) +

∫ u

0

ψ(y)g(n)(u− y)dy.

It follows

q

(

d

du

)∫ u

0

ψ(u− y)g(y)dy =

n
∑

l=0

ql

l−1
∑

k=0

ψ(k)(u)g(n−k−1)(0)

+

∫ u

0

ψ(y)q

(

d

du

)

g(u− y)dy = r

(

d

du

)

ψ(u).

Lemma 3. Let g(y) and ψ(y) be two functions that are sufficiently often dif-
ferentiable, where g(y) is bounded for y < 0 and ψ(y) is bounded for y > 0.
Assume that there exists a polynomial q(x) = q0 + q1x+ · · · + qnx

n with

q

(

d

dy

)

g(y) = 0, y < 0.

Further define the polynomial

r(x) = −

n−1
∑

l=0

n
∑

i=l+1

qig
(i−l−1)(0)xl.

Then
∫ 0

−∞

e−syg(y)dy =
r(s)

q(s)

and

q

(

d

du

)∫ 0

−∞

ψ(u− y)g(y)dy = r

(

d

du

)

ψ(u).

Proof. At first note that by partial integration

∫ 0

−∞

e−syg(y)dy = −

l
∑

k=1

1

sk
g(k−1)(0) +

∫ 0

−∞

1

sl
e−sxg(l)(x)dx.

Multiplying with q(s) leads to

q(s)

∫ 0

−∞

e−syg(y)dy = −

n
∑

l=0

(

ql

l
∑

k=1

sl−kg(k−1)(0) −

∫ 0

−∞

e−sxqlg
(l)(x)dx

)

= −

n−1
∑

k=0

n
∑

l=k+1

qlg
(l−k−1)(0)sk +

∫ ∞

0

e−sxq

(

d

dx

)

g(x)dx

= r(s).
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For the second part of the lemma note that by induction

(

d

du

)n ∫ 0

−∞

ψ(u− y)g(y)dy =

(

d

du

)n ∫ ∞

u

ψ(y)g(u− y)dy

= −

n−1
∑

k=0

ψ(k)(u)g(n−k−1)(0) +

∫ ∞

u

ψ(y)g(n)(u− y)dy.

It follows

q

(

d

du

)∫ ∞

u

ψ(u− y)g(y)dy = −

n
∑

l=0

ql

l−1
∑

k=0

ψ(k)(u)g(n−k−1)(0)

+

∫ ∞

u

ψ(y)q

(

d

du

)

g(u− y)dy = r

(

d

du

)

ψ(u).

Lemma 4. Let Z be a Markov chain with transition density satisfying the As-
sumption 1. Denote with

K l,m =

{

∫∞

0 gl(x)hm(x)dx, if l ∈ {1, 4}, m ∈ {1, 2}
∫ 0

−∞
gl(x)hm(x)dx, if l ∈ {2, 3}, m ∈ {3, 4}

.

Then the invariant distribution has the density

fZ(y) =
K1,2K2,3h1(y) +K2,3K4,1h2(y)

K1,2K2,3 + 2K2,3K4,1 +K3,4K4,1
, y > 0,

fZ(y) =
K3,4K4,1h3(y) +K2,3K4,1h4(y)

K1,2K2,3 + 2K2,3K4,1 +K3,4K4,1
, y < 0,

Proof. The invariant distribution is defined through

fZ(y) =

∫ ∞

0

p(x, y)fZ(x)dx.

We can split this equation into two equations, for y > 0 and y < 0,

fZ(y) =h1(y)

∫ ∞

0

g1(x)fZ(x)dx + h2(y)

∫ 0

−∞

g2(x)fZ(x)dx, y > 0,

fZ(y) =h4(y)

∫ ∞

0

g4(x)fZ(x)dx + h3(y)

∫ 0

−∞

g3(x)fZ(x)dx, y < 0.

It follows that the invariant distribution can be written as

fZ(y) = c1h1(y) + c2h2(y), y > 0,

fZ(y) = c3h3(y) + c4h4(y), y < 0,

and we are left with determining the constants cl, which are the solution of the
system of linear equations



















c1 = K1,1c1 +K1,2c2

c2 = K2,3c4 +K2,4c4

c3 = K3,3c4 +K3,4c4

c4 = K4,1c1 +K4,2c2.
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In our matrix notation








K1,1 − 1 K1,2 0 0
0 −1 K2,3 K2,4

0 0 K3,3 − 1 K3,4

K4,1 K4,2 0 −1

















c1

c2

c3

c4









=









0
0
0
0









(.1)

Using the fact that
∫

hi(x)dx = 1 and 1 − gi(x) = g5−i(x) one can rewrite the
matrix in (.1) as









−K4,1 1 −K4,2 0 0
0 −1 K2,3 K2,4

0 0 −K2,3 1 −K2,4

K4,1 K4,2 0 −1









Moreover, by adding all other rows to the last one, it becomes









−K4,1 1 −K4,2 0 0
0 −1 K2,3 K2,4

0 0 −K2,3 1 −K2,4

0 0 0 0

















c1

c2

c3

c4









=









0
0
0
0









It follows that

c1 = tK1,2

(

K3,4 +K2,4

K4,1

)

= t
K1,2

K4,1

c2 = t
(

K3,4 +K2,4
)

= t

c3 = t
K3,4

K2,3

c4 = t.

Since fZ(x) is a density function, t−1 = K1,2

K4,1 + K3,4

K2,3 + 2.

Remark 4. In the general case we have that
∫

hi(x)dx = 1 and 1−
∑

j g
i
j(x) =

∑

j g
5−i
j (x) and hence for fixed j and m,

∑

i

K l,m
i,j +K5−l,m

i,j = 1

(K l,m
i,j is defined as K l,m by replacing hm by hm

j and gl by gl
i). If we interpret

the matrix (.1) as a block matrix where K l,m corresponds to the matrix with el-

ements K l,m
i,j and 1 to the identity matrix, then the sum of all rows is 0. Which

means that we get non-trivial candidates for fZ .

Proof of Proposition 1. Equation (5) for ψ(u, x) will have two expressions, de-
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pending on the sign of x. For x ∈ I1 ∪ I4, (x > 0)

ψ(u, x) =

∫ ∞

u

g1(x)h1(y)dy +

∫ 0

−∞

ψ(u − y, y)g4(x)h4(y)dy

+

∫ u

0

ψ(u− y, y)g1(x)h1(y)dy

= g1(x)

(∫ ∞

u

h1(y)dy +

∫ u

0

ψ(u − y, y)h1(y)dy

)

+ g4(x)

∫ 0

−∞

ψ(u − y, y)h4(y)dy

= g1(x)ψ1(u) + g4(x)ψ4(u). (.2)

Analogously for x ∈ I2 ∪ I3, (x < 0)

ψ(u, x) =

∫ ∞

u

g2(x)h2(y)dy +

∫ 0

−∞

ψ(u − y, y)g3(x)h3(y)dy

+

∫ u

0

ψ(u− y, y)g2(x)h2(y)dy

= g2(x)

(∫ ∞

u

h2(y)dy +

∫ u

0

ψ(u − y, y)h2(y)dy

)

+ g3(x)

∫ 0

−∞

ψ(u − y, y)h3(y)dy

= g2(x)ψ2(u) + g3(x)ψ3(u). (.3)

Thus the first part of the theorem follows. The second part of the theorem
follows from limu→∞ ψ(u, x) = 0 for every x.

Proof of Theorem 3. From the fact that ψi solve a system of ODEs with bound-
ary conditions limu→∞ ψi(u) = 0, we have

ψi(u) =

n
∑

j=1

m
∑

k=0

cij,ku
ke−λju,

where −λj are the negative roots of the polynomial

det













(r1,1−q1,1)q4,1

gcd(q1,1,q4,1) 0 0 q1,1r4,1

gcd(q1,1,q4,1)
r1,2q4,2

gcd(q1,2,q4,2) − q1,2q4,2

gcd(q1,2,q4,2) 0 q1,2r4,2

gcd(q1,2,q4,2)

0 r2,3q3,3

gcd(q2,3,q3,3)
(r3,3−q3,3)q2,3

gcd(q2,3,q3,3) 0

0 r2,4q3,4

gcd(q2,4,q3,4)
q2,4r3,4

gcd(q2,4,q3,4) − q2,4q3,4

gcd(q2,4,q3,4) ,













= 0 (.4)

equivalent to

0 =
(r1,1 − q1,1)(r3,3 − q3,3)q1,2q2,3q2,4q3,4q4,1q4,2

gcd(q1,1, q4,1)gcd(q1,2, q4,2)gcd(q2,3, q3,3)gcd(q2,4, q3,4)

+

(

r2,3r3,4q2,4q3,3 − r2,4(r3,3 − q3,3)q2,3q3,4
) (

r4,2(r1,1 − q1,1)q1,2q4,1 − r1,2r4,1q1,1q4,2
)

gcd(q1,1, q4,1)gcd(q1,2, q4,2)gcd(q2,3, q3,3)gcd(q2,4, q3,4)
.
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Dividing by

q1,1q1,2q2,3q2,4q3,3q3,4q4,1q4,2

gcd(q1,1, q4,1)gcd(q1,2, q4,2)gcd(q2,3, q3,3)gcd(q2,4, q3,4)

leads to the equation

0 =
(r1,1 − q1,1)(r3,3 − q3,3)

q1,1q3,3
+
r2,3r3,4r4,2(r1,1 − q1,1)

q1,1q2,3q3,4q4,2
−
r1,2r2,3r3,4r4,1

q1,2q2,3q3,4q4,1

−
(r1,1 − q1,1)(r3,3 − q3,3)r2,4r4,2

q1,1q2,4q3,3q4,2
+

(r3,3 − q3,3)r1,2r2,4r4,1

q1,2q2,4q3,3q4,1

The claim follows from the definition of Mk,m.
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