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 9 

Abstract 10 

The effects of two lubricating oils on nematode assemblages of a Tunisian lagoon 11 

were investigated in a microcosm experiment. Sediment from a pristine site in Ghar El Melh 12 

lagoon (Western Mediterranean) was treated with either mineral oil (Mobil 20W-50), a 13 

synthetic lubricant (Mobil 0W-40), the same two lubricants after use in a vehicle, and effects 14 

were examined after 5 weeks. Univariate analysis showed significant differences between 15 

most univariate indices of the nematode assemblages in all the lubricant treatments as 16 

compared to the control. Total nematode abundance (I), species richness (d) and number of 17 

species (S) decreased significantly in all lubricant contaminated microcosms. However, 18 

evenness was not affected in all treated replicates except in used mineral lubricant treatment 19 

where it was significantly higher than in the control. Diversity (H’) was only altered in 20 

synthetic lubricant treatments. Results from multivariate analyses of the species abundance 21 

data demonstrated that responses of nematode species to the two lubricants treatments were 22 

varied: Daptonema trabeculosum was eliminated in all lubricant treatments and seemed to be 23 

an intolerant species to oil contamination. Spirinia gerlachi increased in mineral lubricant 24 

treatments ("clean" and used) but was eliminated in all synthetic lubricant treatments. This 25 



ACCEPTED MANUSCRIPT 
 2 

species could be categorized as “resistant” to mineral oil contamination and intolerant to 26 

synthetic lubricant contamination. Terschellingia longicaudata increased only in synthetic 27 

lubricant treatments (clean” and used) and appeared to be a “synthetic oil- resistant” species. 28 

 29 

Keywords: Benthos; Free-living marine nematodes; Bioassay; Hydrocarbons; Lubricant oils; 30 

Sediment; Assemblage composition; Lagoons.  31 

 32 

 33 

1. Introduction 34 

Many coastal marine ecosystems are well recognized to be contaminated with 35 

anthropogenically introduced petroleum hydrocarbons (Kennish, 1992; Louati et al., 2001; 36 

Zaghden, 2005). In marine systems, the major sources of hydrocarbon contamination are oil 37 

exploration and production, natural seeps, atmospheric input, tanker accidents, industrial 38 

discharge, and urban run-off (NAS, 1985 ; AMSA, 1993). In addition to these sources of 39 

hydrocarbon contamination, engine lubricants are another source of oil pollution. For 40 

example, in Europe, the fate of around 1.1 million tonnes per annum (20% total market) of 41 

used lubricating oils is not known (Anonymous, 1997). While not all of this will enter the 42 

environment, significant amounts do, particularly `total loss' lubricants which are released 43 

through normal use. These products include: chain saw oils, concrete mould-release 44 

(`shuttering') oils, two-stroke engine oils, chassis greases, railway wheel flange greases, 45 

lubricants for ski lifts and railway points greases (Battersby, 2000). Each year approximately 46 

600 000 tonnes of total loss lubricants are released into the environment in the European 47 

Union (Stempfel et al., 1993). 48 

The main lubricant oils used in vehicles and heavy machinery are mineral-based 49 

lubricating oils and synthetic lubricants. Synthetic lubricants are created from a base fluid 50 
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(e.g. esters, alpha-olefins, alkylated naphthalenes) in which additives are blended to create 51 

and enhance engine performance (Thompson et al., 2007). Additive compounds within 52 

lubricants (e.g. di-phenylamines), are known to be highly toxic to certain aquatic organisms 53 

(Drzyzga, 2003) and are often more recalcitrant to biodegradation than the base oil (Powell et 54 

al., 2005). Therefore, additives are the most limiting components in synthetic lubricant oils 55 

(Willing, 2001). Used lubricants also contain metals and additional polycyclic aromatic 56 

hydrocarbons that are introduced via engine operation and oil combustion (Thompson et al., 57 

2007). Such used lubricants are known to be highly mutagenic and more toxic to aquatic 58 

organisms than their unused counterparts (e.g. Vazquez-Duhalt, 1989). 59 

Pollution of the marine environment with oil is potentially one of the most devastating 60 

impacts on coastal, estuarine, and inter-tidal regions (Mercurio, 2004). The effects of crude 61 

and refined petroleum hydrocarbons on benthic fauna have been extensively studied 62 

following real oil spills (Krebs and Burns, 1977; Boucher et al., 1980; Bodin, 1988; 63 

McGuinness, 1990; Teal et al., 1992; Agard et al., 1993; Moore and Stevenson, 1997; Smith 64 

and Simpson, 1998; Jewett et al., 1999; Michel and Hayes, 1999), in field experiments 65 

(Alongi et al., 1983; Decker and Fleeger, 1984; Plante-Cuny et al., 1993; Christie and Berge, 66 

1995; Feder and Blanchard, 1998), experimental mesocosms (Farke et al., 1985; Frithsen et 67 

al., 1985) and laboratory microcosms (Grassle et al., 1980; Carman et al., 2000, Mahmoudi et 68 

al., 2005), but the influence of lubricant oils on natural communities is poorly understood. 69 

The few studies concerning engine lubricants and benthic organisms (Powell et al., 2005; 70 

Thompson et al., 2007) have been conducted using Antarctic assemblages, and there are no 71 

studies reporting the impacts to Mediterranean species or under temperate environmental 72 

conditions. 73 

Among benthic organisms, nematode assemblages are well suited to microcosm 74 

experiments. They have short generation time, high density and continuous reproduction 75 
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(Suderman and Thistle, 2003). These small animals are also easily maintained and sensitive to 76 

many toxicants (Coull and Chandler, 1992; Long, 1992; Guo et al., 2001). Furthermore, the 77 

nematode assemblage-level approach to the detection and monitoring of the biological effects 78 

of pollutants has been validated in many studies (Warwick et al., 1988; Sundelin and 79 

Elmgren, 1991; Austen et al., 1994; Austen and McEvoy, 1997; Austen and Somerfield, 1997; 80 

Mahmoudi et al., 2005; Gyedu-Ababio and Baird, 2006).  81 

In the present study, we present the results of a microcosm experiment designed to 82 

compare the response of Mediterranean meiobenthic nematode assemblages in term of 83 

abundance, diversity and species composition to two different lubricants before and after their 84 

use in vehicles. 85 

2. Materials and methods  86 

2.1. Collecting site  87 

Natural meiobenthic assemblages were collected from Ghar El Melh lagoon (Tunisia) 88 

on October 2006. Hand-cores of 10 cm² were used to a depth of 15 cm to transfer sediment 89 

into a bucket. At the prospected site (37° 09.10’ N 10° 13.01’ E), depth was 1.30 m and 90 

salinity was 36 PSU. Sediments were rich in silts (40%) and clays (21%) with a median grain 91 

size of 39 �m. Sediment organic carbon content was 1.5%. 92 

On return to the laboratory, sediments were homogenised by gentle hand stirring with 93 

a large spatula before they were used for lubricant sediment contamination or microcosms 94 

filling.  95 

2.2. Lubricant contamination of sediment 96 

Sediment used for contamination was first alternately frozen and thawed three times to 97 

defaunate it (Austen et al., 1994, Gyedu-Ababio and Baird, 2006), and then it was wet sieved 98 

to remove the larger particles (>63 µm). Next, quantities of 100 g (wet weight) of this 99 

sediment were contaminated with appropriate doses of one of four lubricants in order to 100 
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obtain final concentrations of 4.29 mg each lubricant kg-1 after being mixed with 200 g of 101 

natural (uncontaminated) sediment. Treatments comprised of either Mobil 20W-50 (mineral 102 

lubricant treatment), the same lubricant (Mobil 20W-50) after use in a vehicle (used mineral 103 

lubricant treatment), Mobil 0W-40 (synthetic lubricant treatment) or the same lubricant 104 

(Mobil 0W-40) after use in a vehicle (used synthetic lubricant treatment). Used oils (mineral 105 

and synthetic) were taken directly out of two cars after they were used for 80 engine hours 106 

over 2 months. The doses used (4.29 mg lubricant kg-1 of wet sediment) were comparable to 107 

those (~150 ml of lubricants to ~35 L of wet sediment) employed by Thompson et al. (2007) 108 

and that had revealed significant effect on the benthic infauna. Each lubricant was mixed into 109 

the sediment with a food mixer and the amended sediment was left to equilibrate for 2 weeks 110 

at 5°C before microcosms were assembled.  111 

2.3. Experimental set-up 112 

Microcosms consisted of 570 ml glass bottles. One control and four treatments with 113 

four replicates each were set up. Treated microcosms were gently filled with 300 g of 114 

homogenised sediment (200 g of natural sediment and 100 g contaminated sediment) topped 115 

up with filtered (1 µm) natural lagoon water at 36 PSU. In control microcosm, the 116 

contaminated sediment was replaced by 100 g (wet weight) of the defaunated sediment. Each 117 

microcosm bottle was stoppered with a rubber bung with two holes and aerated via an air 118 

stone diffuser. The same kind of experiment set-up was successfully used by Schratzberger 119 

and Warwick (1998) to examine the effects of intensity and frequency of organic enrichment 120 

on two estuarine nematode communities. A control and 4 lubricant treatments were used 121 

(Table 1). There were 4 replicate control microcosms which remained uncontaminated and 4 122 

treatments with 4 replicates each. The microcosms were kept in the dark, initially at the field 123 

temperature on the day of collection but this was gradually raised at a rate of 1-2°C per day 124 

until a steady experimental temperature of 20°C was reached. Experimental temperatures 125 
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were higher than field temperatures to stimulate and optimise conditions for nematode 126 

reproduction and growth. All experiments were terminated after 5 weeks and the sediments 127 

fixed in 4 % formalin. 128 

2.4. Sample processing 129 

Meiofauna samples were rinsed with a gentle jet of freshwater over a 1 mm sieve to 130 

exclude macrofauna, decanted over a 40 µm sieve, centrifuged three times with Ludox TM 131 

HS40 (specific density 1.18) and stained with Rose Bengal. Meiofauna was counted and 132 

identified at the higher taxon level using a stereomicroscope. Nematodes, comprising 133 

approximately two thirds of total meiofauna abundance, were identified to genus or species 134 

using the pictorial keys of Platt and Warwick (1983, 1988), and Warwick et al. (1998). 135 

2.5. Data processing 136 

  The majority of data analysis followed standard community analysis methods 137 

described by Clarke (1993) and Clarke and Warwick (2001) using the PRIMER (Plymouth 138 

Routines in Multivariate Ecological Research) software package.  139 

Since the main objective of the study was to assess the response of nematofauna to in 140 

vitro lubricant contamination of sediment, statistical analyses focused on the faunal data. 141 

Univariate indices were computed: total nematode abundance (I), number of species (S), 142 

diversity (Shannon-Wiener index H’), species richness (Margalef’s d)  and evenness (Pielou’s 143 

J’) were calculated for each microcosm to describe nematode assemblage structure. Structure 144 

of the data was first tested in order to assess normality (Kolmogorov-Smirnov test) and 145 

equality of variance (Bartlett test). One-way analysis of variance (ANOVA or Kruskal-Wallis 146 

tests) was used to test for overall differences between these indices between controls and 147 

treatments and the Tukey HSD multiple comparisons test was used in pairwise comparisons 148 

of treatments and control. In all the above statistical significance testing a significant 149 

difference was assumed when p<0.05. 150 
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Multivariate data analysis was by non-parametric multi-dimensional scaling (MDS) 151 

ordination with the Bray-Curtis similarity measure performed on square-root transformed 152 

species abundance data to determine whether the nematode assemblages responded to the 153 

contaminations by changes in the relative abundance of species. Pairwise analysis of 154 

similarities (ANOSIM) was carried out to determine if there were any significant differences 155 

between nematode assemblages in different treatments. The nature of the community 156 

groupings identified in the MDS ordinations was explored further by applying the similarity 157 

percentages programme (SIMPER) to determine the contribution of individual species to the 158 

average dissimilarity between treatments and control. 159 

Throughout the text, the shorthand codes given in Table 1 are used to identify 160 

microcosms. 161 

3. Results  162 

3.1. Univariate indices 163 

The graphical summary of univariate indices for nematode assemblages from each 164 

microcosm and the results of significance testing using the 1-way ANOVA (Fig. 1) illustrate 165 

significant differences between nematode assemblages from undisturbed controls and those 166 

from lubricant treatments for most univariate measures. Total nematode abundance (I), 167 

species richness (d) and number of species (S) decreased significantly in all lubricant 168 

contaminated microcosms. However, evenness was not affected in all treated replicates except 169 

in used mineral lubricant treatment where it was significantly higher than in the control. 170 

Diversity (H’) was only altered in mineral lubricant treatments.  171 

3.2. Multivariate indices 172 

In the MDS ordination for all the microcosms (Fig. 2) the effects of both lubricants 173 

are obvious: all the treated samples are distinct from the control.  174 



ACCEPTED MANUSCRIPT 
 8 

ANOSIM results reveal a significant effect of both lubricants, "clean" or used, at the 175 

dose tested on nematode assemblages. All treatments were significantly different from the 176 

controls and from each other (Table 2).  177 

SIMPER results show that the lowest value of average dissimilarity was recorded 178 

between control and unused mineral lubricant amended sediment microcosms (Table 3).  179 

A total of 17 nematode species were recorded in all the microcosms (Table 4). The 180 

control microcosms (C) were mainly dominated by Daptonema trabeculosum, Araeolaimus 181 

bioculatus, Bathylaimus australis, Oncholaimus campylocercoides, Ascolaimus elongatus 182 

and Spirinia gerlachi. The treatment CML was dominated by Araeolaimus bioculatus, 183 

Marylynnia stekhoveni, Spirinia gerlachi, Bathylaimus australis, Mesacanthion hirsutu and 184 

Ascolaimus elongatus. The microcosms UML were mainly dominated by Bathylaimus 185 

australis, Spirinia gerlachi, Metalinhomoeus numidicus, Neochromadora trichophora, 186 

Ascolaimus elongatus and Prochromadorella neapolitana. The synthetic lubricant amended 187 

sediment microcosms (CSL and USL) were mainly dominated by Terschellingia 188 

longicaudata (Table 4). 189 

Significant differences between control and treated microcosms mainly resulted from 190 

changes in the abundances of the dominant species (Table 5). Elimination of Daptonema 191 

trabeculosum and Oncholaimus campylocercoides, increasing numbers of Marylynnia 192 

stekhoveni and Spirinia gerlachi were responsible for significant difference between C and 193 

CML. Elimination of Daptonema trabeculosum, decreasing abundance of Araeolaimus 194 

bioculatus and increasing numbers of Spirinia gerlachi and Bathylaimus australis were 195 

responsible for significant difference between C and UML. Synthetic lubricant contamination 196 

led to an elimination of Daptonema trabeculosum, an increase in the abundances of 197 

Terschellingia longicaudata and Metalinhomoeus numidicus, and a decrease in the 198 
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abundance of Araeolaimus bioculatus causing significant difference between control and the 199 

microcosm CSL and USL. 200 

4. Discussion 201 

Although we have analysed the nematode assemblages after 5 weeks, an exposure 202 

period long enough to allow nematode assemblages to adapt to the presence of the 203 

contaminants, lubricant oils (mineral and synthetic, "clean" or used) seemed to have severe 204 

effects on the Ghar El Melh lagoon nematofauna at the dose tested. Univariate analysis 205 

showed that lubricant contamination led to significant effects on free-living nematode 206 

assemblages. Total nematode abundance (I), species richness (d) and number of species (S) 207 

decreased significantly in the contaminated microcosms. The toxicity and longevity of 208 

lubricants in the environment is not known because very few experiments of this type have 209 

been done. Haus et al. (2001) linked the chemical and physical properties of mineral oils to 210 

their biodegradability and found that as the relative amount of aromatic and polar compounds 211 

increased, the biodegradability decreased. However, Eisentraeger et al. (2002) found that 212 

neither usage nor the presence of additives such as antioxidants affected the biodegradability 213 

of oils. Powell et al. (2005) demonstrated that the Antarctic benthic microbial communities in 214 

the "clean" and used lubricant treatments were not significantly different. By chemical 215 

analysis of the sediments, these authors found that the same components were lost from both 216 

the "clean" and used Mobil 0W-40 and they concluded that in the short-term the effect of 217 

used oil on microbes is not appreciably different to that of the "clean", unused product. 218 

According to Thompson et al. (2007), lubricants contain many toxic compounds such as 219 

diphenylamines, alky naphthalenes, and other minor phenol additives that are not readily 220 

biodegradable. Such compounds are very toxic to many aquatic organisms such as 221 

bioluminescent bacteria (Photobacterium phosphoreum), amphipods (Gammarus fasciatus) 222 

and daphnia (Daphnia magna) (Drzyzga, 2003). 223 
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Decreased abundance of dominant nematode species in the replicates treated with used 224 

mineral lubricant resulted in a significantly higher evenness of nematode assemblages in these 225 

microcosms compared to those in the controls. Schratzberger et al. (2003) have also observed 226 

an increase of evenness of benthic assemblages in response to oil contamination and had 227 

considered this univariate indice as the potentially most sensitive biological response for 228 

nematodes and macrofauna communities.  229 

Multivariate analysis of the data revealed significant differences between control and 230 

all treated microcosms. This indicates that the response of the free-living nematode 231 

assemblages to lubricant contamination is dependent on the type of lubricant used (mineral or 232 

synthetic, "clean" or used) for the sediment contamination. In the MDS plot for the nematode 233 

assemblages, all replicates were separated from each other (Fig. 2) indicating that the 234 

dominance relationship among species changed in all treatments compared to the control. 235 

Sediment toxicity alone may not be responsible for assemblage differences observed 236 

between the contaminated and ‘control’ sediments. Other factors such as organic enrichment 237 

and anoxia may also contribute to impacts to infaunal communities following an oil spill (e.g. 238 

Elmgren et al. 1983). Direct correlations between high levels of sediment organics and 239 

reduced infaunal abundances have been well established (Pearson and Rosenberg, 1978; Spies 240 

et al., 1988, Mahmoudi et al., 2003).  241 

Lubricant oils as other contaminants may have more direct impact on associated 242 

microbial communities in the sediment than the meiobenthos. This may be reflected in 243 

meiobenthic community structure because of alteration of food supply or altered 244 

decomposition processes (Austen and McEvoy 1997). Without microbial analysis in parallel 245 

with meiobenthos analysis it will not be possible to distinguish which group of organisms are 246 

the most sensitive to the pollutant.  247 
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Conditions in microcosms may have influenced the manifestation of contaminant 248 

effects (sensu Carpenter 1996). However, faunal responses in microcosms exposed to 249 

lubricant differed significantly from changes that occurred in control microcosms. Thus, the 250 

causative mechanisms of population change were strongly influenced by the presence of 251 

contaminant. While we acknowledge that microcosms of natural assemblages can never 252 

completely mimic natural conditions, we feel that the observed responses of benthic fauna in 253 

microcosms provides insight into the complex direct and indirect effects that contaminant can 254 

have on natural communities.  255 

It is manifested in the present study that the effects of the lubricants used could be 256 

easily distinguished from one another as far as the structuring of the nematode assemblage is 257 

concerned. The nematode assemblage in the four lubricant treatments was different from the 258 

control and from one another (p<0.05). Thus, the effect of "clean" mineral lubricant on the 259 

structuring of the nematode assemblage is different from that of used mineral lubricant and 260 

from those of synthetic lubricant ("clean" and used). This differential response was not 261 

observed for copepod assemblages in antarctic sediments with a "biodegradable" synthetic 262 

lubricant TITAN GT1 (0W/20) and a synthetic lubricant (Mobil 0W-40, "clean" and used) as 263 

contaminants. In fact, in their study of the contamination effects by a "conventional" and a 264 

‘biodegradable’ lubricant oil on infaunal recruitment to Antarctic sediments, Thompson et al. 265 

(2007) analysed meiofauna communities in field experiment bioassays and found that 266 

copepods dominated the benthic assemblage in contaminated and "control" sediments and the 267 

recruitment of these crustaceans was largely unaffected by the presence of lubricants. 268 

Following an oil spill, copepods have been suggested to become opportunistic because of 269 

their potential for rapid reproduction which allows them to dominate the initial stages of 270 

faunal succession after a disturbance (Grassle et al., 1981). In general, recolonisation of 271 
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populations of smaller and short-lived organisms, such as copepods, is expected to be more 272 

rapid than longer lived species (Driskell et al., 1996).  273 

Many other factors can explain the variability in response of different communities to 274 

pollutants. Species vary broadly in their response to contaminants (Austen and McEvoy, 275 

1997; Millward et al., 2004); the nature of the sediment and seawater characteristics from 276 

which the communities are derived affect contaminant bioavailability (Depledge et al. 1994, 277 

Langston and Spence 1994); Bioavailability and hence toxicity of pollutants depends on their 278 

partitioning between the sediment, pore water and overlying water (Austen and McEvoy, 279 

1997) and this can also be dependent on sediment organic carbon content (Di Toro et al., 280 

1991).  281 

Nematode assemblages seemed to be more affected by synthetic lubricant treatments 282 

(Fig. 2, Table 3). Synthetic oils contain additives (Thompson et al., 2007) that are known to 283 

be highly toxic to many aquatic organisms (Drzyzga, 2003) and are often more recalcitrant to 284 

biodegradation than the base oil (Powell et al., 2005). 285 

Daptonema trabeculosum was eliminated in all lubricant treatments (Table 4) and 286 

seemed to be an intolerant species to oil contamination. Spirinia gerlachi increased in 287 

mineral lubricant treatments ("clean" and used) but was eliminated in all synthetic lubricant 288 

treatments. This species could be categorized as "resistant" to mineral oil contamination and 289 

intolerant to synthetic lubricant contamination. Terschellingia longicaudata increased only in 290 

synthetic lubricant treatments ("clean" and used) and appeared to be a "synthetic oil- 291 

resistant" species.  292 

 293 

5. Conclusions  294 

The results from our study demonstrate a clear differential response of free-living 295 

nematode assemblages to lubricant contamination. After only a short in situ incubation we 296 
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were able to measure differences in the nematode assemblages due to the effects of different 297 

oil treatments. The synthetic lubricant appears to have caused the biggest change in nematode 298 

assemblage composition. 299 

Whilst the methods used here were useful in showing broad changes to the nematode 300 

assemblages, a more detailed examination of the benthic nematode ecology is needed to 301 

better understand the impacts oil contamination. Further studies are planned to evaluate the 302 

potential impact of lubricants on the most sensitive species and to elucidate the mechanisms 303 

of resistance of the most tolerant species living in the Ghar El Melh lagoon. 304 
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 512 

Fig. 1. Graphical summary of means and 95% pooled confidence intervals of univariate 513 

indices for nematode assemblages from each microcosm. Abundance = absolute abundance in 514 

individuals per microcosm; H' = Shannon-Wiener index; species richness = Margalef’s d; 515 

evenness = Pielou’s J; no. species = number of species (S); ns: no significant difference of the 516 

univariate index in the contaminated microcosm when compared to the control; *: significant 517 

difference of the univariate index. 518 
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 523 

Fig. 2. Non-metric MDS ordination of square-root transformed nematode species absolute 524 

abundance data from uncontaminated sediment control microcosm (C) and lubricant 525 

contaminated sediment treatments [CML: "clean" mineral lubricant treatment, UML: used 526 

mineral lubricant treatment, CSL: "clean" synthetic lubricant treatment, USL: used synthetic 527 

lubricant treatment]. 528 
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Table 1.  Codes used to identify microcosms. 552 

 553 

Treatment Code 

Uncontaminated control  C 

Sediment  with a final "clean" mineral lubricant concentration  of 4.29 mg kg-1  CML 

Sediment  with a final used mineral lubricant concentration  of 4.29 mg kg-1 UML 

Sediment  with a final "clean" synthetic lubricant concentration  of 4.29 mg kg-1 CSL 

Sediment  with a final used synthetic lubricant concentration  of 4.29 mg kg-1  USL 

 554 
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Table 2. Anosim results (R statistic and significance level) of pairwise tests for pairwise 569 

differences between treatments and control using square-root transformed nematode 570 

abundance data. 571 

 572 

Groups R value Significance level 
C, CML 0.870* 0.029 

C, UML 0.913* 0.024 

C, CSL 0.924* 0.024 

C, USL 0.942* 0.024 

CML, UML 0.895* 0.023 

CML, CSL 0.964* 0.022 

CML, USL 0.978* 0.022 

UML, CSL 0.918* 0.024 

UML, USL 0.936* 0.024 

CSL, USL 0.816* 0.029 

         * Denotes significant differences when p<0.05). 573 
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Table 3.  Average dissimilarity between microcosms. 586 

 587 

Average 

Dissimilarity (%) 

C CML UML CSL USL 

CML 63.56     

UML 68,60 65,25    

CSL 82,27 81,60 74,20   

USL 90,87 88,84 79,02 36,49  

 588 
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 599 

 600 

Table 4. Absolute abundance (individuals per microcosm) and standard deviation of nematode 601 

species identified in the control microcosm (C) and lubricants amended sediment treatments 602 

[CML, UML, CSL and USL].  603 

 604 
 C CML UML CSL USL 

Ascolaimus elongatus 18 ± 5 6 ± 1 15 ± 2 0 2 ± 1 

Araeolaimus bioculatus 119 ± 6 53 ± 13 9 ± 5 9 ± 1 6 ± 1 

Bathylaimus australis 44 ± 6 13 ± 11 55 ± 14 18 ± 2 3 ± 1 

Calomicrolaimus honestus 4 ± 4 2 ± 2 0 0 3 ± 2 

Daptonema trabeculosum 144 ± 7 0 0 0 0 

Hypodontolaimus colesi 4 ± 3 0 4 ± 5 0 0 

Marylynnia stekhoveni 8 ± 1 42 ± 6 4 ± 4 6 ± 3 2 ± 2 

Metalinhomoeus numidicus 2 ± 2 0 19 ± 2 14 ± 1 23 ± 2 

Mesacanthion hirsutum 15 ± 9 7 ± 3 2 ± 2 0 0 

Monhystera parva 8 ± 4 0 0 13 ± 2 0 

Neochromadora trichophora 4 ± 3 2 ± 1 16 ± 4 0 0 

Odontophora wieseri 1 ± 2 8 ± 4 0 0 0 

Oncholaimus campylocercoides 35 ± 4 0 0 8 ± 4 6 ± 3 

Paracomesoma dubium 2 ± 2 0 5 ± 6 1 ± 1 2 ± 2 

Prochromadorella neapolitana 4 ± 4 7 ± 3 12 ± 8 8 ± 3 0 

Spirinia gerlachi 16 ± 6 21 ± 7 50 ± 16 0 0 

Terschellingia longicaudata 1 ± 2 1 ± 3 0 108 ± 6 62 ± 4 
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 605 

 606 

Table 5.  Species responsible for differences between control and treated microcosms based 607 

on similarity percentages (SIMPER) analysis of square-root transformed data. (+): more 608 

abundant; (-): less abundant; (elim): elimination. Species accounting for ~ 70% of overall 609 

dissimilarity between treatment groups are ranked in order of importance of their contribution 610 

to this dissimilarity.  611 

 612 

CML UML CSL USL 

Daptonema 

trabeculosum (elim)  

Daptonema 

trabeculosum 

(elim) 

Terschellingia 

longicaudata (+) 

Terschellingia 

longicaudata (+) 

Marylynnia stekhoveni 

(+)  

Araeolaimus 

bioculatus (-)  

Daptonema 

trabeculosum (elim) 

Daptonema 

trabeculosum (elim) 

Spirinia gerlachi (+) Spirinia gerlachi 

(+) 

Araeolaimus 

bioculatus (-) 

Araeolaimus 

bioculatus (-) 

Oncholaimus 

campylocercoides 

(elim)       

Bathylaimus 

australis (+) 

Metalinhomoeus 

numidicus (+) 

Metalinhomoeus 

numidicus (+) 
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