
HAL Id: hal-00564638
https://hal.science/hal-00564638v1

Submitted on 9 Feb 2011 (v1), last revised 27 Jul 2016 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International
License

Optical Formula Recognition
Stéphane Lavirotte, Loïc Pottier

To cite this version:
Stéphane Lavirotte, Loïc Pottier. Optical Formula Recognition. 4th International Conference Docu-
ment Analysis and Recognition, Aug 1997, Ulm, Germany. pp.357-361. �hal-00564638v1�

https://hal.science/hal-00564638v1
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://hal.archives-ouvertes.fr

Optical Formula Recognition

Stéphane Lavirotte ∗ Löıc Pottier

Safir Team Safir Team
INRIA Sophia Antipolis INRIA Sophia Antipolis

Sophia-Antipolis, FRANCE 06560 Sophia-Antipolis, FRANCE 06560

Abstract
This paper describes the design and the first steps of

implementation of Ofr (Optical Formula Recognition),
a system for extracting and understanding mathemat-
ical expressions in printed documents. Our approach
clearly separate OCR step, geometrical treatments and
syntactic analysis. In this paper we focus on the third
part: we define a class of context-sensitive graph gram-
mars for mathematical formulas, study their proper-
ties and show how to remove their ambiguities (by
adding contexts in rules) to define efficient parsing.
This method is based on a “critical pairs” approach in
the sense of Knuth-Bendix algorithm.

Introduction
The paper is organized as follows : first we in-

troduce the domain of mathematical formulas recog-
nition, and discuss works of the literature. In sec-
ond part, we briefly present our objectives and the
motivations of our researches. In third section, we
present the methodology we have used. The fourth
part present the formalism of our graph grammars,
properties allowing to eliminate ambiguities, and show
how to use them to parse formulas. The fifth part de-
scribes briefly the implementation. Then, we conclude
in describing future works.

1 Mathematical formulas recognition
There is a wealth of mathematical knowledge that

can be potentially very useful in many computational
applications. But this material is not available in elec-
tronic form. All this knowledge is in mechanical, phys-
ical and mathematical books which are references in
the domain from many years. Other newer sources
are publications, articles, filled of useful informations
which are often difficult to get sources. Actually, the
only way to use this mathematical informations is to
re-type formulas on keyboard to be able to add it in

∗also I3S, CNRS URA 1376, Université de Nice Sophia
Antipolis

Computer Algebra System (CAS) or in any applica-
tion using mathematical input. For automatization of
this job, the problem to solve is : How to build the syn-
tax tree of a formula just with graphical informations
(characters and their positions) ?

Many works have been done since the sixties on
parsing two dimensional expressions. Parsing 2D ex-
pressions is more difficult than parsing strings because
mathematical expressions, or other 2D languages, dif-
fer greatly from text. A line of text is one-dimensional
and discrete: characters are placed one after another
on the same line. But symbols in mathematical ex-
pressions may be under, upper on the right and far,
included in another, etc, with continuous distances.

Different methods were used to solve this problem
with various success ([1], [3], [6], [8], [10], [13],[14])
which can roughly be classified in: syntax directed
recognition (“local” context-free grammar approach
and heuristics) and geometry directed recognition us-
ing layout structure of symbols.

This methods have problems to manage “non-
linear” formulas like matrices or systems of equations.
Also, parsing techniques in literature have often expo-
nential complexity, when they use 2D grammars de-
rived from classical context free string grammars, with
geometrical predicates. Exploration and backtracking,
used in these parsers, lead to exponential complexity.

2 Objectives
Our aim is to start from scanned images

(“bitmaps”) of documents containing formulas and to
extract, read and parse them to be able to re-use
them in other applications. As we mentioned in in-
troduction, it would be very interesting to have such
a tool. Different fields of applications can be consid-
ered : build a base of knowledge (Database of math-
ematical formulas or CAS database), copy/paste be-
tween a viewer of Postscript and a CAS or an editor,
complete actual professional OCR which do not have
formula recognition capabilities.

3 Design of Ofr
The Ofr system described in this paper is based on

three different components, each one giving just the
necessary information to the next process.

Σ
i=1

n
a + b

2
ii

i
3

α+β+δ=π
2 3/2

Δ’ b - 4ac
2

=

Optical Formula Recognition

1

2

3

Graph

Builder

π3/2
tree of formula

grammar

O.C.R.

Recognition
Optical Character

Graph

Parsing

^

π /

3 2

+

δβ

Export Data
Graph

Export Characteritic
of recognized
Characters

Character
Size

Position

Original Sheet Scan process

Recognized text

Syntax tree

Lexer rules Grammar rules

Figure 1: The Ofr architecture

3.1 OCR (Optical Character Recognition)
The OCR step is important, and researches on this

subject have lead to good solutions, at least for printed
characters. In this paper, we won’t discus about the
recognition problem. We assume that their is a pro-
cess which gives as output symbols of the sheet and
informations about them. We need the bounding box
of each symbol (position in absolute or relative coor-
dinates), size of the character. For size, we don’t sup-
pose that OCR can give the absolute size in points,
but a relative size between all characters. Eventually
reference point of the character could be helpful.

3.2 Definition of graphs
We introduce an intermediate combinatorial struc-

ture, between recognized symbols with their positions
in the plane, and the tree of formula. It is a graph,
linking graphical objects of the paper sheet. This
graph contains geometrical informations about all the
elements of formula and their relative positions.

Extending the usual methodology of string lan-
guages analysis, we use the notion of lexical units, or
token. In our case, a token is basically a symbol of the
sheet, and will be more complicated expression during
the parsing process.

The graph builder constructs a graph with all to-
kens. Oriented links between vertices are deduced
from graphical informations. Theses graphic oriented
links are intended to capture all useful geometric in-
formations of character relative positions. In fact, this
step is a generalization of the only two links before and
after determining relative character position in a com-
puter input string. Of course, the construction of the
graph is difficult, but we think that the separation of
geometric and syntax is very important to understand

and solve the problem of parsing 2D expressions, like
mathematical ones.

Every object will be represented by terms or finite
sets of terms. The set T (F, V) of terms is inductively
defined by the set F of functional symbols of fixed ar-
ity and the set V of variables: variables are terms, and
if t1, .., tn are terms, and f is a n-ary functional sym-
bol of F , then f(t1, .., tn) is a term. We note V ar(t)
the set of variables occurring in a term (or a finite set
of terms) t. We use uppercase symbols for functional
symbols and lowercase ones for variables.

• a vertex is a term V (t, v, i) where: t is lexical
type (”Letter”, ”Digit”, etc), v is value (typi-
cally a mathematical expression in term form :
x, Mult(2, y), etc), i is an identifier.

• an edge is a term E(t, v1, v2) where: v1 and v2 are
vertices, t is type of edge, i.e. a term L(d, w), d
being a graphical directions (”Left”, ”Top”, etc),
and w being a weight, encoding relative proximity
of two symbols.

• a graph is a finite set of
edges : {E(t1, v11, v2,1), .., E(tn, v1n, v2,n)}. The
set {vij} being the set of vertices of the graph.
For simplicity, we suppose that graphs are con-
nected and have at least one edge 1.

The next step is now to define a type of grammar and a
parsing method to use this combinatorial structure in
order to derive tree (term) representations of formulas.

4 Structure analysis : graph grammar
Graph grammars provide a useful formalism to de-

scribe structural manipulations of multi-dimensional
data. They were introduced in [11] to solve picture
processing problems, and are studied in a theoretic
point of view [12], or in a more practical one [2], [4].
To have a good overview of this subject, see [5], [9].

A graph grammar is specified by a set of production
rules. The role of rules is to replace matched subgraph
by another one. This process depends on a specifica-
tion on the desired embedding, this means that there
is different ways to replace matched subgraph.
4.1 Definition

We use context-sensitive graph grammars. A rule of
grammar expresses that a sub-graph of the graph can
be collapsed into a new vertex (representing the sub-
formula) if some conditions are verified by the involved
tokens. Rules and grammars are defined as following:

1Then every vertices appears in at least one edge. This is
not a restriction : we can add a generic vertex, connected to
every vertex with generic edges.

• a rule is a term V ← G, C where: V is a vertex,
called ”production” of rule, G is a graph, called
”pattern” of rule, C is a finite set of graphs, called
”context” of rule discusses in next section.

• a grammar is a finite set of rules.

Given a graph representing a formula, rules are in-
tended to rewrite it by replacing sub-graphs by ver-
tices whose values are term forms of the recognized
sub-formulas. This process uses matching and replace-
ment in a way that we precise below. First, we recall
the notions of substitution and term matching :

• a substitution is an endomorphism of T (F, V),
i.e. an application σ verifying σf(t1, .., tn) =
f(σt1, .., σtn)∀f in F and all terms t1, .., tn. A
substitution σ is uniquely determined by its re-
striction σ|V to the set of variables.

• a term t matches a term t′, noted t ≤ t′ iff there
exists a substitution σ such that σt = t′.

Matching of finite sets of terms is defined by :

{t1, .., tn} ≤ {t′1, .., t′m} ⇔ ∃σ {σt1, .., σtn} = {t′1, .., t′m}
Then a rule r = V ← G, C rewrites a graph G1

into a graph G2, noted G1 →r G2 iff there exists a
substitution σ, a sub-graph G′ of G1 (i.e. G′ ⊂ G1),
such that: σG = G′ ; for all graph H in the context C,
there is no substitutionτ such that τ|V ar(G) = σ|V ar(G)

and τH ⊂ G1 ; and G2 is obtained by collapsing G′

into σV , i.e. removing in G1 all edges of G′ and re-
placing in G1 all the vertices of G′ by the vertex σV .
4.2 Contexts of rules

One of the main problems with grammar and
rewrite rules is the existence of ambiguities: two rules
can rewrite an object into two distinct objects. Sup-
pression of ambiguities can be made for example by us-
ing priorities, case analysis on pattern of rules, or by
Knuth-Bendix completion. These techniques hardly
apply to our case, this is why we use contexts in
rules: given a graph grammar which leads to ambigu-
ities, our goal is to add contexts to its rules to remove
these ambiguities, as automatically as possible.

When two rules can apply to two sub-graphs which
have disjoint sets of vertices, there is no ambiguity:
applications of the two rules commute.

Ambiguities can appear when the two patterns of
the rules can be superposed:

• two graphs G1 and G2 can be superposed iff there
exist σ1 and σ2 such that σ1G1 and σ2G2 have a
common vertex. We note S(G1, G2) the set of
couples of such substitutions, called superposi-
tions of G1 and G2.

• given two rules ri = Vi ← Gi, Ci, i = 1, 2, the set
A(r1, r2) of ambiguities of r1 and r2 is defined as
the subset of S(G1, G2) formed by couples (σ1, σ2)
such that the two rules can apply to the graph
σ1G1 ∪ σ2G2, i.e. ∀i = 1, 2, ∀H ∈ Ci, there is
no substitution τ such that τ|V ar(Gi) = σi|V ar(Gi)

and τH ⊂ σ1G1 ∪ σ2G2.

The set S(G1, G2) can be infinite, but ”minimal” su-
perpositions are in finite number, as shown by next
propositions. First we define a pre-order on couples of
substitutions :

Definition 1

(σ1, σ2) ≤ (σ′
1, σ

′
2)⇔ ∃τ, σ′

1 = τ ◦ σ1, σ′
1 = τ ◦ σ1

Proposition 1 Given two graphs G1 and G2, there
exists a finite subset S0 of S(G1, G2) such that:

∀c ∈ S(G1, G2), ∃c′ ∈ S, c′ � c.

We omit proofs by lack of space (see [7] for details).

Proposition 2 There exists an unique (up to renam-
ing of variables), minimal (for ≤) and finite set of
superpositions of two graphs.

We will note S0(G1, G2) this minimal set.
Because of contexts, the set of ambiguities of two

rules has a more complicated structure than the set
of superpositions of their patterns. But the following
property will help us to describe it:

Proposition 3 Let r = V ← G, C be a rule, r′ =
V ← G, ∅ be the same rule with empty context, G1, G2

two graphs, such that G1 →r′ G2 and G1 �→r G2.
Let ρ be a substitution.
Then ρG1 →r′ ρG2 and ρG1 �→r ρG2.

Let us given two rules r1 and r2 with patterns G1

and G2, and a superposition (σ1, σ2) of S(G1, G2). If
we remove contexts of the rules, then both apply to the
graph σ1G1 ∪ σ2G2. Suppose now that (σ1, σ2) is not
an ambiguity of r1 and r2. Then one of the two rules
(with their contexts) does not apply to σ1G1 ∪ σ2G2.
The last proposition implies that for every substitu-
tion τ , the superposition (τ ◦ σ1, τ ◦ σ2), is not an
ambiguity of r1 and r2. More briefly, we have then:

Proposition 4 If c ∈ S(G1, G2)\A(r1, r2) and c ≤ c′

then c′ ∈ S(G1, G2) \A(r1, r2).

This means that the complement of A(r1, r2) in
S(G1, G2) has the same nice ”cone” structure as
S(G1, G2). In particular, we have:

Corollary 1 If the minimal superpositions of the pat-
terns of two rules are not ambiguities of the rules, then
the rules have no ambiguities.

We will exploit now this property to define an
method that, given a grammar with ambiguities, adds
contexts to its rules in order to obtain a new grammar
without ambiguities.
4.3 Construction of Contexts

We can now give the general formulation of the
method which removes ambiguities of context-free
graph grammar by adding contexts.

Let G = {r1, .., rn} be a graph grammar, with ri =
Vi ← Gi, ∅.

Let (σij
k1, σ

ij
k2), k = 1..aij be all the minimal super-

positions of Gi and Gj . Because contexts are empty,
these superpositions coincide with ambiguities.

Suppose that for each minimal superposition (when
two rules can be applied simultaneously) we have a
method to choose the good rule to apply. It is equiva-
lent to give a function C such that C(i, j, k) ∈ {1, 2}:
if C(i, j, k) = 1, this means that we want to prevent
application of rule rj in the ambiguity (σij

k1, σ
ij
k2). We

achieve this goal by adding context σij
k1G1 to rule rj .

Doing this for all rules and all minimal superpo-
sitions, we define the new grammar G′ = {r′1, .., r′n},
where:

r′i = Vi ← Gi,
⋃

j=1...n

{σij
k2Gj |k = 1 . . . aij , C(i, j, k) = 2}

By Corollary 1, we have then:

Proposition 5 The grammar G′ has no ambiguity.

Figure 2 show a representation of a context-free
grammar G which has two rules, one for addition z + t
and one for implicit power xy.

r+ r
^

Z T

+Left Right

X

YTop-Right+
Z T X Y

^

Figure 2: Graphs for rules r+ and r∧

For rule r+ : the first part is the description of
“production” of rule is the node in which the matched
graph will be rewrite. Second part is graph to match
(”pattern”). This graph is constituted of two edges,
with their types (direction and weight) and nodes.

Suppose we have the formula A2 + B, given by the
graph represented by figure 3

There is an ambiguity because we can apply the two
rules to the data graph. If we apply r+, vertices A,
+ and B collapse, and we obtain a graph representing

+

2

BA
Left Right

Top-Right

Figure 3: Graph for A2 + B formula

the formula (A + B)2. If we apply r∧, then we obtain
a graph representing the formula (A2) + B. The right
choice is clearly to apply r∧: we have to prevent the
application of r+ in this case.

Here are, in graphic representation, the four mini-
mal superpositions of rule r+ and r∧ (data graph is a
particular case of the first superposition) :

T+
Left Right

X

Y
Z

Top-Right

T+

Y
Top-Right

X Z
Left Right

Z +
Left Right

Y

X T

Top-Right
Z +

Left Right

X

T
Y

Top-Right

Figure 4: All the overlaps for rules r+ and r∧

We have defined some general criterions to obtain
the C function. Firstly the mathematical priority of
the described operator. Secondly a graphical informa-
tion. In our example, ∧ as a greater priority than +,
but this doesn’t mean that this rule should always be
applied before the other one. This priority is right for
linear case. In case of ∧ operator, there is implicit
parenthesis on arguments and this is true for all such
operators with arguments on different level like x(y+z),∑(n2)

(i=1) xi,
(x+y)
(z+t) , . . . With these two simple criterions

we are able to define which rule should be applied in
each case of ambiguity.

In our example, for the first superposition, we do
not want to apply r+ first, then we just add the pat-
tern of rule r∧ to contexts of r+. So that, r+ won’t be
applied if there is a power on its argument.

Doing this for all superpositions, we obtain a
context-dependent grammar G′. This grammar works
well on formulas like a2 + b, xa+b2 + yci+j2+d, etc.

4.4 Parser
The parsing algorithm we use is a bottom-up al-

gorithm. Trying to simulate this global view by top-
down parsing is possible, but we think that this ap-
proach will lead to a combinatorial explosion and an
exponential parsing which is generally the case in two
dimensional parsing algorithms in literature.

5 Implementation
We use a HP ScanJet 4c scanner to scan mathemat-

ical expressions document and save it as a binary im-
age file. OCR used actually is a small package (about
1500 lines of C) written in our team which is able to
recognize printed documents by LATEX. One of our aim
is to replace this by a more generic OCR, which would
be able to learn from a file and it’s ascii translation,
then recognize a document in the same fonts.

The Graph Builder and Graph Grammar package
are currently implemented in Klone, a Common Lisp
dialect. Advantages of Klone were useful to quickly
develop these experimental packages on graph gram-
mar. Graph Builder and Graph Grammar are about
7000 lines of Klone. All run under UNIX system.

6 Conclusion
We have presented a method and a system to rec-

ognize scanned mathematical formulas. The system is
composed of three clearly separated modules (OCR,
graph builder, graph grammars and parsing). On a
theoretical level, we use a graph grammar and we have
define a method to remove ambiguities of grammars.
On a practical level, we have a first implementation of
the method, which works on various complex formulas,
obtained from bitmap images of formulas, with good
time complexity. Defined grammar for these formu-
las are not trivial, using more than 50 operators, with
many kinds of constructions: linear operators, verti-
cal operators, 2D tree-operators, 2D cyclic-operators,
implicit operators. For most grammars dealing with
these constructions, we are able to remove correctly
ambiguities, with the presented criterions. Just some
cases need heuristics to solve.

In future, we will focus on the two first parts of
Ofr: the OCR component, and the graph builder. The
main problem in graph building is to find a good trade-
off between two extreme cases: a graph with many
links will represent more than one formula, and then
lead to inconsistency ; a graph with few links will not
contain sufficient informations to build the formula.

References
[1] R. H. Anderson, “Syntax Directed Recogni-

tion of Hand-Printed Two-Dimensional Mathe-
matics,” Interactive Systems for Experimental Ap-
plied Mathematics, pp. 436-459, 1968.

[2] H. Bunke, “Graph Grammars as a Generative Tool
in Image Understanding,” Graph Grammars and
their Application to Computer Science, Vol. 153,
pp. 8-19, 1982.

[3] P. Chou, “Recognition of Equations Using a Two-
Dimensional Stochastic Context-Free Grammar,”
Proc. SPIE Conf. on Visual Communications and
Image Processing IV, pp. 852-863, 1989.

[4] H. Fahmy and D. Blostein, “A Graph Grammar for
High-Level Recognition of Music Notation,” Proc.
of 1st ICDAR (International Conference on Docu-
ment Analysis and Recognition), Vol.1, pp. 70-78,
1991.

[5] H. Fahmy and D. Blostein, “A Survey of Graph
Grammars: Theory and Applications,” Proc. of
the 11th ICPR (International Conference on Pat-
tern Recognition), 1992.

[6] R. J. Fateman, T. Tokuyasu, B. P. Berman, and
N. Mitchell, “Optical Character Recognition and
Parsing of Typeset Mathematics,” Journal of Vi-
sual Communication and Image Representation,
Vol. 7, 1995.

[7] S. Lavirotte and L. Pottier “Graph Grammar for
Mathematical Formula Recognition” Technical Re-
port INRIA, 1997.

[8] H.-J. Lee and M.-C. Lee, “Understanding Math-
ematical Expressions in a Printed Document,”
Proc. of the 2nd ICDAR, pp. 502-505, 1993.

[9] M. Nagl, “A Tutorial and Bibliographical Sur-
vey on Graph Grammars,” Workshop on Graph-
Grammars and their Application to Computer Sci-
ence and Biology, pp. 70-126, 1978.

[10] M. Okamoto and A. Miyazawa, “An Experimen-
tal Implementation of a Document Recognition
System for Papers Containing Mathematical Ex-
pressions,” Structured Document Image Analysis,
pp. 36-53, 1992.

[11] J. Pfaltz and A. Rosenfeld, “Web Grammars,”
Proc. 1st International Joint Conference on Arti-
ficial Intelligence, pp. 609-619, 1969.

[12] J.-C. Raoult and F. Voisin. “Set-Theoretic Graph
Rewriting,” Technical report IRISA, 1992.

[13] H. M. Twaakyondo and M. Okamoto, “Structure
Analysis and Recognition of Mathematical Expres-
sions,” Proc. of 3rd ICDAR, pp. 430-437, 1995.

[14] Z.-X. Wang and C. Faure, “Structural Analysis
of Handwritten Mathematical Expressions,” Proc.
of the 9th ICPR, pp 32-34, 1988.

